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A B S T R A C T

Connectivity changes after brain lesions due to stroke are tightly linked to functional outcome. Recent analyses of 
fMRI time series indicate that dynamic functional network connectivity (dFNC), reflecting transient states of 
connectivity may capture network-level disruptions distant to the lesion site. Yet, the relevance of such dynamic 
connectivity patterns for motor recovery remains unclear. We, therefore, combined the analysis of static and 
dFNC and a repetitive transcranial magnetic stimulation (rTMS) lesion approach, to test whether dFNC provides 
region-specific insight into motor system reorganization after stroke. We focused on the contralesional primary 
motor cortex (M1) and anterior intraparietal sulcus (aIPS), two regions previously shown to modulate motor 
performance post-stroke in a time dependent manner. In 18 individuals in the chronic phase after stroke (with 
either persistent or recovered deficits) and 18 healthy participants, we analyzed static and dynamic resting-state 
connectivity. We then applied online rTMS intereference over contralesional aIPS and M1 during hand move
ment tasks to assess region-specific contributions to motor behavior. Consistent with previous studies, dFNC 
states were associated with persisting motor deficits, whereas static connectivity was not associated with motor 
outcome. dFNC but not static connectivity was associated with residual motor deficits and explained TMS- 
induced behavioral changes, when applying rTMS over contralesional M1. For contralesional aIPS, both static 
and dynamic connectivity were linked to TMS effects.

This indicates that dFNC − more than static connectivity − contains information on the functional relevance of 
brain regions for motor outcome, specifically contralesional M1. Our results highlight the added value of tem
poral network analysis in understanding mechanisms of stroke recovery mechanisms.

1. Introduction

Motor deficits following ischemic stroke are a major cause for ac
quired long-term disability (Kessner et al., 2019), raising the interest in 
personalized treatment strategies based on individual assessments of the 

motor system (Bonkhoff and Grefkes, 2022; Grefkes and Fink, 2016; 
Koch and Hummel, 2017; Morishita and Hummel, 2017). Recovery of 
motor function is not only driven by local changes near the lesion but 
also by change of interactions between distant brain areas (Baldassarre 
et al., 2016; Carter et al., 2010; Finger et al., 2004; Golestani et al., 2013; 
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Grefkes and Fink, 2014; Monakow, 1914; Wang et al., 2010). In 
particular, interhemispheric connections between the contralesional 
primary motor cortex (M1) and anterior intraparietal sulcus (aIPS) have 
been demonstrated to play key roles in post-stroke motor adaptation. M1 
governs direct motor output, aIPS supports higher-order visuomotor 
integration essential for complex motor tasks such as grasping (Binkofski 
et al., 1999; Grefkes and Fink, 2005). Both regions show decreased 
interhemispheric connectivity in the acute phase after stroke, which re- 
emerges in the following weeks along motor recovery (Meer et al., 2010; 
Park et al., 2011; Volz et al., 2016). Interfering with contralesional M1 
and aIPS using rTMS after stroke has demonstrated that these regions are 
involved in movements of the stroke-affected hand (Lotze et al., 2006; 
Tscherpel et al., 2020b; Werhahn et al., 2003), suggesting that inter
hemispheric connectivity between M1 and aIPS is relevant for residual 
motor capacity. Yet previous fMRI analyses have typically focused on 
average connectivity estimates measured over several minutes (static 
connectivity).

Importantly, motor adaptation after stroke likely depends on the 
brain’s flexibility to reconfigure its networks (Bonkhoff et al., 2020a), 
switching between integrated states for coordinated output and segre
gated states for specialized processing (Shine et al., 2016; Wu et al., 
2024). Such time-sensitive network dynamics are captured by the 

‘dynamic’ functional connectivity (dFNC) approach (Allen et al., 2014; 
Chang and Glover, 2010; Damaraju et al., 2014), which uses a sliding 
window techniques to reveal transitions between connectivity states. 
Assessing dFNC in patients with acute stroke has revealed that tempo
rally distinct connectivity states are associated with different levels of 
acute motor impairment (Bonkhoff et al., 2020a) and recovery 
(Bonkhoff et al., 2021a). Patients with more severe symptoms spent 
more time in highly segregated network states, where functionally 
related sensorimotor regions—including M1 and premotor areas—were 
strongly interconnected, but showed only weak or negative connectivity 
with other networks such as frontoparietal, subcortical, or cerebellar 
regions (Bonkhoff et al., 2020a, 2021b). However, it remains open 
whether these transient connectivity states during rest reflect neural 
processes involved in maintaining motor performance in the stroke- 
damaged brain. To causally test the roles of single regions within the 
reorganized motor system after stroke, repetitive TMS has often been 
applied over motor-related regions during the execution of motor tasks 
(online-rTMS interference) (Hensel et al., 2021; Lotze et al., 2006; 
Tscherpel et al., 2020b; Volz et al., 2017). For example, M1 and aIPS 
negatively influence hand movements in the first two weeks after stroke, 
which for contralesional aIPS may persist several months later 
(Tscherpel et al., 2020b; Volz et al., 2017).

Fig. 1. Relating static and dynamic connectivity to the role of a region of interest (e.g. M1). Left (blue): dimension reduction of resting state fMRI data. Motor-related 
connections, which are connected to the investigated region of interest (M1 or aIPS) are transformed into an equal number of principal components for static and 
dynamic functional connectivity. Right (red): Effects on poststroke movements by interfering with the region of interest (M1 or aIPS) using online-rTMS. Bottom 
(yellow): Regression analyses test for a relationship of dynamic and static functional connectivity with the causal motor contributions of contralesional M1 and aIPS, 
respectively. ICA = independent component analysis, ROIs = regions of interest. FC = functional connectivity, M1 = primary motor cortex, PCA = principal 
component analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Taken together, accumulating evidence indicates that dFNC holds 
information about stroke outcome, (Bonkhoff et al., 2020a, 2021a, 
2021b), and online-rTMS can probe how these dynamic patterns relate 
to the functional contributions of contralesional M1 and aIPS. Here, we 
aimed to (1) replicate prior findings that dFNC distinguishes patients 
with lower versus higher motor outcome, and (2) determine whether 
dFNC within contralesional M1 and aIPS better explains their roles in 
hand motor performance than static connectivity. To test this, we re- 
analyzed data from a prior study where 18 individuals with recovered 
or persistent motor deficits in the chronic phase after stroke and 18 
healthy participants underwent online-rTMS after an fMRI session 
(Fig. 1) (Hensel et al., 2023). From this data, contributions of con
tralesional (i.e. ipsilateral to the moving hand) M1 and aIPS for hand 
movements upon brief rTMS pulse trains were available for all partici
pants as well as resting fMRI for the estimation of dFNC.

