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Dataset:  
• Left hemisphere of a single brain
• Cutting results in 1260 brain slices (sagittal plane)
• Number of sections scanned with the microscope is lower
• After filtering: 26 sections were used for training
• Section thickness: 50 µm

Data sampling:  
• Identical sampling strategy applied to both cytoarchitectonic and 3D-PLI modalities.
• Sample locations selected at regular 500 µm intervals in the 2D tissue plane.
• Image patches of size 2048 x 2048 px at ~2 µm/px resolution 
• Nissl-stained sections: 10 brains used for contrastive pre-training, 1 brain held out for evaluation
• 3D-PLI sections: 4-fold cross-validation over available sections - each fold: 21 sections for training
• Sampling ensures uniform spatial coverage
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Conclusion

Evaluation: 3D-PLI Sections

Self-Supervised 3D Contrastive Learning

Human Brain Sections

Prerequisite: Registration of brain 
sections in an anatomical reference 
space to obtain canonical spatial 
coordinates.

Idea: Learn latent space so that
representations of similar inputs are
closer than those of negative pairs

Spatial Contrastive Learning for Anchoring Histological 
Human Brain Sections Within a Reference 3D Model
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• We train a neural network using a distance-based contrastive learning approach to analyze how 
the learned features relate to anatomical structures.
• We evaluate our approach on two complementary datasets: (1) multi-subject dataset of 
densely sampled, high-resolution microscopic scans of cell-body-stained histological sections, and 
(2) a single-subject dataset of sparsely sampled high-resolution 3D-PLI sections.
• Analyses show that features in the U-MAP latent space reveal clusters related to 
cytoarchitecture or fiber architecture using the "Julich Brain Atlas" [1] and the "Deep White 
Matter Fibre Bundles Atlas" [5].
• We demonstrate the feasibility of aligning PLI brain sections into a 3D reference model based 
on similarity of latent texture representations.
• PLI sections in our training data are unevenly distributed, creating spatial gaps that may 
prevent direct continuity between early and mid sections due to missing intermediate sections.

Brain atlases serve as a spatial framework for comparing brain structures across individuals and 
imaging modalities. Histological techniques like Nissl staining and 3D-PLI offer complementary 
insights into cytoarchitecture and fiber architecture, respectively. To enable integrative analysis, these 
sections must be aligned to a standard 3D reference space. Traditional image registration methods 
rely on estimating transformations from image features or landmarks, but they often require manual 
handling, are sensitive to modality differences, and scale poorly to large datasets.

We propose an alternative, learning-based approach that anchors image patches from histological 
sections into a 3D reference brain using spatial contrastive learning. By training on high-resolution 
image patches, we learn embeddings that capture local microstructural patterns. We hypothesize that 
these representations support coarse spatial anchoring via cosine similarity in latent space, yielding 
patch correspondences that define point pairs for estimating 3D transformations.
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Nissl staining Dataset:  
• Eleven brains, each having ~450 coronal sections
• Microscopic scans of cell-body stained sections
• Reveals cytoarchitectonic organization
• Every 15th section is digitized 
• Section thickness: 20 µm
• Each brain is registered into MNI-Colin27
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Pipeline:
• Sample image patches from the test section and the reference sections, and then encode them. 
• Determine the most similar reference patch in latent space for each test patch.
• Similarity is defined by the cosine similarity between the representations of any two patches.
• Matched image patches then give rise to corresponding point pairs between the image coordinate 
system and the 3D model.  

• Pre-training independently on each data modality
• Employ spatial contrastive learning to learn representations of local microstructural patterns from 
high-resolution image patches extracted from large tissue sections

Evaluation: Nissl-Stained Sections

Euclidean distance error distributions

• Left: Whiskers up to the 90th percentile
• Right: Error distribution of outliers
• Concentration of preds at low values
• 1 reference 3D brain (#9) is used to 
anchor test sections
• Higher mean compared to PLI data 
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Assumption: Image patches 
sampled from spatially close 
locations are more similar than those 
extracted from distant locations.

MNI-Colin27 [4] space, visualized 
with low opacity: Coordinates 
sampled from available sections are 
projected onto the reference space, 
represented by dots.

3D-PLI: Enables the visualization 
of single nerve fibers and fiber 
bundles with a resolution of 
1.33µm/px.   

• Yellow lines: matching correspondences
• Lightgray dots: sampled points in test slice that 
are matched to each respective section on the right

• Geometric matching: matches to four sections, 
provides a lower bound on the error
• Feature-based matching: in most cases accurate 
correspondences

• A-P and S-I spatial encoding are 
represented smoothly across the 
latent space

• Sharp transitions in the R-L axes
• More fragmented due to local 
discontinuities

Matched points between an example section #920 
and selected reference sections.

• Left: Whiskers up to the 90th percentile
• Right: Error distribution of outliers
• Outliers: wrong point correspondences
• Concentration of preds at low values
• Aggregated across the test sections of 
all cross-validation folds

Euclidean distance error distributions
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Weighting of pairs 
using RBF kernel

L2 normalized feature vector 
computed by the neural network


