001043537 001__ 1043537
001043537 005__ 20250916202447.0
001043537 0247_ $$2doi$$a10.1038/s43247-025-02499-4
001043537 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02911
001043537 0247_ $$2WOS$$aWOS:001518514400001
001043537 037__ $$aFZJ-2025-02911
001043537 082__ $$a550
001043537 1001_ $$0P:(DE-Juel1)129122$$aGrooß, Jens-Uwe$$b0$$eCorresponding author
001043537 245__ $$aChlorine peroxide reaction explains observed wintertime hydrogen chloride in the Antarctic vortex
001043537 260__ $$aLondon$$bSpringer Nature$$c2025
001043537 3367_ $$2DRIVER$$aarticle
001043537 3367_ $$2DataCite$$aOutput Types/Journal article
001043537 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751296600_32665
001043537 3367_ $$2BibTeX$$aARTICLE
001043537 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043537 3367_ $$00$$2EndNote$$aJournal Article
001043537 520__ $$aIt is well established that the drastic ozone loss in the Antarctic stratosphere, commonly known as the ozone hole, is primarily driven by gas-phase and heterogeneous chemical processes. While chemistry transport models generally reproduce observed ozone depletion well, they fail to capture the rapid early-winter decline of hydrogen chloride. We here examine the impact of the heterogeneous reaction between chlorine peroxide and hydrogen chloride forming HOOCl, followed by its photolysis. Incorporating this reaction and an additional hypochlorous acid loss pathway into a chemical mechanism significantly improves model agreement with observed levels of several chlorine compounds in the lower polar vortex stratosphere. This revised mechanism increases simulated ozone partial column depletion by over 15% between early July and mid-September 2011. Laboratory confirmation of these proposed reactions is needed to validate the mechanism.
001043537 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001043537 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043537 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b1
001043537 7001_ $$00000-0001-8669-0230$$aCrowley, John N.$$b2
001043537 7001_ $$0P:(DE-Juel1)192244$$aHegglin, Michaela I.$$b3
001043537 773__ $$0PERI:(DE-600)3037243-4$$a10.1038/s43247-025-02499-4$$gVol. 6, no. 1, p. 496$$n1$$p496$$tCommunications earth & environment$$v6$$x2662-4435$$y2025
001043537 8564_ $$u//juser.fz-juelich.de/record/1043537/files/s43247-025-02499-4.pdf
001043537 8564_ $$uhttps://juser.fz-juelich.de/record/1043537/files/s43247-025-02499-4.pdf$$yOpenAccess
001043537 8767_ $$8SN-2025-00897-b$$92025-08-27$$a1200217075$$d2025-09-16$$eAPC$$jZahlung erfolgt
001043537 909CO $$ooai:juser.fz-juelich.de:1043537$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
001043537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b0$$kFZJ
001043537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b1$$kFZJ
001043537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192244$$aForschungszentrum Jülich$$b3$$kFZJ
001043537 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001043537 9141_ $$y2025
001043537 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001043537 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
001043537 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001043537 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN EARTH ENVIRON : 2022$$d2024-12-18
001043537 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN EARTH ENVIRON : 2022$$d2024-12-18
001043537 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:47Z
001043537 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:47Z
001043537 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
001043537 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-18
001043537 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001043537 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043537 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review, Anonymous peer review, Double anonymous peer review$$d2024-04-10T15:36:47Z
001043537 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-18
001043537 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-18
001043537 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001043537 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001043537 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001043537 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001043537 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001043537 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001043537 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001043537 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001043537 920__ $$lyes
001043537 9201_ $$0I:(DE-Juel1)ICE-4-20101013$$kICE-4$$lStratosphäre$$x0
001043537 9801_ $$aFullTexts
001043537 980__ $$ajournal
001043537 980__ $$aVDB
001043537 980__ $$aUNRESTRICTED
001043537 980__ $$aI:(DE-Juel1)ICE-4-20101013
001043537 980__ $$aAPC