Both contralesional M1 and contralesional IPS are assumed to 
contribute to motor function through connections with the ipsilesile
sional hemisphere, especially in patients with lower motor outcome 
(Grefkes et al., 2010; Hensel et al., 2023; Turton et al., 1996; Werhahn 
et al., 2003). We hypothesized that the dFNC of these areas within their 
respective networks is linked to the differing effects of M1 and aIPS on 
motor behaviour under rTMS interference. To test this hypothesis, we 
first sought to replicate the dFNC-related findings from prior studies 
(Bonkhoff et al., 2020a, 2021a, 2021b) by comparing dFNC between 
patients with lower and higher outcome, assuming that stroke-related 
abnormalities of connectivity are more sensitively detected using 
dFNC, compared to static connectivity. Then, we tested whether dFNC 
contains information about the differing roles of contralesional M1 and 
aIPS on recovered hand motor function after ischemic stroke (Fig. 1). If 
transient connectivity states are relevant to post-stroke motor outcomes, 
then models based on dFNC were expected to explain the contributions 
of contralesional M1 and aIPS better than equivalent models based on 
static connectivity.

2. Materials and methods

2.1. Participants

Data were extracted from a previous study (Hensel et al., 2023) 
including 18 individuals in the chronic phase after first-ever ischemic 
stroke (> six months after onset) with unilateral hand motor deficit and 
18 healthy controls tested at the Department of Neurology, University 
Hospital Cologne. The original study was designed to probe the causal 
contributions of contralesional M1 and aIPS to hand motor performance 
using time-locked online-rTMS during three kinematic tasks (finger- 
tapping, reach-to-grasp, reach-to-point). However, in the previous 
study, we did not consider any relationship of TMS effects with dynamic 
connectivity, which were exclusively computed for the present study. 
Inclusion criteria were an age between 40–90 years, no contraindica
tions to TMS or MRI, absence of cerebral hemorrhage, no bihemispheric 
infarcts and the absence of severe aphasia, apraxia, or neglect. De
mographic and clinical details of the cohort are provided in Table 1.

Following the original study for the current data (Hensel et al., 
2023), the patients were divided into two sub-groups based on their 
movement kinematics in the three tested tasks, namely, finger-tapping, 
reach-to-grasp and reach-to-point (see Supplementary methods for a 
summary of the grouping rationale). The two subgroups are referred to 
here as the lower motor outcome (LMO) (n = 9) and the higher motor 
outcome (HMO) (n = 9) groups respectively. The kinematic assessment 
of individual-specific movements (patients and healthy controls) yielded 
a Motor Performance Score that served as a data-driven and clinically 
correlated measure of general motor performance of the upper limb for 
each individual. (Hensel et al., 2023). Motor performance of healthy 
participants (1.05 ± 0.67) and patients with high outcome (0.28 ± 0.70) 
was significantly higher compared to patients with low outcome (–2.39 
± 1.12), as indicated by independent t-tests (HC and HMO: t(11.0) =

8.50, P < 0.001; HMO and LMO: t(13.4) = 6.08, P < 0.001). Although 
performance in the higher outcome group was close to the healthy 
controls, significant differences in hand kinematics were still detectable 
(HC and HMO: t(15.6) = 2.76, P = 0.014). Notably, a group-level 
analysis of TMS effects in these cohorts was already reported in Hen
sel et al. (2023). The present study focuses instead on explaining indi
vidual differences in TMS effects using dynamic and static functional 
connectivity.

All participants provided written informed consent before inclusion. 
The study was approved by the local ethics committee at the University 
of Cologne (file no: 17–244) and was performed in compliance with the 
Declaration of Helsinki (1969, last revision 2013).

2.2. Experiment

2.2.1. fMRI acquisition and preprocessing
In the first experiment session, structural and functional MRI (task 

and rest) was recorded (Fig. 1). The task-fMRI was used to localize peak 
BOLD activations as stimulation targets in the second session. Resting- 
and task-fMRI data were preprocessed using Statistical Parametric 
Mapping (SPM12; The Wellcome Centre for Human Neuroimaging, 
London, UK, https://www.fil.ion.ucl.ac.uk) implemented in Matlab 
version 2016b (The Mathworks Inc.; MA, USA). Details on data acqui
sition are reported in the supplementary material. From a total of 450 
EPI volumes per participant, the first 10 EPI scans were excluded 
avoiding noise from magnetic field saturation. To arrange the lesions 
uniformly in the left hemisphere, scans from individuals with right- 
hemispheric lesions (n = 10) and matched healthy controls (n = 9) 
were flipped along the midsagittal plane (Schulz et al., 2016; Steiner 
et al., 2021). Lesion masks were drawn based on T2 images using 
MRIcron (https://www.sph.sc.edu/comd/rorden/Mricron).

The task-data were preprocessed at the single subject level to localize 
rTMS targets, while resting-state fMRI data were prepared for the 
second-level analysis of functional connectivity (Hensel et al., 2021). 
Specifically, both task- and resting-fMRI images were first corrected for 
head movement by spatial realignment to the mean image. However, 
only resting-state fMRI images were spatially normalized into stan
dardized MNI-space using the ‘unified segmentation’ procedure 
(Ashburner and Friston, 2005) after masking lesioned tissue. Consistent 
with previous work, the normalized resting-state images were smoothed 
using a Gaussian kernel with FWHM of 8 mm (Bonkhoff et al., 2020a; 
Hensel et al., 2021).

2.2.2. Online-rTMS
In a second session within one week after the fMRI, the identified 

targets (contralesional M1, contralesional aIPS, and ipsilesional aIPS) 

Table 1 
Sample characteristics.

Stroke 
Patients

Healthy 
Controls

P

Age [y] 66.2 ± 13.0 66.5 ± 7.2 0.9371

Gender [m/f] (13/5) (12/6) 0.7172

Lesion side [l/r] (8/10) ​ ​
EHI 0.89 ± 0.15 0.78 ± 0.24 0.1191

Months post-stroke 30.4 ± 20.7 ​ ​
ARAT affected Hand* 55.5 

(45.3–57.0)
57.0 (57.0–57.0) 0.0073

NIHSS* 1.5 (1.0–2.8) 0.0 (0.0––0.0) <0.0013

NIHSS (acute phase)* 7.0 (6.0–9.8) ​ ​
NIHSS upper limb score* 1.0 (0.0–1.0) 0.0 (0.0––0.0) <0.0013

