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Transmittance Retardation FOM 3D-PLI: Enables the visualization of 
single nerve fibers and fiber bundles 
with a resolution of 1.33µm/px.   

Available brain tissue:  
• Left hemisphere of a single brain
• Cutting results in 1260 brain slices
• Section thickness: 50 µm
• Registration into MNI-Colin27 space
• Number of PLI sections is lower
• After filtering: 26 sections were used
• PLI sections were distributed 
irregularly across the right-left axes

3D-PLI Human Brain SectionsIntroduction

Brain atlases serve as a spatial framework for comparing brain structures 
across individuals and imaging modalities. Histological techniques like Nissl 
staining and 3D-PLI offer complementary insights into cytoarchitecture 
and fiber architecture, respectively. To enable integrative analysis, these 
sections must be aligned to a standard 3D reference space. Traditional 
image registration methods rely on estimating transformations from image 
features or landmarks, but they often require manual handling, are sensitive 
to modality differences, and scale poorly to large datasets.

We propose an alternative, learning-based approach that anchors image 
patches from histological sections into a 3D reference brain using spatial 
contrastive learning. By training on high-resolution image patches, we learn 
embeddings that capture local microstructural patterns. We hypothesize that 
these representations support coarse spatial anchoring via cosine 
similarity in latent space, yielding patch correspondences that define point 
pairs for estimating 3D transformations.
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• Sample image patches from the test section and the reference sections, and then encode them. 
• Determine the most similar reference patch in latent space for each test patch.
• Similarity is defined by the cosine similarity between the representations of any two patches.
• Matched patches then give rise to corresponding point pairs between the image coordinate system and the 3D model.  
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Zero-Shot Spatial Anchoring of Image Patches Improving Whole Slice Alignment

Conclusion

• Our work demonstrates that meaningful features can be learned from 3D-PLI histological 
sections, enabling effective spatial anchoring of both individual image patches and whole brain 
slices within a reference frame. 
• Our analysis shows that the density of the reference frame affects the precision of the 
anchoring process.
• The affine transformation for aligning the whole brain slice is estimated purely from 
correspondences derived from matching single image patches. We show that this leads to a 
subsequent improvement in anchoring accuracy.
• This method generalizes across histological imaging modalities, including 3D-PLI and Nissl 
staining, as well as across subjects.
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A: The top-k accuracy demonstrates how well the most similar patches in the latent space 
    correspond to the geometrically closest points in MNI space.
B: Boxplot of euclidean distance errors between the test points and matched reference points.      
    Whiskers are shown up to the 90th percentile.
C: Histogram of outlier euclidean distance errors.

Results:
• Applying affine alignment significantly reduces outliers.
• Sections that correspond to regions with denser samples 
in the reference frame exhibit lower alignment errors 
compared to sections from regions that are more sparsely
represented in the reference frame. 


