001043473 001__ 1043473
001043473 005__ 20250804115220.0
001043473 0247_ $$2doi$$a10.1016/j.nicl.2025.103825
001043473 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02876
001043473 0247_ $$2pmid$$a40543322
001043473 0247_ $$2WOS$$aWOS:001517848400001
001043473 037__ $$aFZJ-2025-02876
001043473 082__ $$a610
001043473 1001_ $$0P:(DE-HGF)0$$aHensel, Lukas$$b0
001043473 245__ $$aThe role of contralesional regions for post-stroke movements revealed by dynamic connectivity and TMS interference
001043473 260__ $$a[Amsterdam u.a.]$$bElsevier$$c2025
001043473 3367_ $$2DRIVER$$aarticle
001043473 3367_ $$2DataCite$$aOutput Types/Journal article
001043473 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1750845903_26228
001043473 3367_ $$2BibTeX$$aARTICLE
001043473 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043473 3367_ $$00$$2EndNote$$aJournal Article
001043473 500__ $$aFundingCG, CT, LJV, SBE and GRF are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 431,549,029 – SFB 1451 (projects B05, B06, C05 and Z03).
001043473 520__ $$aConnectivity changes after brain lesions due to stroke are tightly linked to functional outcome. Recent analyses of fMRI time series indicate that dynamic functional network connectivity (dFNC), reflecting transient states of connectivity may capture network-level disruptions distant to the lesion site. Yet, the relevance of such dynamic connectivity patterns for motor recovery remains unclear. We, therefore, combined the analysis of static and dFNC and a repetitive transcranial magnetic stimulation (rTMS) lesion approach, to test whether dFNC provides region-specific insight into motor system reorganization after stroke. We focused on the contralesional primary motor cortex (M1) and anterior intraparietal sulcus (aIPS), two regions previously shown to modulate motor performance post-stroke in a time dependent manner. In 18 individuals in the chronic phase after stroke (with either persistent or recovered deficits) and 18 healthy participants, we analyzed static and dynamic resting-state connectivity. We then applied online rTMS intereference over contralesional aIPS and M1 during hand movement tasks to assess region-specific contributions to motor behavior. Consistent with previous studies, dFNC states were associated with persisting motor deficits, whereas static connectivity was not associated with motor outcome. dFNC but not static connectivity was associated with residual motor deficits and explained TMS-induced behavioral changes, when applying rTMS over contralesional M1. For contralesional aIPS, both static and dynamic connectivity were linked to TMS effects. This indicates that dFNC - more than static connectivity - contains information on the functional relevance of brain regions for motor outcome, specifically contralesional M1. Our results highlight the added value of temporal network analysis in understanding mechanisms of stroke recovery mechanisms.
001043473 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001043473 536__ $$0G:(GEPRIS)552122525$$aSFB 1451 B06 - Netzwerkmechanismen der Adaptation motorischer Kontrolle (B06*) (552122525)$$c552122525$$x1
001043473 536__ $$0G:(GEPRIS)458705014$$aSFB 1451 Z03 - Humanes Motor-Assesment Center (Z03) (458705014)$$c458705014$$x2
001043473 536__ $$0G:(GEPRIS)458684554$$aSFB 1451 C05 - Die Rolle der sensomotorischen Integration für motorische Kontrolle im geschädigten Gehirn (C05) (458684554)$$c458684554$$x3
001043473 536__ $$0G:(GEPRIS)458640473$$aSFB 1451 B05 - Identifizierung übergreifender Komponenten motorisch-kognitiv-demographischer Phänotypen (B05) (458640473)$$c458640473$$x4
001043473 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043473 7001_ $$0P:(DE-HGF)0$$aBonkhoff, Anna K.$$b1
001043473 7001_ $$0P:(DE-HGF)0$$aPaul, Theresa$$b2
001043473 7001_ $$0P:(DE-HGF)0$$aTscherpel, Caroline$$b3
001043473 7001_ $$0P:(DE-HGF)0$$aLange, Fabian$$b4
001043473 7001_ $$0P:(DE-Juel1)162395$$aViswanathan, Shivakumar$$b5
001043473 7001_ $$0P:(DE-HGF)0$$aVolz, Lukas J.$$b6
001043473 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b7
001043473 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b8
001043473 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b9$$eCorresponding author
001043473 773__ $$0PERI:(DE-600)2701571-3$$a10.1016/j.nicl.2025.103825$$gVol. 47, p. 103825 -$$p103825 -$$tNeuroImage: Clinical$$v47$$x2213-1582$$y2025
001043473 8564_ $$uhttps://juser.fz-juelich.de/record/1043473/files/1-s2.0-S2213158225000956-main.pdf$$yOpenAccess
001043473 909CO $$ooai:juser.fz-juelich.de:1043473$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001043473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162395$$aForschungszentrum Jülich$$b5$$kFZJ
001043473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b7$$kFZJ
001043473 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b7
001043473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b8$$kFZJ
001043473 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)161406$$a Goethe University Frankfurt, Frankfurt University Hospital, Department of Neurology, Frankfurt am Main, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany. Electronic address: Grefkes-Hermann@em.uni-frankfurt.de$$b9
001043473 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001043473 9141_ $$y2025
001043473 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001043473 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
001043473 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001043473 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE-CLIN : 2022$$d2025-01-01
001043473 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:49:23Z
001043473 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:49:23Z
001043473 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
001043473 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-01
001043473 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
001043473 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-01
001043473 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043473 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:49:23Z
001043473 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-01
001043473 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001043473 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-01
001043473 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
001043473 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001043473 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1
001043473 980__ $$ajournal
001043473 980__ $$aVDB
001043473 980__ $$aUNRESTRICTED
001043473 980__ $$aI:(DE-Juel1)INM-7-20090406
001043473 980__ $$aI:(DE-Juel1)INM-3-20090406
001043473 9801_ $$aFullTexts