

Dynamics and phase behavior of quasi-2D dispersions

Gerhard Nägele

Institute of Biological Information Processing, IBI – 4

Forschungszentrum Jülich GmbH, Germany

SoftComp Annual Meeting 2025, Venice – Mestre, Wednesday, May 21, 2025

glied der Helmholtz-Gemeinsc

CONTENT

Quasi - 2D dispersions with competing SA – LR interactions

- Phase behavior, clustering and structure
- Dynamics without and with account of hydrodynamic interactions (HI)

Realization:

- Particles trapped in planar liquid interface
- Proteins attached to a membrane
- Q2D confinement using optical laser tweezers

Applied methods:

- Langevin Dynamics simulations (LD without HI)
- Multi-particle collision dynamics (MPC with HI)

Extended Lenard – Jones – Yukawa (LJY) model potential

represents short-range attractive plus long-range repulsive interactions (SA-LR)

$$\beta u(x) = 4\epsilon \left[\left(\frac{1}{x} \right)^{100} - \left(\frac{1}{x} \right)^{50} \right] + \frac{A\xi}{x} \exp\left(-x/\xi \right)$$

 ε : strength of short - range attraction

$$A = 2 \quad (A \propto Z^2)$$

$$\xi = \lambda_{DH}/\sigma = 1.8$$

$$\beta u(x_{\min}) \approx 2 - \epsilon$$

$$T^* = \frac{1}{\epsilon} \sim \frac{k_B T}{|u(r_{\min})|}$$

hydrophobic patches

LJY potential mimics low - salinity aqueous protein solutions (e.g., lysozyme in water)

Q2D clustering and phase diagram (LD simulations)

- (finite-sized) clusters formed: owing to competitive interactions
- Q2D state diagram similar to 3D state diagram in considered $(\phi_{\mathrm{2D}}\,,T^*)$ range

Cluster size distribution *N(s)*: fraction of proteins forming s-clusters

$$N(s) = \left\langle \frac{s}{N_{
m p}} n(s) \right
angle$$
 # of s - clusters

Reduced state diagram and SA binodal

SA reference system mapped on 2D square – well potential system

Metastable binodals of square – well system calculated using 2nd – order perturbation theory

• Perturbation theory prediction: SA gas – liquid binodal sensitive to attraction range λ (in 2D)

Clustering indicators: DF (blue) to EC (red) transition

height and width of cluster peak of S(q)

cluster peak height:

 $S(q_c) \approx 1.4 \quad (\approx 2.7 \text{ in 3D})$

cluster peak thermal width: ζ_{7}

 $\zeta_T/\sigma \approx 2 \sim \xi \approx 1.8$

Coordination number:

 $\langle z_b \rangle \approx 1.6 \quad (\approx 2.4 \text{ in 3D})$

3D - Indicators:

Godfrin, Castaneda - Priego et al., Soft Matter **10** (2014)

Bollinger & Truskett, JCP 145 (2016)

Values of cluster peak indicators for DF to EC transition in Q2D are different from those in 3D

Global statistics of clusters

disperse fluid (DF)
equilibrium cluster (EC)
random percolation (RP)
cluster percolation (CP)

Discrete probability distribution function P of bond number z_b per particle

Example:

cluster percolated systems (CP)

Probability distribution P of hexagonal bond orientation order parameter $|q_6|^2$

local hexagonal orientational order parameter amplitude around protein *i*

$$q_6^i=rac{1}{6}\sum_{j\in N_i^{(6)}}\exp\{i6lpha_{ij}\}$$
 perfect hexagonal crystal: $\left\langle \left|q_6
ight|^2
ight
angle =1$ disordered: $\left\langle \left|q_6
ight|^2
ight
angle =0$

disperse fluid (DF)
equilibrium cluster (EC)
random percolation (RP)
cluster percolation (CP)

- Random percolation phase (RP) has weak orientational order akin to DF phase:
 monotonic decay of bond orientational probability distribution
- Small cluster peaks, observed in EC, vanish in CP characterized by percolated clusters

Short- and long-time self-diffusion of Q2D - SALR proteins

Langevin dynamics evaluated in overdamped regime (w/o HI)

$$\tau_D = R^2/d_0$$

: characteristic diffusion time across particle radius $R=\sigma/2$

 d_0

: single – protein diffusion coefficient

- Similar long-time behaviour of non-clustured DF and RP systems (at same ϕ_{2D}): cluster lifetimes similarly small Similarity between two phases also mirrored in static structure factors
- Cluster particles in EC phase diffuse slower than corresponding DF particles since former are part of clusters

Q2D non - Gaussian parameter

Measure of bonding / caging effects in overdamped regime (here Langevin dynamics w/o HI) Deviation from Gaussian displacement statistics:

- Cluster percolation phase (CP) is dynamically and structurally most heterogeneous: hallmarked by order of magnitude increase of $\alpha_2(t)$ relative to non-clustered phases
- Non clustured DF and RP states are the least dynamically heterogeneous

 ϕ_{2D}

Hydrodynamic function (MPC simul. with full HI)

