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Abstract 

The str uct ural prediction of biomolecules via computational methods complements the often in v olv ed w et-lab e xperiments. Unlik e protein struc- 
t ure prediction, RNA str uct ure prediction remains a significant challenge in bioinformatics, primarily due to the scarcit y of annot ated RNA str uct ure 
data and its varying quality. Many methods have used this limited data to train deep learning models but redundancy, data leakage and bad data 
quality hampers their performance. In this work, we present NucleoSeeker, a tool designed to curate high-qualit y, t ailored dat asets from the 
P rotein Data B ank (PDB) database. It is a unified frame w ork that combines multiple tools and streamlines an otherwise complicated process 
of data curation. It offers multiple filters at str uct ure, sequence, and annotation le v els, giving researchers full control o v er data curation. Further, 
we present several use cases. In particular, we demonstrate how NucleoSeeker allows the creation of a nonredundant RNA str uct ure dataset 
to assess AlphaFold3’s performance for RNA str uct ure prediction. This demonstrates NucleoSeeker’s effectiveness in curating valuable nonre- 
dundant t ailored dat asets to both train no v el and judge e xisting methods. NucleoSeek er is v ery easy to use, highly fle xible, and can significantly 
increase the quality of RNA str uct ure datasets. 
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ntroduction 

eep learning (DL) technology has given a significant boost to
cientific research by providing powerful tools for data anal-
sis, pattern recognition and prediction [ 1 ]. It strongly im-
acted the computational structural biology community en-
bling the recent breakthroughs such as AlphaFold [ 2 ] pro-
iding a massive improvement in both speed and accuracy for
rotein structure prediction. 
Prior methods based on statistical inference such as direct

oupling analysis (DCA) [ 3 ] gave a glimpse at the value hid-
en within the evolution of biomolecular sequences, enabling
he statistical inference of spatial adjacencies to guide struc-
ure prediction tools [ 4 , 5 ]. Transformer networks as used by
odels such as AlphaFold [ 2 ] leverage the information of pro-

ein evolution as found in sequence data to derive structural
nformation. While these approaches are highly successful [ 6 ],
hey require abundant training data. 

Thus, scarcity of data prohibits the direct transfer of these
ethods to other biomolecules, e.g. RNA. Moreover, the avail-

ble RNA structural data suffers not only from its limited size
ut also from high redundancy and low data quality. Specif-
cally, the current version of the Protein Data Bank (PDB)
 7 ] contains a large number of highly similar RNA struc-
ures, structures with poor resolution, a significant number of
ybrids (protein / RNA, DNA / RNA, and others), and a con-
iderable proportion of very short sequences (fewer than 20
esidues) (see Fig. 1 A and Supplementary Fig. S1 in Supple-
entary Data). 
eceived: October 15, 2024. Revised: January 28, 2025. Editorial Decision: Febru
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Such properties often cause DL models to overfit and gener-
alize poorly. Assessing DL models is also challenging because
data leakage, stemming from improper splits between train-
ing and test sets, can lead to an overestimation of the model’s
performance [ 8 , 9 ]. 

Furthermore, reproducibility also becomes impaired. Ex-
periments like RNA-Puzzles [ 10 ] and CASP [ 11 ], where com-
putational algorithms have to blindly predict RNA structures,
provide a valid evaluation method. However, results [ 11 ] sug-
gest that due to the above-mentioned problems, DL models
currently perform worse than physics-based approaches in
RNA structure prediction task. 

The development of curated datasets for training and test-
ing models is essential to addressing these issues. For instance,
following strict filtering processes and manual curation as
in [ 12 , 13 ] can be highly effective. Here, we introduce Nu-
cleoSeeker, an easy-to-use software that provides extensive
flexibility and control for curating RNA datasets from struc-
tures deposited in the PDB database in a fully automated
manner. 

Materials and methods 

NucleoSekeer is a python library that can be directly used as a
command-line tool with limited dependencies (i.e. Biopython,
Pandas, Numpy, and Requests). It handles downloading and
applying filters to create a dataset. 
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Figure 1. ( A ) Hierarchical classification of RNA data: from 30 million sequences to 121 unique str uct ures. This nested diagram illustrates the 
progressive filtering of RNA information, showcasing the rarity of well-characterized, unique str uct ures among the vast sea of known sequences. Each 
la y er represents increasingly stringent criteria. ( B ) Barnacle and PyDCA contact prediction performance: Top-L precision of two RNA contact prediction 
tools, Barnacle (red circles) and PyDCA (blue triangles), for the D C str uct ures as a function of their Infernal Bit Score with the corresponding RFAM 

families ( x -axis). ( C ) AlphaFold pTM score versus RMSD: AlphaFold pTM score as a function of the Root Mean Square Deviation (RMSD) between 
AlphaFold3 predictions and experimental str uct ures in Å, categorized by sequence identity (SI%) levels. 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/7/1/lqaf021/8084724 by Forschungszentrum

