001043533 001__ 1043533
001043533 005__ 20250804115212.0
001043533 0247_ $$2doi$$a10.1021/acsmaterialslett.5c00593
001043533 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02909
001043533 0247_ $$2WOS$$aWOS:001518534500001
001043533 037__ $$aFZJ-2025-02909
001043533 082__ $$a540
001043533 1001_ $$0P:(DE-HGF)0$$aFaka, Vasiliki$$b0
001043533 245__ $$aSolid Ion Conductors under Pressure: In Situ Monitoring of the Tetragonal to Cubic Phase Transition of $Na_3SbS_4$ and $Na_3PS_4$
001043533 260__ $$aWashington, DC$$bACS Publications$$c2025
001043533 3367_ $$2DRIVER$$aarticle
001043533 3367_ $$2DataCite$$aOutput Types/Journal article
001043533 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751535061_26693
001043533 3367_ $$2BibTeX$$aARTICLE
001043533 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043533 3367_ $$00$$2EndNote$$aJournal Article
001043533 520__ $$aThe $Na_3PnS_4 (Pn = P, Sb)$ solid electrolytes are promising candidates for sodium solid-state batteries due to their potential high ionic conductivities. Structural modifications of these materials can induce a tetragonal-to-cubic phase transition, either by increasing temperature or by aliovalent substitutions. In this study, we introduce pressure as an alternative approach to observe the tetragonal-to-cubic phase transition in these materials. In situ synchrotron high-pressure powder X-ray diffraction shows a tetragonal-to-cubic phase transition at pressures of 2.9 GPa for $Na_3SbS_4$ and 14.6 GPa for $Na_3PS_4$. Rietveld refinements and symmetry analysis provide insights into the displacive phase transition mechanism related to the motion of $Na^+$ and the rotation of the $SbS_4^{3–}$ tetrahedra. Density functional theory calculations confirm that the cubic phase becomes thermodynamically favorable under high pressure compared to the tetragonal phase. These findings highlight the importance of high-pressure considerations in tailoring the properties of ionic conductors, an area that remains underexplored.
001043533 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001043533 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043533 7001_ $$0P:(DE-Juel1)199741$$aLange, Martin A.$$b1$$ufzj
001043533 7001_ $$00000-0001-5311-4747$$aDaisenberger, Dominik$$b2
001043533 7001_ $$0P:(DE-HGF)0$$aBöger, Thorben$$b3
001043533 7001_ $$00000-0002-8759-4221$$aMartinez de Irujo-Labalde, Xabier$$b4
001043533 7001_ $$0P:(DE-HGF)0$$aFallon, M. Jewels$$b5
001043533 7001_ $$00000-0003-2038-186X$$aKieslich, Gregor$$b6
001043533 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b7$$eCorresponding author
001043533 773__ $$0PERI:(DE-600)3004109-0$$a10.1021/acsmaterialslett.5c00593$$gp. 2648 - 2654$$p2648 - 2654$$tACS materials letters$$v7$$x2639-4979$$y2025
001043533 8564_ $$uhttps://juser.fz-juelich.de/record/1043533/files/faka-et-al-2025-solid-ion-conductors-under-pressure-in-situ-monitoring-of-the-tetragonal-to-cubic-phase-transition-of.pdf
001043533 8564_ $$uhttps://juser.fz-juelich.de/record/1043533/files/revised_manuscript.pdf$$yPublished on 2025-06-18. Available in OpenAccess from 2026-06-18.
001043533 909CO $$ooai:juser.fz-juelich.de:1043533$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001043533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)199741$$aForschungszentrum Jülich$$b1$$kFZJ
001043533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b7$$kFZJ
001043533 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001043533 9141_ $$y2025
001043533 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001043533 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001043533 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-07
001043533 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001043533 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS MATER LETT : 2022$$d2025-01-07
001043533 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001043533 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS MATER LETT : 2022$$d2025-01-07
001043533 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001043533 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
001043533 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001043533 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001043533 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001043533 980__ $$ajournal
001043533 980__ $$aVDB
001043533 980__ $$aUNRESTRICTED
001043533 980__ $$aI:(DE-Juel1)IMD-4-20141217
001043533 9801_ $$aFullTexts