NIHSS upper limb score (acute 
phase)*

2.5 (2.0–3.0) ​ ​

EHI: Edinburgh Handedness Inventory, NIHSS: National Institutes of Health Stroke 
Scale, ARAT: Action Research Arm Test. 
* nonparametric data is described by medians and interquartile range; n.a. = not 
applicable (due to identical values across all subjects and groups) 
1t-test, 2Chi-squared-test, 3U-test
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were tested by online-rTMS interference during three movement tasks of 
differing complexity (tapping, pointing, grasping) (Hensel et al., 2023). 
Note that only performance related to M1 and aIPS in the contralesional 
hemisphere was evaluated in the current study since the study aimed to 
investigate contributions of motor regions distant to the stroke lesion. 
Hand movements were tested during online-rTMS over these contrale
sional regions (M1, aIPS), i.e. ipsilateral to the moving hand. Moreover, 
a sham (control) stimulation was applied tilting the coil over the parieto- 
occipital vertex, so that the TMS focus was located outside neural tissue. 
TMS was applied using a Magstim Super Rapid2 system (The Magstim 
Co. Ltd, Whitland, UK) equipped with a Magstim 70 mm Double Air Film 
Coil. The exact location of contralesional aIPS was defined by the local 
peak of fMRI activation during the finger tapping localizer task, the 
contralateral M1 activation was defined by the electrophysiological 
hotspot determined by motor evoked potentials in the first interosseous 
(FDI) muscle (Hensel et al., 2023).

Consistent with previous studies (Hensel et al., 2021; Lotze et al., 
2006; Tscherpel et al., 2020b; Volz et al., 2017), 10 Hz rTMS was applied 
at 90 % of the resting motor threshold to transiently perturb neural 
processing in each region of interest, time-locked to behavioral re
cordings of hand movements. These comprised (i) finger-tapping, (ii) 
rapid pointing between to targets, and (iii) a reach-grasp-lift task. Using 
the software Presentation® (Version 9.9, Neurobehavioral Systems, 
USA, https://www.neurobs.com), trains of 16 TMS pulses were trig
gered starting at the beginning of each motor task, cued by an auditory 
and visual signal. Execution of one task lasted 1.6 s for finger-tapping, 
and 2.0 s for pointing and reach-grasp-lift, with breaks of 5.5 s. The 
TMS coil position changed every seven trials in a pseudo-randomized 

order so that each of the conditions was assessed for an equal number 
of trials during each quarter of the experiment.

All participants repeated each of these tasks 28 times per rTMS 
condition. The online-rTMS effect on one region (M1 or aIPS) was 
computed by comparing hand movements during each real rTMS with 
the performance during sham rTMS (Hensel et al., 2023), referred to as 
“Mean Movement Alteration” induced by online-rTMS.

2.3. Connectivity between motor regions

2.3.1. Component (region of interest) selection
As shown in Fig. 1 (left panel), preprocessed resting-state fMRI data 

were first entered into a constrained high-dimensional independent 
component analysis (ICA) to extract intrinsic components as regions of 
interest (ROIs) for the functional connectivity analysis (Du and Fan, 
2013; Lin et al., 2010). The ICA was constrained by a total of 100 
components estimated from resting state functional MRI data of 405 
healthy controls (Allen et al., 2014; Calhoun et al., 2001), avoiding 
spatial bias from stroke lesions while gaining robustness to noise by 
accounting for each participant’s functional properties (Du et al., 2016; 
Salman et al., 2019). Hence, spatial maps and time courses were ob
tained for each participant using the back-reconstruction approach 
(GICA) (Calhoun et al., 2001). We excluded components not situated 
mainly in gray matter and showing low ratios of low- to high-frequency 
spectra, indicating noise rather than neural signal. To further remove 
potential artifacts not captured by the ICA, components’ time courses 
were detrended, despiked using 3Ddespike (Cox, 1996), filtered by a 
fifth-order Butterworth low-pass filter with a high-frequency cut-off of 

Fig. 2. Motor-related network. Left: Spatial maps of 20 ICA components reflecting intrinsic connectivity networks across patients and healthy participants, color 
coded by affiliation to larger-scale networks. BG (dark purple) = basal ganglia network, SMN (light blue) = sensorimotor network, CEN (dark green) = central 
executive network, SN (light green) = saliency network, CB (yellow) = cerebellar network. Right: Matrix of static connectivity values between all components of all 
participants (patients and healthy controls). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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0.15 Hz, and normalized for variance (Rachakonda et al., 2007).
We selected components comparable to our previous dFNC studies 

on the motor system after stroke (Bonkhoff et al., 2020a, 2021a), aiming 
to investigate the motor network in which M1 and aIPS are integrated to 
obtain a neurobiologially plausible model of brain regions involved in 
the generation of hand movements. We then used online-rTMS inter
ference to probe the role of two respective network nodes, i.e. M1 and 
aIPS, for the control of finger movements and grasping after stroke 
(Caspers et al., 2012; Culham and Valyear, 2006; Davare et al., 2011; 
Grefkes and Fink, 2005; Rice et al., 2006) (Fig. 2). In total, 20 compo
nents from five motor networks were selected: (i) A basal ganglia 
network consisted of three components in the anterior Putamen, Puta
men, and Thalamus. (ii) A sensorimotor subnetwork consisted of nine 
components, namely left and right primary sensorimotor cortex, ventral 
and dorsal paracentral cortex, ventral and dorsal postcentral cortex, 
dorsal precentral cortex, supplementary motor area (SMA) and a 
component reflecting both SMA and precentral cortex. (iii) Four com
ponents were assigned to the central executive network, associated with 
higher-level control (Power et al., 2011; Seeley et al., 2007), comprising 
bilateral frontal poles, dorsolateral frontal cortex, and two components 
mainly located in the intraparietal sulcus of the right and left hemi
sphere, respectively. (iv) Moreover, two components in anterior insula 
and medial frontal gyrus were included as a saliency network (Seeley 
et al., 2007), mediating motivational processes facilitating motor initi
ation (Hoffstaedter et al., 2013; Rushworth et al., 2004). (v) Finally, a 
cerebellar network was defined by a predominantly left- and right- 
cerebellar component. The identified components served as the com
mon regions of interest to assess (1) static and (2) dynamic function 
connectivity (left panel, Fig. 2).

2.3.2. Static functional connectivity
Static connectivity was computed using the z-transformed Pearson 

pairwise correlation of the entire resting-state time-series for every pair 
of components. This analysis for all of the 20 components yielded 190 
connectivity values (20 components * (20 components – 1) / 2 = 190) 
for each participant. Consistent with previous connectivity studies in 
stroke (Bonkhoff et al., 2020a, 2021a, 2021b), age, sex, mean framewise 
translation and rotation were used as independent regressors to correct 
for physiological variability and within scanner movement.

2.3.3. Dynamic functional connectivity
DFNC between the aforementioned 20 components was analyzed 

applying a sliding window approach (Allen et al., 2014; Calhoun et al., 
2014; Damaraju et al., 2014; Sakoğlu et al., 2010) implemented in the 
GIFT toolbox (version 4.0, https://trendscenter.org/software/gift/). To 
reduce spurious fluctuations, average sliding window correlations 
(ASWC) were computed using a nominal window (40.5 s) and average 
(50 s) lengths, yielding 328 connectivity matrices (Vergara et al., 2019). 
Analogous to the static connectivity analysis based on the same 20 
components, this resulted in 190 connectivity values for each partici
pant. To correct for effects of no-interest, we included the regressors age, 
sex, mean framewise translation and rotation. The ensuing dFNC values 
were Fisher z transformed.

