001043534 001__ 1043534
001043534 005__ 20251027132718.0
001043534 0247_ $$2doi$$a10.1021/acs.inorgchem.5c01371
001043534 0247_ $$2ISSN$$a0020-1669
001043534 0247_ $$2ISSN$$a1520-510X
001043534 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02910
001043534 0247_ $$2pmid$$a40506260
001043534 0247_ $$2WOS$$aWOS:001508746800001
001043534 037__ $$aFZJ-2025-02910
001043534 082__ $$a540
001043534 1001_ $$0P:(DE-HGF)0$$aRosenbach, Carolin$$b0
001043534 245__ $$aAssessing the Impact of $Li^+$ Concentration and Stacking Faults in the Aliovalent-Substituted Ionic Conductor $Li_3ScCl_6$
001043534 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2025
001043534 3367_ $$2DRIVER$$aarticle
001043534 3367_ $$2DataCite$$aOutput Types/Journal article
001043534 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1761202945_20208
001043534 3367_ $$2BibTeX$$aARTICLE
001043534 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043534 3367_ $$00$$2EndNote$$aJournal Article
001043534 520__ $$aHalide electrolytes have gained interest due to their decent conductivities in the $mS·cm^{–1}$ range and wide electrochemical stability windows. The ionic transport can be influenced by changing the $Li^+$ concentration in the structure. Due to the high cost of the rare-earth elements in the halide electrolytes, the substitution of lower-cost elements is favored. Based on the idea of changing the $Li^+$ concentration and substituting with low-cost elements, the two substitution series $Li_{3–x}Sc_{1–x}Zr_xCl_6$ and $Li_{3–x}Sc_{1–x}Mg_xCl_6$ (0 ≤ $x$ ≤ 0.3) are investigated in this work. Structural information was obtained by X-ray and neutron diffraction and combined with transport properties obtained by impedance spectroscopy. Two main transport influencing factors were found: The $Li^+$ concentration and the c/a lattice parameter. The occupation of the $Li^+$-only layers seems to affect the lattice parameter in the c-direction. However, the structural refinement was not straightforward as stacking faults appear in layered halide materials that complicate the refinements, and the substitution with $Mg^{2+}$ seems to influence the extent of stacking fault formation. Overall, this work highlights the need to consider several factors in halide materials to correlate the structure–transport processes.
001043534 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001043534 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043534 7001_ $$0P:(DE-HGF)0$$aHelm, Bianca$$b1
001043534 7001_ $$00000-0001-5966-5929$$aSuard, Emmanuelle$$b2
001043534 7001_ $$00000-0002-3094-303X$$aLotsch, Bettina V.$$b3
001043534 7001_ $$00000-0003-3575-0517$$aBette, Sebastian$$b4
001043534 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b5$$eCorresponding author
001043534 773__ $$0PERI:(DE-600)1484438-2$$a10.1021/acs.inorgchem.5c01371$$gp. acs.inorgchem.5c01371$$n25$$p12698-12707$$tInorganic chemistry$$v64$$x0020-1669$$y2025
001043534 8564_ $$uhttps://juser.fz-juelich.de/record/1043534/files/revised_manuscript.pdf$$yPublished on 2025-06-12. Available in OpenAccess from 2026-06-12.
001043534 909CO $$ooai:juser.fz-juelich.de:1043534$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001043534 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b5$$kFZJ
001043534 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001043534 9141_ $$y2025
001043534 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-30
001043534 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-30
001043534 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-30
001043534 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001043534 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-30
001043534 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-30
001043534 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-30
001043534 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-30
001043534 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-30
001043534 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINORG CHEM : 2022$$d2024-12-30
001043534 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-30
001043534 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-30$$wger
001043534 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-30
001043534 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001043534 980__ $$ajournal
001043534 980__ $$aVDB
001043534 980__ $$aUNRESTRICTED
001043534 980__ $$aI:(DE-Juel1)IMD-4-20141217
001043534 9801_ $$aFullTexts