 Julich , Zentralbibliothek user on 27 June 2025
Dataset access 

Initially, no structures are downloaded from the RCSB PDB
database. Instead, we first use the Search API of the PDB to
retrieve all IDs for a specified structure determination method
and a given polymer entry type. These IDs are then pro-
cessed through a GraphQL query, which fetches predefined
attributes, such as the experimental method used, resolution,
and many more for each structure (see Section S1 of Supple-
mentary Data for details). This API-based approach ensures
that our tool generates the most up-to-date dataset without
requiring any code modifications. This module yields a data
frame ( DF) with all requested IDs and their corresponding
attributes. 
To refine the dataset, we use three different kinds of filters in 

our software that allow the users to specify their requirements 
for various levels from the individual chain to multiple struc- 
tures; all the filter modules in the package are also available 
as standalone modules. 

Dataset creator 

The results of the filtering operations are combined to generate 
a dataset of RNA structure. To further increase the diversity 
of the dataset we use cmscan utility of Infernal [ 14 ] soft- 
ware. It searches the sequences against the covariance models 
present in the RFAM database [ 15 ]. This annotates each entry 
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n the dataset with its corresponding RFAM family, based on
he best hit, while selecting only the lower E -value entry per
FAM family to further reduce redundancy. Users have the
ption to specify the E -value threshold for the RNA family
its; this specifies the statistical significance of the result (refer
o the user guide of Infernal [ 14 ] for more details). A lower E -
alue indicates a more significant result, effectively controlling
he strictness of the family search. 

The output of NucleoSeeker consists of a list of RNA chains
long with corresponding information, such as RFAM classi-
cation, PDB code and the corresponding number of chains,
tructure resolution, experimental method used, and year of
elease. Note that, in the case of complexes, only the RNA
hains that meet all the specified criteria are selected. 

iltering mechanisms 

n our filtering approach, we follow the hierarchy used by the
CSB PDB database to organize structures. More in detail,
e use the three common levels ENTRY , ENTITY, and IN-
TANCE , which form the basis of the different modules. 
Here, we will briefly describe the functionality of the dif-

erent modules and how they integrate to generate the final
ataset. An exhaustive list of arguments and parameters for
ach module can be found in Supplementary Table S1 . Note,
hat the word Polymer is used in multiple parameters across
odules, and each of them carries a different meaning (see

upplementary Table S1 ). 

etadata 
e use this module to apply filters based on the metadata

tored in the DF . This offers a comprehensive set of filters for
tructural attributes, e.g. users can filter structures based on
he experimental methods used for determination, such as X-
ay diffraction, nuclear magnetic resonance, or Cryo-EM, en-
uring that only structures determined by these techniques are
ncluded. The module also offers a resolution threshold fil-
er, allowing users to exclude structures with resolutions out-
ide a specified value. Similarly, structures can be filtered by
heir release year, allowing the inclusion of only those resolved
efore a specific year or within a particular range of years.
urthermore, the module supports selection based on poly-
er entity types, enabling users to customize their datasets
y focusing on specific polymers or excluding polymer com-
lexes. Additionally, the keyword filter provides the ability to

nclude or exclude structures based on specific terms, offering
urther refinement of the dataset to meet users’ requirements.
inally, there is also an option to filter structures based on
NA sub-types such as non-coding RNA (ncRNA), ribosomal
NA (rRNA) etc. to enable specific research applications. An
xhaustive list of supported RNA sub-types is provided in the
upplementary Table S1. 

ndividual structure 
he IndividualStructure module analyzes the composi-

ion of structures for further processing, i.e. it parses individ-
al files. It examines each structure’s polymer type, nucleotide
r residue integrity, and the length of each chain. This mod-
le can function independently to download and verify PDB
les based on specified criteria when given a PDB ID. Utiliz-
ng a PDB parser, it extracts and analyzes structural informa-
ion, allowing users to specify parameters such as the desired
olymer instance type and sequence length to filter out chains
that do not meet these criteria. This module enables the easy
removal of short sequences and the extraction of chains con-
taining only RNA. 