Next, based on all time windows from all subjects, we delineated 
distinct connectivity states using k-means clustering, identifying recur
ring patterns of functional connectivity across time and subject space 
(Allen et al., 2014; Calhoun et al., 2014; Lloyd, 1982). As a suitable 
function for high-dimensional data, the l1 distance (Manhattan distance) 
was used to estimate the similarity of each window’s connectivity to the 
cluster centroid. Consistent with previous work (Bonkhoff et al., 2020a; 
Díez-Cirarda et al., 2018; Fiorenzato et al., 2019), we determined the 
optimal number of connectivity states using the silhouette measure 
(Rousseeuw, 1987), the elbow criterion based upon the cluster validity 
index (Espinoza et al., 2018), and the Gap statistic (Tibshirani et al., 
2001), favoring a two-cluster solution (see Supplementary Data). Hence, 
k-means clustering was re-computed for k = 2, assigning each time 

window across all participants to one of two clusters, referred to as 
connectivity states.

2.4. Comparing connectivity between subgroups

2.4.1. Functional connectivity
As described above, static connectivity was depicted in a single state 

(190 connections) whereas the dynamic connectivity yielded two states 
(2 x 190 connections). In line with previous dynamic connectivity 
studies (Bonkhoff et al., 2020a; Fiorenzato et al., 2019), we compared 
connectivity strengths between groups (healthy, higher outcome, lower 
outcome) for each of the 190 connections in each connectivity state 
using one way analyses of variance (ANOVA, P < 0.05, FDR-corrected). 
In case of significant ANOVA results, post hoc t-tests between healthy 
participants and patient subgroups were performed (P < 0.05, FDR- 
corrected). All FDR-corrections for multiple comparisons were per
formed using the Benjamini-Hochberg procedure.

2.4.2. Dynamic transition measures
The dynamic transitions between dFNC states were summarized by 

(1) the dwell time (mean time remaining in a given state without tran
sitioning into another), (2) fraction time (portion of total time spent in a 
given state) and (3) number of transitions (total number of transitions 
from any state to another).

Group differences in dwell time were assessed with mixed ANOVAs 
with the within-subjects factor dFNC STATE (Dynamic connectivity 
state 1 and 2) and the between-subjects factor GROUP (healthy, higher 
outcome, lower outcome). Group differences in fraction time and the 
number of transitions were each conducted by a three-level one way 
ANOVA with the between-subjects factor GROUP (Bonkhoff et al., 
2021b; Rabany et al., 2019; Schwanenflug et al., 2022). One-way 
ANOVAs were chosen for these measures, since fraction times of two 
states were precisely symmetrical with fraction times for states one and 
two always adding up to 1, and the number of transitions only describes 
one value per participant.

The linear relationship between dFNC and hand motor function 
across individuals was assessed by computing Pearson correlations be
tween each dynamic connectivity measure (dwell time, fraction time, 
number of transitions) and the Motor Performance Score, which sum
marized kinematic measures across all upper limb movements (see 
Supplementary material, Motor Performance Score).

2.5. Relating connectivity to roles of M1 and aIPS

As illustrated in Fig. 1, associations between static FC and dFNC and 
the roles of M1 and aIPS for post-stroke movements were separately 
tested using linear backward regression models with elimination based 
on the Bayesian information criterion (BIC, k = log(n) with n = 18). 
Specifically, in each model, the connectivity measures (either static or 
dynamic) served as input variables whereas outcome variables reflected 
a regions’ contribution to hand movements (either M1 or aIPS). In total, 
four linear models were conducted to explain behavioral responses for 
two rTMS target regions (M1 and aIPS), each comparing two connec
tivity modalities (static and dynamic). Importantly, counterparts of M1 
and aIPS in the stroke-affected hemisphere did not show relevant 
overlap with stroke-lesions (supplementary Fig. S1). To examine 
whether results were stroke-specific, we repeated the regression ana
lyses in healthy controls.

2.5.1. Input variables: Connectivity and data reduction
As input variables for the regression models, we used either dynamic 

or static connectivity. Based on the hypothesis that connectivity was 
related to regional contributions of M1 or aIPS, only connectivity values 
including the region of interest and its counterpart in the stroke-lesioned 
hemisphere were selected for each model.

Hence, all connectivity values involving either ipsi- or contralesional 
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M1 were selected as input variables when modeling M1 rTMS effects. 
Thus, the role of M1 was related to 37 static connectivity values (19 
M1ipsilesional + 19 M1contralesional − 1 redundant M1 ipsilesional − M1 con

tralesional), but 74 dynamic connectivity values (37 * 2 Connectivity 
States). Likewise, 37 static and 74 dynamic connectivity values 
involving ROIs in ipsi- or contralesional aIPS were selected for models 
on aIPS rTMS.

Input variables from static and dynamic connectivity were used for 
separate models to compare which best explained the roles of M1 and 
aIPS. Importantly, dynamic functional connectivity with two states in
cludes twice as many connectivity states and thereby heavily increase 
the complexity of models based on dFNC, compared to static connec
tivity. To grant comparability of linear models with different numbers of 
input variables and to avoid problems resulting from multicollinearity, 
static as well as dynamic connectivity were reduced using principal 
component analyses (PCA) (Paul et al., 2021). Hence, for each region 
(M1 or aIPS), a 2D matrix of 37 static connectivity values * 18 stroke- 
affected individuals was entered into one PCA, while dFNC input (74 
connectivity values * 18 stroke-affected individuals) was fed into a 
separate PCA. This allowed to condense the differently sized connec
tivity datasets into an equal amount of meaningful independent com
ponents. The Guttman-Kaiser criterion (Auerswald and Moshagen, 
2019; Guttman, 1954) was applied to define which number of compo
nents from the PCA should be fed into the regression models, ensuring 
that only components capturing a substantial amount of variance of the 
data were included. Accordingly, for each region of interest, five prin
cipal components from static connectivity and five principal compo
nents from dFNC were derived, each serving as input variables for a 
separate linear regression model.

Of note, this approach was not designed to interpret single connec
tions, but aims to optimize comparability between static and dynamic 
connectivity, minimizing multicollinearity and transforming the un
equal numbers of connections between both modalities into comparable 
dimensions.

Yet, to understand which connections were most important deter
mining each principal component, contributions were calculated by 
dividing the squared cosine of each connection by the sum of the 
squared cosines of all connections for a particular principal component. 
To illustrate which connectivity pattern mainly defined each principal 
component, contributions (in percent) higher than the average expected 
average contribution (100 % divided by all connections).

