001043576 001__ 1043576
001043576 005__ 20260123203311.0
001043576 0247_ $$2doi$$a10.1093/brain/awaf243
001043576 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02933
001043576 037__ $$aFZJ-2025-02933
001043576 082__ $$a610
001043576 1001_ $$0P:(DE-Juel1)156375$$aGuzman, Raul$$b0
001043576 245__ $$aEndosomal 2Cl-/H+ exchangersregulate neuronal excitability Bytuning Kv7/KCNQ channel density
001043576 260__ $$aOxford$$bOxford Univ. Press$$c2025
001043576 3367_ $$2DRIVER$$aarticle
001043576 3367_ $$2DataCite$$aOutput Types/Journal article
001043576 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1769162390_14858
001043576 3367_ $$2BibTeX$$aARTICLE
001043576 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043576 3367_ $$00$$2EndNote$$aJournal Article
001043576 500__ $$aThis work was funded by the German Research Foundation (DFG) (GU 2042/2-1 to R.E.G.) and the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Human Brain Project Framework Partnership Agreement (HBP FPA) (No. 650003 to D.F.).
001043576 520__ $$aCLCN3 and CLCN4 encode the endosomal 2Cl−/H+ exchangers ClC-3 and ClC-4, which are highly expressed within the CNS, including the hippocampal formation. Pathogenic variants recently found in these genes have given rise to the rare CLCN3- and CLCN4-related neurodevelopmental conditions, characterized by a range of neurological and neuropsychiatric complications, such as global developmental delay, intellectual disability as a core feature, seizures, behavioural issues and brain abnormalities. The mechanisms by which ClC-3 and ClC-4 regulate neuronal function and viability, in addition to the molecular pathways affected in CLCN3- and CLCN4-related neurodevelopmental conditions, remain unknown. In neurodegenerative diseases, neuronal dendrites undergo pathological changes often associated with aberrant electrical activity.To investigate how ClC-3 or ClC-4 deficit alters neuronal excitability and morphology, we combined patch-clamp recordings in acute hippocampal slice preparations with simultaneous intracellular biocytin filling. We analysed the functional and structural properties of Clcn3−/− and Clcn4−/− neurons. Two firing patterns are found in the cornu ammonis 2 (CA2) region of the hippocampus: regular and burst firing. At postnatal Day 13, 62% of the assessed CA2 wild-type neurons showed a rhythmic bursting behaviour; this was reduced to 19% in Clcn4−/− and completely absent in the Clcn3−/− condition. Changes in the firing patterns were accompanied by a depolarizing shift in the action potential threshold and an increase in the after-hyperpolarizing phase of the action potentials. Blockade of Kv7/KCNQ and, to a lesser extent, Kv1, but not BK, SK or Kv2 channels, recapitulates the wild-type firing pattern phenotype in the Clcn3−/− condition. Moreover, we detected abnormalities in the complexity of the dendritic arborization. Branching and lengths of apical and basal domains were significantly reduced in the Clcn3−/− neurons and moderately altered in the Clcn4−/− neurons. At postnatal Day 3, we found 25% of bursting neurons in Clcn3−/− with no significant morphological abnormalities in the dendritic arborization in comparison to the wild-type, suggesting that functional defects precede structural changes in Cl−/H+ exchanger-deficient neurons. Likewise, dentate granule cells exhibited defective action potential properties and reduced burst-firing activity, which was substantially but not fully rescued by Kv7/KCNQ blockage.We conclude that Cl−/H+ exchangers regulate the electrical excitability and firing patterns of neurons primarily by fine- tuning Kv7/KCNQ channel density, and that functional defects might contribute to alterations in dendritic morphology. Our findings provide new insights into the underlying molecular mechanisms of Cl−/H+ exchangers in neurons and pave the way for potential therapeutic interventions for CLCN3- and CLCN4-related patients associated with disruption of Cl−/H+ exchange function.