Structure comparison 

This filter level combines our filtered DF from the Metadata
filter and the IndividualStructure filter by applying the
latter to each structure in the DF . We also integrate sequence
alignment tools, such as Clustal Omega [ 16 ] and Emboss [ 17 ],
to filter structures based on sequence identity (SI). If the SI be-
tween two structures exceeds a certain threshold, We select the
structure with the highest resolution to minimize redundancy
in the dataset while ensuring good overall structure resolution.

A SI matrix is created using the specified alignment tools.
However, since EMBOSS processes sequences in pairs, impact-
ing performance, it is generally recommended to use Clustal
Omega for most applications. 

These filters, whether used individually or collectively, pro-
vide an unprecedented level of control and flexibility in cu-
rating datasets from the PDB database. Consequently, re-
searchers can create more targeted and refined datasets, sig-
nificantly enhancing the accuracy and reliability of their RNA
structure prediction protocols. 

Results 

Well-curated and non-redundant datasets serve two impor-
tant goals: they improve training outcomes and are crucial
for assessing method performance. Here, we show that Nu-
cleoSeeker can be used to attain this goal. In particular, we
highlight two examples where our tool can create datasets for
assessing RNA contact prediction methods and evaluating Al-
phaFold3 [ 18 ] performance on RNA structure prediction. The
manual curation of such datasets is time-consuming and error-
prone and can lead to nonsystematic biases. We show the ease
of curating such datasets using NucleoSeeker and believe it
can be used to prepare datasets for machine learning algo-
rithms in a similar way. 

Use-case 1: automated RNA structures curation for 
assessing contact prediction 

We used NucleoSeeker to create a well-curated and non-
redundant dataset starting from all the 7704 RNA structures
available in the PDB database (accessed in July 2024). We se-
lected only RNA structures resolved by X-ray crystallogra-
phy, with a resolution below 3.6Å and a maximum pair-wise
SI of 50%. Since we wanted to create a dataset of RNA-only
structures, we used “pdbx_keywords”= “RNA ”. We ended
up with 117 structures, out of which 88 have an associated
RFAM family [ 15 ]. These parameters are the same as those
used in the construction of the dataset curated in [ 12 ], in
which only 69 families were included (PDB database accessed
in 2020). We note that although there has been an increase
in the number of resolved RNA structures over the years, the
data remains scarce and significant improvements are needed
to train DL models on these limited data. 

This dataset labelled with D C is then used to assess the per-
formance of two unsupervised RNA contact prediction meth-
ods, namely PyDCA [ 19 ] and Barnacle [ 20 ]. In Fig. 1 B, we
present the performance of these two methods on D C , as mea-
sured by the Precision at rank L, which represents the propor-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf021#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf021#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf021#supplementary-data
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tion of correctly predicted nucleotide contacts among the top
L predictions. 

We note that the two methods reach good performances
with Precision equal to 0.62 for Barnacle and 0.45 for Py-
DCA when averaged on all structures belonging to D C . Bar-
nacle [ 20 ], which utilizes data-efficient machine learning, gen-
erally achieves higher precision than PyDCA, which relies on
the pseudo-likelihood maximization direct coupling analysis
(DCA) approach as it is more effective in leveraging multiple
sequence alignment (MSA) information to predict contacts.
Supplementary Table S2 and Fig. S2 of Supplementary Data
contain all the top L precision values for all structures in D C . 

There is no clear trend between bit score and precision, as
both tools demonstrate variability in performance across dif-
ferent bit scores. This is because not only the bit score but also
the effective number of sequences in the RFAM family plays a
significant role in the ability of methods to extract structural
information from MSA [ 12 ]. 

Use-case 2: automated RNA structures curation for 
quick assessment of AlphaFold3 capabilities on 

RNA 

AlphaFold3 [ 18 ] shows remarkable promise in protein struc-
ture prediction and also promises to predict RNA and RNA
complexes. Here, we assess its capabilities to predict the struc-
ture of unseen RNA sequences. To conduct such a compre-
hensive and unbiased assessment, we meticulously crafted two
datasets using NucleoSeeker. 

Our first dataset, which we designated D 22 , comprised 213
RNA structures solved before 2023 as the training dataset
used by AlphaFold3 was derived from the PDB accessed on
January 2023. We applied stringent selection criteria to en-
sure the highest quality and representativeness of this dataset
(for a detailed description of these criteria see Supplementary 
Data Section S3.2 ). 