2.5.2. Outcome variable: The role of specific regions for movements
To quantify a region’s role for hand movements, the Mean Movement 

Alteration was computed by normalizing the mean performance mea
sures assessed during online-rTMS over the region relative to the per
formance during the control TMS condition (Hensel et al., 2023; 
Tscherpel et al., 2020b) (right panel, Fig. 1). Each of the three recorded 
movement types (finger tapping, pointing, grasping) was assessed 
regarding four kinematic features (efficiency, speed, smoothness, and 
accuracy), yielding twelve parameters in total (three tasks * four kine
matic measures) (Hensel et al., 2023). To summarize the rTMS effects 
across these tasks and movement qualities, the percentage change of all 
twelve parameters during rTMS was averaged, serving as an outcome 
variable in the linear models.

3. Results

3.1. Sample

Stroke-affected individuals and healthy controls did not differ in age 
nor sex (Table 1, adopted from Hensel et al 2023). Stroke severity 
measured by the National Institutes of Health Stroke Scale (NIHSS) in
dicates that all patients showed moderate to severe deficits in the acute 
phase after stroke. A clinically relevant upper limb deficit within the first 
days after stroke was documented for all participants ranging from 1 

(arm drifting) to 4 (no movement at all). Hence, we assumed that all 
patients underwent substantial motor system reorganization (Stinear 
et al., 2007; Ward, 2017).

3.2. No group differences in static functional connectivity

Static functional connectivity of individuals with stroke and healthy 
controls showed a high segregation of cortical, subcortical and cere
bellar components (Fig. 2). ROIs of each network showed positive con
nectivity with regions of the same domain (e.g., between ROIs of the 
sensorimotor network), but weaker or negative connectivity with other 
domains (e.g. cortical sensorimotor and cerebellar ROIs). Comparing 
static connectivity of healthy participants, stroke-affected individuals 
with lower and those with higher motor outcome, one-way ANOVAs for 
each connectivity value did not show significant group differences after 
FDR-correction.

3.3. Dynamic functional connectivity

The analysis of dFNC identified two connectivity states (Fig. 3). The 
first state featured only weak connectivity between all ROIs. In contrast, 
the second state was characterized by a mostly positive connectivity 
between ROIs of the same network, while low or negative connectivity 
was observed between different networks. We refer to these states as low 
segregated (state 1) and highly segregated (state 2) states.

3.3.1. Performance-related temporal dynamics
Testing whether stroke − or different stroke outcomes – were linked 

to altered dynamic connectivity, a mixed ANOVA on dwell time detected 
an interaction between groups (healthy controls, individuals with higher 
and lower outcome after stroke) and brain states (P < 0.001; Fig. 3, 
Table 2). Correspondingly, the three level one way ANOVA for the 
symmetrical measure fraction time indicated significant between-group 
effects (P < 0.001). As indicated by dwell time, individuals with lower 
motor outcome after stroke spent more time in the highly segregated 
brain state 2 compared to healthy participants (P = 0.001) or individuals 
with higher outcome after stroke (P = 0.002), whereas healthy controls 
and individuals with higher motor outcome after stroke showed 
balanced dwell times between states. Likewise, the percentage of time 
spent in each state measured by fraction times showed that stroke- 
affected individuals with lower motor outcome spent 92.9 % of the 
time in the highly segregated state and only 7.1 % in the low segregated 
State 1. Again, fraction times did not show a predominant connectivity 
state for healthy participants and stroke-affected individuals with higher 
outcome. No significant between-group differences were found for the 
number of transitions, tested by a three level one way ANOVA (P =
0.471).

Corresponding to the subgroup differences, testing for correlations 
between all stroke-affected individuals’ fraction time and the Motor 
Performance Score demonstrated that more time spent in the more 
segregated connectivity state 2 was associated with lower hand motor 
function (Pearson r = -0.56, P = 0.014, Fig. 3C). For state 1, fraction 
time showed an inverse correlation due to the symmetrical distribution 
of fraction times. Likewise, longer dwell times in state 2 correlated 
negatively with the Motor Performance Score (Pearson r = -0.51, P =
0.030), whereas longer dwell times in state 1 were positively correlated 
with performance (Pearson r = 0.52, P = 0.026). This relationship was 
inversely found at higher performance levels of individuals without 
stroke lesions (Fig. 3C). That is, healthy controls showed positive cor
relations between motor performance and fraction time (Pearson r =
0.60, P = 0.008) as well as dwell time in the more segregated brain state 
(Pearson r = 0.58, P = 0.011). In contrast, dwell times in the less 
segregated state 1 were negatively correlated with motor performance 
(Pearson r = -0.63, P = 0.005). In summary, more time spent in segre
gated dFNC is associated with more residual deficit after stroke, whereas 
segregation in the non-lesioned brain is associated with higher motor 

L. Hensel et al.                                                                                                                                                                                                                                  NeuroImage: Clinical 47 (2025) 103825 

6 



performance.

3.3.2. Group differences in dynamic connectivity strength
Individuals with lower outcome after stroke featured stronger con

nectivity between several ROIs of the sensorimotor and subcortical 
network, compared with healthy controls and patients with higher 
outcome (Supplementary Fig. S4). For example, increased connectivity 
was found between bilateral M1 as well as between the SMA and mul
tiple precentral and paracentral regions, including bilateral M1 and the 
dorsal premotor cortex. No differences were found between individuals 
with higher outcome after stroke and healthy controls. In state 1, no 
differences were found at all. These findings correspond to observations 
in patients with more severe deficits in the acute phase after stroke, 
showing stronger dFNC between sensorimotor regions, specifically in 
the more segregated state (Bonkhoff et al., 2021b). Our findings suggest 
that − also in the chronic phase after stroke − motor deficits are linked 
to stronger dFNC predominantly between sensorimotor regions.

3.4. Connectivity linked to motor-contributions of M1

Backward regression models were used to estimate the relationship 
between connectivity involving bilateral M1 as input variables and the 
Mean Movement Alteration induced by rTMS over the contralesional 
M1, serving as an outcome variable. Since the comparison of models 
based on static and dynamic connectivity input variables was compro
mised by the different number of connectivity values in both modalities, 
PCA were first used to translate static and dFNC into an equal number of 
components. The Guttman-Kaiser criterion determined that including 
five principal components was sufficient to capture 80.7 % of the vari
ance in all static and 74.5 % of the variance in all dynamic connections 
(across states 1 and 2). Thereby, we ensured an equal number of input 
variables (i.e., five) in both models, each reflecting distinct, minimally 
correlated patterns of connectivity (Fig. 4).

