001     1043537
005     20250916202447.0
024 7 _ |a 10.1038/s43247-025-02499-4
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02911
|2 datacite_doi
024 7 _ |a WOS:001518514400001
|2 WOS
037 _ _ |a FZJ-2025-02911
082 _ _ |a 550
100 1 _ |a Grooß, Jens-Uwe
|0 P:(DE-Juel1)129122
|b 0
|e Corresponding author
245 _ _ |a Chlorine peroxide reaction explains observed wintertime hydrogen chloride in the Antarctic vortex
260 _ _ |a London
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1751296600_32665
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a It is well established that the drastic ozone loss in the Antarctic stratosphere, commonly known as the ozone hole, is primarily driven by gas-phase and heterogeneous chemical processes. While chemistry transport models generally reproduce observed ozone depletion well, they fail to capture the rapid early-winter decline of hydrogen chloride. We here examine the impact of the heterogeneous reaction between chlorine peroxide and hydrogen chloride forming HOOCl, followed by its photolysis. Incorporating this reaction and an additional hypochlorous acid loss pathway into a chemical mechanism significantly improves model agreement with observed levels of several chlorine compounds in the lower polar vortex stratosphere. This revised mechanism increases simulated ozone partial column depletion by over 15% between early July and mid-September 2011. Laboratory confirmation of these proposed reactions is needed to validate the mechanism.
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Müller, Rolf
|0 P:(DE-Juel1)129138
|b 1
700 1 _ |a Crowley, John N.
|0 0000-0001-8669-0230
|b 2
700 1 _ |a Hegglin, Michaela I.
|0 P:(DE-Juel1)192244
|b 3
773 _ _ |a 10.1038/s43247-025-02499-4
|g Vol. 6, no. 1, p. 496
|0 PERI:(DE-600)3037243-4
|n 1
|p 496
|t Communications earth & environment
|v 6
|y 2025
|x 2662-4435
856 4 _ |u //juser.fz-juelich.de/record/1043537/files/s43247-025-02499-4.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1043537/files/s43247-025-02499-4.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1043537
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129138
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)192244
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN EARTH ENVIRON : 2022
|d 2024-12-18
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN EARTH ENVIRON : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:36:47Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:36:47Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review, Anonymous peer review, Double anonymous peer review
|d 2024-04-10T15:36:47Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICE-4-20101013
|k ICE-4
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICE-4-20101013
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21