001     1043473
005     20250804115220.0
024 7 _ |a 10.1016/j.nicl.2025.103825
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02876
|2 datacite_doi
024 7 _ |a 40543322
|2 pmid
024 7 _ |a WOS:001517848400001
|2 WOS
037 _ _ |a FZJ-2025-02876
082 _ _ |a 610
100 1 _ |a Hensel, Lukas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The role of contralesional regions for post-stroke movements revealed by dynamic connectivity and TMS interference
260 _ _ |a [Amsterdam u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1750845903_26228
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a FundingCG, CT, LJV, SBE and GRF are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 431,549,029 – SFB 1451 (projects B05, B06, C05 and Z03).
520 _ _ |a Connectivity changes after brain lesions due to stroke are tightly linked to functional outcome. Recent analyses of fMRI time series indicate that dynamic functional network connectivity (dFNC), reflecting transient states of connectivity may capture network-level disruptions distant to the lesion site. Yet, the relevance of such dynamic connectivity patterns for motor recovery remains unclear. We, therefore, combined the analysis of static and dFNC and a repetitive transcranial magnetic stimulation (rTMS) lesion approach, to test whether dFNC provides region-specific insight into motor system reorganization after stroke. We focused on the contralesional primary motor cortex (M1) and anterior intraparietal sulcus (aIPS), two regions previously shown to modulate motor performance post-stroke in a time dependent manner. In 18 individuals in the chronic phase after stroke (with either persistent or recovered deficits) and 18 healthy participants, we analyzed static and dynamic resting-state connectivity. We then applied online rTMS intereference over contralesional aIPS and M1 during hand movement tasks to assess region-specific contributions to motor behavior. Consistent with previous studies, dFNC states were associated with persisting motor deficits, whereas static connectivity was not associated with motor outcome. dFNC but not static connectivity was associated with residual motor deficits and explained TMS-induced behavioral changes, when applying rTMS over contralesional M1. For contralesional aIPS, both static and dynamic connectivity were linked to TMS effects. This indicates that dFNC - more than static connectivity - contains information on the functional relevance of brain regions for motor outcome, specifically contralesional M1. Our results highlight the added value of temporal network analysis in understanding mechanisms of stroke recovery mechanisms.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a SFB 1451 B06 - Netzwerkmechanismen der Adaptation motorischer Kontrolle (B06*) (552122525)
|0 G:(GEPRIS)552122525
|c 552122525
|x 1
536 _ _ |a SFB 1451 Z03 - Humanes Motor-Assesment Center (Z03) (458705014)
|0 G:(GEPRIS)458705014
|c 458705014
|x 2
536 _ _ |a SFB 1451 C05 - Die Rolle der sensomotorischen Integration für motorische Kontrolle im geschädigten Gehirn (C05) (458684554)
|0 G:(GEPRIS)458684554
|c 458684554
|x 3
536 _ _ |a SFB 1451 B05 - Identifizierung übergreifender Komponenten motorisch-kognitiv-demographischer Phänotypen (B05) (458640473)
|0 G:(GEPRIS)458640473
|c 458640473
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bonkhoff, Anna K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Paul, Theresa
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tscherpel, Caroline
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lange, Fabian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Viswanathan, Shivakumar
|0 P:(DE-Juel1)162395
|b 5
700 1 _ |a Volz, Lukas J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 7
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 8
700 1 _ |a Grefkes, Christian
|0 P:(DE-Juel1)161406
|b 9
|e Corresponding author
773 _ _ |a 10.1016/j.nicl.2025.103825
|g Vol. 47, p. 103825 -
|0 PERI:(DE-600)2701571-3
|p 103825 -
|t NeuroImage: Clinical
|v 47
|y 2025
|x 2213-1582
856 4 _ |u https://juser.fz-juelich.de/record/1043473/files/1-s2.0-S2213158225000956-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1043473
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)162395
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131720
910 1 _ |a Goethe University Frankfurt, Frankfurt University Hospital, Department of Neurology, Frankfurt am Main, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany. Electronic address: Grefkes-Hermann@em.uni-frankfurt.de
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-Juel1)161406
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE-CLIN : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:49:23Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:49:23Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-01
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:49:23Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21