When computing regression models using stepwise backward elim
ination, the model using principal components derived from static 
connectivity could not significantly explain TMS effects (adjusted R2 =

2.6 %). In contrast, the model using dFNC parameters (i.e. the second 

Fig. 3. Different dynamic connectivity in stroke (A) Distinguishing two connectivity states reveals stroke-related differences in state 2, indicated by asterisks 
(ANOVA P < 0.05, FDR-corrected). (B) Reduced mean fraction and dwell times in state 1 found in patients with lower outcome, compared to patients with higher 
outcome and healthy controls (between-group effect P < 0.001, asterisks indicate post hoc independent t-tests ***P < 0.001 **P < 0.01; HC = healthy controls, HMO 
= patients with higher motor outcome, LMO = patients with lower motor outcome). Fraction times were only compared for state1 due to their symmetry with state 2 
(C) After stroke, low motor performance is associated with longer fraction (Pearson r = -0.56, P = 0.014) and dwell time (Pearson r = -0.51, P = 0.030). Separate 
regression lines for healthy controls illustrate that this relationship is inverted at higher levels of motor performance.
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principal component) significantly explained the TMS effect evoked 
upon contralesional M1 stimulation, yielding 26.6 % of the explained 
variance (p = 0.029, adjusted R2 = 22.0 %, BIC = 28.9), as described in 
the following equation: 

TMS-EffectcM1 = − 0.3 * PC2dynamic

Consequently, dynamic but not static connectivity was associated 
with the role of contralesional M1 in post-stroke hand movements 
(Fig. 4).

In the healthy group, the Kaiser-Guttman criterion suggested 
retaining seven components for dynamic connectivity and five for static 
connectivity. To ensure comparability between dynamic and static 
connectivity as well as between cohorts (patients and healthy controls), 
we limited the number of components to five in all analyses. As a result, 
the regression models for healthy participants captured 74.3 % of the 
variance in static connectivity and 64.1 % in dynamic connectivity. 
Regression analysis using these five components revealed that both 
dynamic and static connectivity were associated with individual vari
ability in TMS effects over contralesional M1 in healthy controls. The 
dynamic connectivity model yielded 24.3 % of the explained variance 
(p = 0.038, adjusted R2 = 19.6 %, BIC = 38.7), as described in the 
equation: 

TMS-EffectcM1 (healthy) = 0.6 * PC5dynamic (healthy)

Similarly, the static connectivity model yielded 32.2 % explained 
variance (p = 0.014, adjusted R2 = 27.9 %, BIC = 44.6).

TMS-EffectcM1 (healthy) = 0.4 * PC4static (healthy).

3.5. Connectivity linked to motor-contributions of aIPS

Like for M1, PCA-informed stepwise backward regression models 
were computed based on connectivity involving bilateral aIPS as input 
variables and the Mean Movement Alteration by rTMS over the aIPS as 
an outcome variable. For aIPS, PCA derived input variables accounted 
for 74.7 % of the variance of static connections and 73.6 % of the 

variance of dynamic connections. Models featured significant results 
with both input from static and dynamic connectivity. The regression 
model informed by static connectivity explained 33.8 % of variance of 
rTMS effects (p = 0.011, adjusted R2 = 29.6 %, BIC = 39.0), with the 
equation: 

TMS-EffectcaIPS = 1.1 * PC5static

The regression model based on dynamic connectivity explained 33.7 
% of variance of rTMS effects (p = 0.012, adjusted R2 = 29.5 %, BIC =
39.0), based on the equation: 

TMS-EffectcaIPS = 0.6 * PC3dynamic

Notably, both components selected by linear models, namely PC5 for 
static and PC3 for dynamic connectivity reflect connectivity with basal 
ganglia, cerebellum and cortical sensorimotor regions (Fig. 5). In sum, 
both static and dynamic connectivity explained the role of the con
tralesional aIPS for hand movements to a very similar degree.

For healthy participants, regression models did not yield significant 
associations for either dynamic or static connectivity, suggesting that 
TMS-induced effects over aIPS were not robustly explained by functional 
connectivity in this group.

3.6. Replication analysis

To ensure comparability with earlier studies using dynamic func
tional connectivity in stroke (Bonkhoff et al., 2021, 2020) we primarily 
used an ICA template derived from a stroke-relevant dataset (Allen et al., 
2014). This choice allowed direct comparison with previously published 
findings. However, to evaluate the robustness of our results, we repeated 
the PCA-based dimensionality reduction and backward linear regression 
models using two recent, large-scale ICA templates: (1) Neuro
mark_fMRI_2.2 based on over 100,000 individuals (Iraji et al., 2023; 
Jensen et al., 2024), and (2) Neuromark_fMRI_3.0_aging, which includes 
participants more representative of our sample’s age range (Fu et al., 
2024). As shown in the supplementary material (Table S1), the 

Table 2 
Brain state dynamics by group.

Mean ± SD(Group 1) Mean ± SD(Group 2) Difference df T P Cohen’s d

Dwell times State 1  ​ ​ ​ ​ ​ ​ ​

Healthy – Higher Outcome 177.3 ± 135.6 171.3 ± 123.5 6.0 25.0 0.11 0.912 0.05

Healthy – Lower Outcome 177.3 ± 135.6 12.0 ± 23.9 165.3 25.0 3.60 0.001 1.47
Higher – Lower Outcome 171.3 ± 123.5 12.0 ± 23.9 159.3 16.0 3.80 0.002 1.79
Dwell times State 2  ​ ​ ​ ​ ​ ​ ​

Healthy – Higher Outcome 84.2 ± 100.4 103.1 ± 121.9 − 18.9 25.0 − 0.43 0.670 − 0.18

Healthy – Lower Outcome 84.2 ± 100.4 279.9 ± 96.2 ¡195.7 25.0 ¡4.84 <0.001 ¡1.98
Higher – Lower Outcome 103.1 ± 121.9 279.9 ± 96.2 ¡176.8 16.0 ¡3.42 0.004 ¡1.61
Fraction times State1 ​ ​ ​ ​ ​ ​ ​

Healthy – Higher Outcome 0.65 ± 0.36 0.64 ± 0.38 0.01 25.0 0.04 0.968 0.02

Healthy – Lower Outcome 0.65 ± 0.36 0.07 ± 0.16 0.58 25.0 4.58 <0.001 1.87
Higher – Lower Outcome 0.64 ± 0.38 0.07 ± 0.16 0.57 16.0 4.16 0.001 1.96
Number of Transitions ​ ​ ​ ​ ​ ​ ​
Healthy – Higher Outcome 1.39 ± 1.50 1.22 ± 1.30 ​ ​ ​ ​ ​

Healthy – Lower Outcome 1.39 ± 1.50 0.67 ± 1.41 ​ ​ ​ ​ ​
Higher – Lower Outcome 1.22 ± 1.30 0.67 ± 1.41 ​ ​ ​ ​ ​
Results of post hoc independent t-tests after significant interaction (P < 0.001) in the repeated measures ANOVA for dwell times and the significant one way ANOVA for fraction time (P 
< 0.001). Fraction times were only compared for state1 and not state 2 due to their symmetry (see Methods). The one way ANOVA for the number of transitions was not significant (P 
= 0.471). SD = standard deviation. df = degrees of freedom. Significant results in bold.
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relationship of specifically dynamic connectivity (not static connectiv
ity) with TMS effects over M1 can be consistently shown. (for more 
details see supplementary material).

