001043446 001__ 1043446
001043446 005__ 20250804115220.0
001043446 0247_ $$2doi$$a10.1063/5.0268728
001043446 0247_ $$2ISSN$$a0021-8979
001043446 0247_ $$2ISSN$$a0148-6349
001043446 0247_ $$2ISSN$$a1089-7550
001043446 0247_ $$2ISSN$$a2163-5102
001043446 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02872
001043446 0247_ $$2WOS$$aWOS:001517689500013
001043446 037__ $$aFZJ-2025-02872
001043446 082__ $$a530
001043446 1001_ $$0P:(DE-HGF)0$$aRidgard, G.$$b0$$eCorresponding author
001043446 245__ $$aVoltage noise thermometry in integrated circuits at millikelvin temperatures
001043446 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2025
001043446 3367_ $$2DRIVER$$aarticle
001043446 3367_ $$2DataCite$$aOutput Types/Journal article
001043446 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752736033_22032
001043446 3367_ $$2BibTeX$$aARTICLE
001043446 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043446 3367_ $$00$$2EndNote$$aJournal Article
001043446 520__ $$aThis paper demonstrates the use of voltage noise thermometry, with a cross-correlation technique, as a dissipation-free method of thermometry inside a CMOS integrated circuit (IC). We show that this technique exhibits broad agreement with the refrigerator temperature range from 300 mK to 8 K. Furthermore, it shows substantial agreement with both an independent in-IC thermometry technique and a simple thermal model as a function of power dissipation inside the IC. As the device under a test is a resistor, it is feasible to extend this technique by placing many resistors in an IC to monitor the local temperatures, without increasing IC design complexity. This could lead to better understanding of the thermal profile of ICs at cryogenic temperatures. This has its greatest potential application in quantum computing, where the temperature at the cold classical-quantum boundary must be carefully controlled to maintain qubit performance.
001043446 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001043446 536__ $$0G:(EU-Grant)824109$$aEMP - European Microkelvin Platform (824109)$$c824109$$fH2020-INFRAIA-2018-1$$x1
001043446 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043446 7001_ $$0P:(DE-HGF)0$$aThompson, M.$$b1
001043446 7001_ $$0P:(DE-Juel1)180854$$aSchreckenberg, L.$$b2
001043446 7001_ $$0P:(DE-HGF)0$$aDeshpande, Nihal$$b3
001043446 7001_ $$0P:(DE-Juel1)177765$$aCabrera-Galicia, A.$$b4
001043446 7001_ $$0P:(DE-HGF)0$$aBourgeois, O.$$b5
001043446 7001_ $$0P:(DE-HGF)0$$aDoebele, V.$$b6
001043446 7001_ $$0P:(DE-HGF)0$$aPrance, J.$$b7
001043446 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/5.0268728$$gVol. 137, no. 24, p. 245901$$n24$$p245901$$tJournal of applied physics$$v137$$x0021-8979$$y2025
001043446 8564_ $$uhttps://juser.fz-juelich.de/record/1043446/files/245901_1_5.0268728.pdf$$yOpenAccess
001043446 909CO $$ooai:juser.fz-juelich.de:1043446$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001043446 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Lancaster University Physics Department, Lancaster, UK$$b0
001043446 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Lancaster University Physics Department, Lancaster, UK$$b1
001043446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180854$$aForschungszentrum Jülich$$b2$$kFZJ
001043446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001043446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177765$$aForschungszentrum Jülich$$b4$$kFZJ
001043446 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aInstitut NEEL, Univ. Grenoble Alpes, Grenoble, France$$b5
001043446 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aInstitut NEEL, Univ. Grenoble Alpes, Grenoble, France$$b6
001043446 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aLancaster University Physics Department, Lancaster, UK$$b7
001043446 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001043446 9141_ $$y2025
001043446 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001043446 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001043446 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-12-18
001043446 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001043446 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001043446 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2022$$d2024-12-18
001043446 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001043446 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001043446 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001043446 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043446 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001043446 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001043446 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-18$$wger
001043446 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001043446 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001043446 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lIntegrated Computing Architectures$$x0
001043446 980__ $$ajournal
001043446 980__ $$aVDB
001043446 980__ $$aUNRESTRICTED
001043446 980__ $$aI:(DE-Juel1)PGI-4-20110106
001043446 9801_ $$aFullTexts