Hydrodynamic point – particles (Oseen) approximation of HI:

$$H(q) \approx \frac{3\phi_{\mathrm{2D}}}{q\sigma} + 1 + \frac{9\phi_{\mathrm{2D}}}{2\sigma} \int_{0}^{\infty} dr \left[g(r) - 1\right] + \mathcal{O}\left(q\sigma\right)$$

Low -q contribution independent of microstructure

Tan, Calandrini, Dhont, and Nägele, to be submitted (2025) Nägele et al., Molec. Phys. **100** (2002)

Dominguez, Phys. Rev. E 90 (2014)

anomalously fast collective diffusion

- Diffusion (sedimentation) along in plane concentration gradient creates out of plane backflow
- In plane flow appears **compressible** even though fluid actually incompressible

Development of HI by diffusive spreading of solvent vorticity (MPC simulations)

$$H(q,t)=rac{\langle r^2
angle(t)}{4\,d_0\,t}+H_d(q,t)$$
 time – resolved Q2D hydrodynamic function (buildup of HI)

$$H_d(q,t) = \frac{1}{2N_p d_0 q^2 t} \left\langle \sum_{l,i=1}^{N} \mathbf{q} \cdot (\mathbf{r}_l(t) - \mathbf{r}_l(0)) \left(\mathbf{r}_j(t) - \mathbf{r}_j(0) \right) \cdot \mathbf{q} e^{i\mathbf{q} \cdot (\mathbf{r}_l(0) - \mathbf{r}_j(0))} \right\rangle, \ l \neq j$$

Fully developed HI -> anomalously enhanced collective diffusion: $H(q,t\gg au_h)\sim rac{3\phi_{\mathrm{2D}}}{q\,\sigma} \;\;\mathrm{for}\; q\sigma\ll 1$

$$H(q, t \gg \tau_h) \sim \frac{3\phi_{\rm 2D}}{q\,\sigma} \text{ for } q\sigma \ll 1$$

Summary

- Have explored: Quasi 2D dispersions with SA-LR pair interactions
- Methods: Langevin Dynamics and MPC simulations (latter includes HI)
- Determined: State diagram, clustering behavior and dynamics
- Dynamics mostly studied in time regime where HI fully developed
 Hydrodynamic enhancement of collective diffusion occurs in Q2D only
- Studied dynamics on very short time scales where vorticity diffusion and sound wave propagation are resolved (in MPC): buildup of HI resolved

Many thanks to my collaborators

Theory & Simulation Zihan Tan (Soft & Biological Physics, TU Berlin, Germany) Jonas Riest (Viega GmbH & Co. KG., Germany) Roland G. Winkler (IAS-2, FZ Jülich, Germany) R. Castaneda - Priego (U of Guanajuato, Mexico) 3D Experiments Norman J. Wagner (U of Delaware, USA) P. Douglas Godfrin (MIT, USA) Yun Liu (NIST, USA)

Peter Lang (IBI-4, FZ Jülich, Germany)

Thank you for your attention

Q2D Experiments

(in progress)

Additional Slides

LD simulations: equilibration of internal energy

$$U^{\text{ex}}(t) = \left\langle \sum_{i < j}^{N_p} u(r_{ij}) \right\rangle(t), \qquad N_p = 1014 - 4096$$

disperse fluid (DF)
equilibrium cluster (EC)
random percolation (RP)
cluster percolation (CP)

Q2D collective diffusion and hydrodynamic function

$$S(q,\tau_h\ll t\ll\tau_D)\propto \exp\{-q^2D(q)\,t\}$$
 hydrodynamic interactions (HI) fully developed

$$\tau_h = R^2/\nu$$

 $au_h = R^2/
u$ | solvent vorticity diffusion time across protein radius R $(au_h \ll au_D)$

$$D(q) = d_0 rac{H(q)}{S(q)}$$
 short - time diffusion function

In – plane hydrodynamic function w/o HI: H(q) = 1

Comparison: Theory vs. NSE (Lysozyme in D₂O)

J. Riest, G. Nägele, Y. Liu, N. J. Wagner, and P.D. Godfrin, J. Chem Phys. 148, 065101 (2018)

Radial distribution function

Triangular (hexagonal) lattice

$$\mathbf{t}_1 = \hat{\mathbf{x}}$$

$$\mathbf{t}_2 = \frac{1}{2}\,\hat{\mathbf{x}} + \frac{\sqrt{3}}{2}\,\hat{\mathbf{y}}$$

$$\mathbf{t}_1 \cdot \mathbf{t}_2 = \cos\left(60^o\right)$$

{Next, overnext, ... } neighbor distances:

$$r/\sigma = \{1, \sqrt{3}, 2, 3, 2\sqrt{3}, \sqrt{13}, \sqrt{14}, 4, \sqrt{21}, 5, 3\sqrt{3}, \cdots \}$$

Envelope akin to fluid near gas - liquid critical point as described by mean - field Ornstein - Zernike theory

modulated pair structure on intercluster scale $\sim 1/q_c$