4. Discussion

We here compared static and dynamic functional connectivity with 
respect to TMS-induced motor changes in chronic stroke patients. In line 
with previous research in individuals with stroke (Bonkhoff et al., 
2020a; Hu et al., 2018), dFNC revealed transient connectivity states 
which differed in network segregation, indicating that individuals with a 
less favorable outcome spend more time in a more segregated state. 
Linking this finding to the effects on hand movements, induced by 
online-rTMS after the fMRI session, regression models indicated that 
dFNC was associated with the contributions of both contralesional M1 
and aIPS for motor performance, whereas the classic static connectivity 

was merely indicative of rTMS-effects for the contralesional aIPS. In 
summary, our findings suggest that contralesional regions’ dynamic 
connectivity shifts between more and less segregated brain states reflect 
behaviorally meaningful information for hand motor performance after 
stroke.

4.1. Dynamic connectivity related to stroke-impairment

The present study links lower motor outcome in the chronic phase 
after stroke with longer occupancy of connectivity state 2, featuring a 
high level of network segregation (Fig. 3C). This association was 
demonstrated by group differences, showing that individuals with lower 
motor outcome spent more time in state 2, and by a linear relationship 
between low motor performance after stroke and the occupancy of state 
2. This observation is in line with dynamic connectivity studies in acute 
patients, finding higher segregation of networks (Bonkhoff et al., 2020a, 

Fig. 4. Connectivity linked to rTMS effects on contralesional M1. (Top) Patients’ role of contralesional M1 could be explained by dynamic but not static connectivity. 
Matrices indicate contributions of each connectivity (columns) to each PCA-dimension (rows). Dimension 2 was selected by the stepward regression model to explain 
the effects of contralesional rTMS, with a negative weight of − 0.3. Note that, compared to the other dimensions, Dimension 2 receives most contributions from 
connections within the sensorimotor system and cerebellum. (Bottom) Connectivity reflected by Dimension 2, involving a varying connectivity of a widely connected 
pattern between M1 and all subnetworks in state 1, and a more restricted pattern including mainly sensorimotor and cerebellar connections in state 2. cM1 =
contralesional M1, iM1 = ipsilesional M1.
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2021b), and reduced temporal variability (Hu et al., 2018) early after 
stroke, both discussed to reflect deficits in network integration. Towards 
the chronic phase, a normalization of this pattern was associated with 
motor recovery (Hu et al., 2018). Stroke lesions have been suggested to 
disrupt the successful integration of information across domains, which 
likely relies on shifting between more integrative or segregative states 

(Deco et al., 2015; Duncan and Small, 2018; Eickhoff and Grefkes, 
2011). Compared to previous findings from the acute phase, the present 
findings from the chronic phase after stroke show a pattern of segrega
tion, with negative connectivity between the sensorimotor network and 
visual, cerebellar, and subcortical networks (Bonkhoff 2021, Bonkhoff 
2020). It should be noted that other networks in these brain states were 

Fig. 5. Connectivity linked to rTMS effects on contralesional aIPS. (Top) Patients’ role of contralesional aIPS was explained by dynamic and static. Matrices indicate 
contributions of each connectivity (columns) to each PCA-dimensions (rows). Dimensions selected in each model (3 and 5, respectively) were both positively 
weighted for rTMS effects. Compared to the other dimensions, dynamic dimension 3 and static dimension 5 are both driven by the connection between ipsilesional 
aIPS and the medial frontal cortex and putamen (Bottom) Anatomical visualization of connectivity patterns reflected by Dimensions 3 (dynamic connectivity) and 5 
(static connectivity). caIPS = contralesional aIPS, iaIPS = ipsilesional aIPS.
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more integrated, such as the frontoparietal and the default mode 
network, similar to the positive correlation observed between fronto
parietal regions in state 2 of the present work. We, therefore, stress that 
network segregation in our work specifically refers to the relative 
isolation of the sensorimotor network, for example from cerebellar and 
subcortical regions. Bonkhoff et al. (2021) further found that severely 
affected patients with acute stroke spent more time in such a connec
tivity state, indicating that dFNC recorded at rest relates to post-stroke 
behavior. It should be noted, however, that stroke severity in the work 
of Bonkhoff et al (2021) was determined by the NIHSS, a clinical score 
summarizing a wide range of deficits including sensory, motor, language 
and visuospatial function, whereas the present analysis focused on 
analyzing hand movements in higher precision. Thus, by differentiating 
patient subgroups by motor outcome, we demonstrate that a higher 
segregation of the sensorimotor network may sustain towards the 
chronic phase in individuals with residual upper limb deficits. This is in 
line with the analysis of dFNC in longitudinal data suggesting that the 
initially observed abnormalities of dFNC may return to normal levels 
depending on clinical recovery (Bonkhoff et al., 2021b; Duncan and 
Small, 2018; Favaretto et al., 2022). In line with this notion, longitudinal 
data from individuals with traumatic brain injury suggest an early 
decrease of segregation in individuals with more successful recovery 
(Kuceyeski et al., 2019). Hence, the perseverance in highly-segregated 
brain states evolves as a signature of less successful recovery, reflect
ing unsuccessful or maybe even maladaptive reorganization.

In line with this notion, individuals with lower motor outcome 
showed pronounced connectivity strength of intra-domain connections 
in the sensorimotor, salience and basal ganglia networks (Fig. 3, Sup
plementary Fig. S4). Besides sensorimotor and subcortical regions, the 
fronto-insular connections of the salience network might therefore play 
a critical role for long-term motor outcome. Enhanced connectivity be
tween the bilateral insulae and medial frontal cortex were previously 
linked to cognitive dysfunction in the subacute and chronic phase after 
stroke (Vicentini et al., 2021). Additionally, altered temporal variability 
of the insula (Hu et al., 2018) and enhanced connectivity between the 
contralesional insula and the ipsilesional M1 (Chen et al., 2018) have 
been previously found in acute patients with motor deficits. Both studies 
have assessed motor deficits by the Fugl-Meyer assessment, whereas the 
present findings add evidence from kinematic analyses of hand function. 
While the upper limb score of the Fugl-Meyer mainly captures body 
function such as the range of motion, reflex activity and coordination 
(Fugl-Meyer et al., 1975), kinematic data provide a more sensitive 
readout of motor control such as smoothness and accuracy as well as 
motor execution by movement efficiency and speed. Moreover, kine
matic recordings were only conducted in distal upper limb movements, 
which involve more dexterous movements, without some of the gross 
movements involving shoulder and core as measured by the Fugl-Meyer 
assessment. In sum, the present study extends previous findings linking 
increased dynamic connectivity between cortical and subcortical 
sensorimotor regions and the saliency network with impaired motor 
control and execution of distal hand movements.