001043576 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001043576 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001043576 536__ $$0G:(GEPRIS)430631456$$aDFG project G:(GEPRIS)430631456 - Funktionelle Rolle der intrazellulären Chlorid/Proton Austauscher ClC-3, ClC-4 und ClC-5 in der Neurosekretion (430631456)$$c430631456$$x2
001043576 588__ $$aDataset connected to DataCite
001043576 7001_ $$0P:(DE-Juel1)175499$$aDiaz Castillo, Alberto Rafael$$b1$$ufzj
001043576 7001_ $$0P:(DE-Juel1)131908$$aAretzweiler von Schwartzenberg, Christoph$$b2$$ufzj
001043576 7001_ $$0P:(DE-HGF)0$$aguanxiao, qi$$b3
001043576 7001_ $$0P:(DE-Juel1)188846$$aSteinmetz, Lilly$$b4$$ufzj
001043576 7001_ $$0P:(DE-Juel1)131915$$aBungert, Stefanie$$b5$$ufzj
001043576 7001_ $$0P:(DE-Juel1)131939$$aMüller, Frank$$b6$$ufzj
001043576 7001_ $$0P:(DE-Juel1)131680$$aFeldmeyer, Dirk$$b7$$ufzj
001043576 7001_ $$0P:(DE-Juel1)156375$$aGuzman, Raul$$b8$$eCorresponding author$$ufzj
001043576 773__ $$0PERI:(DE-600)1474117-9$$a10.1093/brain/awaf243$$p4299–4314$$tBrain$$v148$$x0006-8950$$y2025
001043576 8564_ $$uhttps://juser.fz-juelich.de/record/1043576/files/Invoice_SOA25LT008186.pdf
001043576 8564_ $$uhttps://juser.fz-juelich.de/record/1043576/files/Brain_Diaz-Castillo%2C%20Aretzweiler%2C%20Steinmetz%2C%20Bungert-Pl%C3%BCmke%2C%20M%C3%BCller%2C%20Guzman_07_2025.pdf$$yOpenAccess
001043576 8767_ $$8SOA25LT008186$$92025-07-01$$a1200215387$$d2025-07-04$$eHybrid-OA$$jZahlung erfolgt
001043576 909CO $$ooai:juser.fz-juelich.de:1043576$$popenaire$$popen_access$$pOpenAPC$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001043576 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156375$$aForschungszentrum Jülich$$b0$$kFZJ
001043576 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175499$$aForschungszentrum Jülich$$b1$$kFZJ
001043576 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131908$$aForschungszentrum Jülich$$b2$$kFZJ
001043576 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188846$$aForschungszentrum Jülich$$b4$$kFZJ
001043576 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131915$$aForschungszentrum Jülich$$b5$$kFZJ
001043576 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131939$$aForschungszentrum Jülich$$b6$$kFZJ
001043576 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131680$$aForschungszentrum Jülich$$b7$$kFZJ
001043576 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156375$$aForschungszentrum Jülich$$b8$$kFZJ
001043576 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001043576 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001043576 9141_ $$y2025
001043576 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001043576 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
001043576 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
001043576 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-12
001043576 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-12
001043576 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-12
001043576 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN : 2022$$d2024-12-12
001043576 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bBRAIN : 2022$$d2024-12-12
001043576 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-12
001043576 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001043576 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
001043576 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
001043576 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043576 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-12
001043576 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
001043576 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-12
001043576 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-12$$wger
001043576 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
001043576 920__ $$lyes
001043576 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
001043576 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
001043576 980__ $$ajournal
001043576 980__ $$aVDB
001043576 980__ $$aUNRESTRICTED
001043576 980__ $$aI:(DE-Juel1)IBI-1-20200312
001043576 980__ $$aI:(DE-Juel1)INM-10-20170113
001043576 980__ $$aAPC
001043576 9801_ $$aAPC
001043576 9801_ $$aFullTexts