Complementing this, we created a second dataset, D 23 −24 ,
consisting of 27 structures solved in 2023 and 2024. This
more recent dataset was important for assessing Alphafold3’s
performance on newly determined structures. Since we know,
that SI is an important factor in reducing redundancy, we
categorize the structures in D 23 −24 based on their similar-
ity to those in D 22 by calculating pairwise SI between all
structures across both datasets and dividing the D 23 −24 en-
tries in three subclasses according to their SI: < 50%, be-
tween 51%–75%, and > 76% (see Supplementary Table S3
and Supplementary Fig. S3 ). 

In Fig. 1 C, we plot the pTM score, a confidence metric
for the predicted structure from AlphaFold3 [ 18 ], against the
RMSD between the predicted and experimental structure, for
all structures in D 23 −24 and according to their SI with the clos-
est match in the AF3 training set. Our quick assessment re-
vealed that the AlphaFold3 confidence score genuinely pro-
vides a good indication of prediction quality, as high pTM
scores correspond to RMSD values generally < 5 Å. Addi-
tionally, the performance of AF3 improves for structures with
higher SI, as indicated by the green diamonds. This observa-
tion suggests that the model’s accuracy is influenced by the
similarity between the target structure and those in AF3 train-
ing data (check Section S3.2 of the Supplementary Data for
more details). 

While Alphafold3 shows promising performance, especially
for RNAs with some degree of similarity to known structures,
this preliminary analysis shows that there is still room for 
improvement in predicting novel or highly divergent RNA 

structures. As we move forward, these insights will guide 
our efforts to refine and enhance RNA structure prediction 

methodologies. 

P erfor mance analysis 

We evaluated the performance of NucleoSeeker by comparing 
the computational performance for generating the two previ- 
ously discussed datasets ( D 22 and D 23 −24 ). The first dataset 
( D 22 ) is larger than the second dataset ( D 23 −24 ) because it is 
created by considering all structures released till 2022. We as- 
sessed the progressive reduction in dataset size at each filtering 
stage and the computational time required for each step. 

The filtering parameters determine the data reduction at 
each filter level. Starting from the complete PDB RNA struc- 
ture collection (7704 structures), the Metadata filter typ- 
ically reduces the dataset by 50%–55%. For D 23 −24 it re- 
tained 3650 structure, while for D 22 , it retained 206 struc- 
tures. The IndividualStructure filter further reduced 

these datasets by 50%–55%, yielding 1547 and 137 struc- 
tures, respectively. 

The computational demands of the pipeline exhibit no sur- 
prises and an expected scaling behavior. Tested on some stan- 
dard hardware (AMD EPYC 7742, 2.25 GHz), the complete 
curation process required 428 min for the larger dataset, com- 
pared to 23 min for the smaller dataset. The structure com- 
parison filter, which represents the most computationally in- 
tensive step, exhibited quadratic scaling characteristics, re- 
quiring 329 min for processing 1547 structures versus 10 

min for 84 structures. This scaling behavior aligns with the 
theoretical complexity of performing all-against-all structure 
comparisons. 

The final cmscan step showed relatively consistent small 
processing times for the two datasets. This consistency can be 
attributed to the effective reduction in dataset size by previous 
filtering steps, demonstrating how our sequential filtering ap- 
proach optimizes computational resource utilization by apply- 
ing more intensive analyses only to high-quality candidates. 

These performance characteristics allow to estimate both 

compute consumption and scaling behavior of our package.
For ease of use, the tool also reports the number of structures 
retained after each filtering step and the corresponding com- 
putational time required. 

Discussion 

NucleoSeeker targets to complement the development of effi- 
cient DL methods for RNA structure prediction, by providing 
a robust and flexible method for curating high-quality datasets 
from the PDB database. One of the key strengths of this soft- 
ware is its ability to apply a wide range of filters at both the 
structure and sequence levels, allowing researchers to create 
highly specific and relevant datasets tailored to their particu- 
lar research needs. This functionality is particularly valuable 
given the challenges associated with RNA data, such as high 

redundancy, poor resolution, and the presence of hybrid struc- 
tures. Moreover, the system is designed to ensure that datasets 
remain up-to-date, even in the rapidly evolving field of RNA 

research, where new structures are continually being deter- 
mined and added to the database. Additionally, the modular 
design of NucleoSeeker allows its components to be used in- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf021#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf021#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf021#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf021#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf021#supplementary-data
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ependently or in combination, providing researchers with a
igh degree of flexibility. Whether the goal is to filter specific
tructures, analyze polymer chains, or reduce dataset redun-
ancy, it offers the tools needed to achieve these objectives
fficiently in a simple way. 
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