4.2. Insights from online-rTMS interference

To this end, the neural neurophysiology underlying a more segre
gated connectivity in individuals with stroke-induced hemiparesis 
remained largely speculative. Using online-rTMS after the fMRI session 
allowed to transiently disrupt neural processing in the contralesional M1 
and aIPS during hand movements, suggesting that time-variant dFNC 
provides information on the roles of the contralesional M1 and aIPS for 
motor function. Hence, shifts between integrated and segregated con
nectivity states as identified by dFNC may reflect processes related to 
motor-contributions of brain regions involved in such connectivity 
patterns. Possibly related to the prolonged connectivity state with high 
interconnectivity between sensorimotor regions at rest, extensive acti
vation of bilateral sensorimotor regions during motor tasks has been 

discussed to reflect different mechanisms in healthy ageing and stroke 
(Tscherpel et al., 2020a; Ward et al., 2003). While this activation pattern 
has been similarly found in older individuals without lesions as well as 
with stroke, rTMS studies helped to differentiate such abnormally high 
activations between healthy ageing and individuals with acute as well as 
chronic stroke (Lotze et al., 2006; Tscherpel et al., 2020b; Volz et al., 
2017). For example, Volz and colleagues (2017) have shown that pa
tients with acute stroke perform faster finger tapping with their stroke 
affected hand when neural processing is disrupted during rTMS applied 
to contralesional M1, indicating a maladaptive role of this region early 
after stroke. In contrast, applying rTMS in individuals in the chronic 
phase after stroke deteriorated motor performance when targeting 
contralesional M1 (Lotze et al., 2006) and the dorsal premotor cortex 
(Lotze et al., 2006; Tscherpel et al., 2020b). Broadly, two competing 
mechanisms have been proposed regarding the reorganization of neural 
networks after a brain lesion. One concept known as the vicariation 
theory suggests that intact brain regions establish new connections to 
compensate for dysfunctional network components after stroke (Finger, 
2009; Wiesendanger, 2006). On the other hand, altered connectivity 
may arise from dysfunctional, possibly competitive mechanisms origi
nating in under-regulated brain regions after stroke. While both con
cepts may explain altered connectivity, the first would arise from neural 
mechanisms supporting recovered function whereas the other may be a 
marker of aberrant processing, often referred to as maladaptation 
(Hinder, 2012; Hummel and Cohen, 2006; Murase et al., 2004; Nowak 
et al., 2009). The present study links the effects induced by rTMS with 
dynamic connectivity using stepwise linear regression models. The 
connectivity pattern associated with rTMS effects for both contralesional 
M1 and aIPS involved dFNC with sensorimotor cortical regions, basal 
ganglia and the cerebellum (Figs. 4 and 5). Together, these findings 
indicate that time-varying connectivity states contain information on 
the behavioral implications of different nodes of the motor system. 
Regarding some regions, in our case M1, such information could not be 
detected by static connectivity. In other words, the influence of the 
contralesional M1 is related to network dynamics, rather than connec
tivity patterns which are stable over time. To test whether these findings 
are specific to the stroke lesion, regression analyses were comparably 
conducted in healthy participants. Interestingly, both static and dy
namic connectivity explained a substantial portion of variance in TMS 
effects when stimulating contralesional M1, but no associations were 
found for aIPS. These findings support the notion that, also in the 
absence of stroke-related reorganization, hand motor performance in
volves signaling between bilateral M1 (Perez and Cohen, 2008; Rehme 
et al., 2013). In contrast, dynamic connectivity with contralesional aIPS 
may be more relevant for hand movements after stroke. In summary, we 
extend previous reports suggesting that dynamic connectivity provides 
higher sensitivity discriminating time-sensitive features of neural pro
cessing in health and disease, including perceptual cues in healthy in
dividuals (Di et al., 2022), and detecting clinically relevant connectivity 
alterations in stroke (Bonkhoff et al., 2020b) as well as other pathologies 
(Jin et al., 2017; Madhyastha et al., 2015). Thereby, assessing dynamic 
connectivity may be a promising extension of current markers aiding the 
personalized application of neuromodulation after stroke.

4.3. Limitations

Some limitations should be considered. First, the complex experi
mental setup including fMRI and subsequent online-rTMS, which re
quires multiple repetitions of complex upper limb movements excluded 
severely affected stroke patients. While all patients showed moderate or 
severe deficits in the acute phase, they were only mildly or moderately 
affected during the online TMS session of our study. Although the 
sample of 18 stroke-affected participants and 18 healthy controls ex
ceeds that of many earlier online-rTMS stroke studies, it remains 
insufficient for broadly generalizing the findings. Second, although 
detailed kinematic measurements allow a sensitive assessment of motor 
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performance changes under rTMS, other individual factors, such as hand 
dominance or general motor learning ability, may also contribute to task 
performance. These factors should be considered in future studies aim
ing to explain network contributions linked to motor outcome after 
stroke. Third, although all participants were studied in the chronic post- 
stroke phase, heterogeneity in lesion location and individual recovery 
trajectories could have introduced additional variability into the con
nectivity measures. Fourth, the cross-sectional design does not allow us 
to infer whether the observed dynamic connectivity patterns remain 
stable or evolve further over time. Finally, while we used resting-state 
fMRI to characterize network organization, combining resting and 
task-based measurements in future studies may provide more compre
hensive insights into how dynamic connectivity relates to motor per
formance during stroke recovery.

5. Conclusion

The present work compared dynamic and static functional connec
tivity in chronic stroke and healthy controls, extending previous evi
dence that transient states of highly segregated networks related to 
motor control and execution are linked to worse motor outcome. 
Importantly, the present study indicates distinct mechanisms of such 
segregation with regards to physiological motor function and stroke- 
related impairment. Finally, dynamic functional connectivity was 
demonstrated to contain movement-related information on contrale
sional M1 and aIPS, whereas static connectivity could only explain rTMS 
effects induced in the contralesional aIPS. Together with recent dynamic 
functional connectivity studies in individuals with stroke, our findings 
highlight that analyzing transient shifts between brain states unveil 
outcome-dependent network configurations. Moreover, this is the first 
study providing proof of concept that dynamic functional connectivity 
relates to behavioral responses induced by rTMS, which helped to infer 
the roles of motor-related brain regions for motor recovery.
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