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Predicting human behavior from neuroimaging data remains a complex challenge in neuroscience. 
To address this, we propose a systematic and multi-faceted framework that incorporates a model-
based workflow using dynamical brain models. This approach utilizes multi-modal MRI data for brain 
modeling and applies the optimized modeling outcome to machine learning. We demonstrate the 
performance of such an approach through several examples such as sex classification and prediction 
of cognition or personality traits. We in particular show that incorporating the simulated data into 
machine learning can significantly improve the prediction performance compared to using empirical 
features alone. These results suggest considering the output of the dynamical brain models as an 
additional neuroimaging data modality that complements empirical data by capturing brain features 
that are difficult to measure directly. The discussed model-based workflow can offer a promising 
avenue for investigating and understanding inter-individual variability in brain-behavior relationships 
and enhancing prediction performance in neuroimaging research.
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Since the concept of the human connectome1 was proposed almost two decades ago, whole-brain connectivity 
derived from neuroimaging data has been employed to address questions across various topics including cognitive 
functions2 and brain disorders3. An important characteristic of magnetic resonance imaging (MRI) data is their 
multi-modality that has enabled the researchers to view the brain connectivity from multiple perspectives of 
structural and functional connections between brain regions4. For instance, diffusion-weighted MRI (dwMRI) 
can be used to investigate the microstructure of white matter as well as to estimate axonal fibers connecting 
brain regions via tracking streamlines. The latter are interpreted as anatomical connectivity and also referred 
to as structural connectivity (SC)5. On the other hand, resting-state functional MRI (rsfMRI) provides a way 
to obtain the degree of similarity of activity patterns between brain regions over time, representing functional 
connectivity (FC)6. These two connectivities (SC and FC), constructed in different ways, evidently have different 
meanings and interpretations and, accordingly, can be utilized in several ways. For example, temporal changes 
of brain activity will be represented in FC7,8, while anatomical white matter changes in long-term periods can 
be revealed through SC9,10. Furthermore, comparing these connectomes and calculating their similarity led to 
the notion of the brain structure-function relationship as a possible methodological approach to explore the 
interdependence between structure and function of the human brain11. However, the strength of the structure-
function relationship is usually relatively low, might depend on many factors including brain parcellation into 
separate regions, and its mechanism is still unclear12,13.

Integration of model-based approaches into whole-brain connectome research can expand the scope of 
investigation to understand the brain. The models can, for example, be used to generate simulated FC that 
together with the fitted model parameters can serve as an additional data modality. This approach provides 
further attributes that characterize brain dynamics in great detail14. In the framework of the whole-brain 
dynamical modeling, the models were suggested as a possible mediator between brain structure and function, 
where the empirical SC and FC are used for the model derivation and validation15. A natural output of such 
models is the relationship between simulated and empirical connectomes, which can in particular be used 
for investigation of the brain structure-function relationship. One of the main advantages of a model-based 
approach is a great freedom of considering many in silico models, ranges of their parameters and the respective 
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brain activity that may be hidden in a few in vivo measurements16. The modeling results may thus contain 
the information going well beyond that of empirical data and can also validate the biophysical properties of 
the brain that have been discovered so far or even provide new insights17. In addition, with increased power 
of high-performance computational clusters, a variety of experimental and data-processing conditions can be 
simulated including modeling of virtual brain interventions in order to identify and test the optimal conditions 
and parameters, which is hardly possible in vivo18,19.

In this study we suggest a framework that advances the applicability of the model-based approach for 
neuroimaging research and outline an effective workflow for applying simulated data to machine-learning 
analysis (Fig. 1). With the suggested framework, we illustrate a few examples of model-based machine learning 
applied to sex classification and prediction of behavioral scores by employing the data simulated by whole-brain 
dynamical models. This approach proved beneficial for the performance compared to using solely empirical 
neuroimaging data. Since the simulated FC and its relationship to empirical FC are among the main outputs 
of the models, we consider connectome relationships as features for predictions. Purely empirical connectome 
relationship (empirical SC vs. empirical FC) is used as empirical feature and simulated connectome relationship 
(empirical FC vs. simulated FC) is used as simulated feature which involves simulated data. We then compare 
the cases of using empirical features, simulated features, and their combination. Such an enhancement of model 
applicability might be of relevance, for example, in medical research, where the classification of subjects into 
patients and healthy individuals might be well assisted by models20.

The simulated and empirical connectome relationships exhibit weak similarity between each other with 
low or even negative correlations across individuals21. This indicates that the simulated data showing stronger 
relationships might contain additional and possibly useful information for the machine-learning prediction 
analysis if included as features. Along this line, we recently reported that model-based simulated connectomes 
show higher correlation with clinical scores than that of empirical connectomes, thereby outperforming the 
latter in this respect18.

Including simulated data as an additional data modality in the mentioned studies was motivated by several 
previous results demonstrating distinct properties of simulated and empirical data in spite of the fact that 
the models were fitted to the latter. One of the important issues in brain MRI research is the low reliability of 
findings. This problem has particularly been brought up in the resting-state functional imaging of the whole-
brain connectome22. However, model-based connectome relationships can offer relatively good reliability and 
improved subject specificity compared to a fair reliability and low specificity of empirical functional data23. 
Enhanced data reliability might also be important for the prediction analysis24. Therefore, applying model-based 
simulated connectome features, which exhibit distinct patterns along with enhanced reliability and inter-subject 
variability, to machine learning could lead to consistent results and potentially improved prediction performance 
as we illustrate in a few examples in this study.

Fig. 1.  A workflow for model-based prediction research. It can be divided into five steps. The first step is the 
acquisition of multi-modal MRI data (T1-weighted, diffusion-weighted, and resting-state functional MRI). 
The second step is preprocessing the acquired MRI data, which can be used for neuroimaging analysis. The 
third step is to calculate whole-brain tractography and apply a brain parcellation to reconstruct the whole-
brain structural and functional connectomes. The fourth step involves whole-brain dynamical modeling 
including parameter optimization, where the optimal whole-brain model is identified and used to simulate 
and investigate the brain dynamics in silico. The final step is applying the simulated data for machine-learning 
analyses.

 

Scientific Reports |        (2025) 15:20126 2| https://doi.org/10.1038/s41598-025-04511-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Methods
In the suggested workflow (Fig.  1), the first step of the model-based approach required multi-modal MRI 
data, including T1-weighted, dwMRI, and rsfMRI scans. The second step involved processing the MRI data, 
which included inhomogeneous field/motion corrections, tissue segmentation, cortical rendering, and image 
registration. In the next step, we applied brain parcellation schemes and computed the whole-brain connectome, 
including both SC and FC. The fourth step consisted of selecting a dynamical model for the research objectives 
and optimizing model parameters by fitting simulated data to empirical data. Finally, machine learning was 
performed using features derived from both the measured and model-based data. We utilized empirical human 
connectomes, i.e., SC derived from the white-matter fiber tracking and FC calculated by Pearson’s correlation 
between resting-state Blood Oxygenation Level-Dependent (BOLD) signals of parcellated brain regions. 
Subsequently, simulated BOLD signals were generated via the considered whole-brain model informed by 
empirical neuroimaging data and validated by parameter optimization, where the model showed the highest 
similarity, i.e., Goodness-of-Fit (GoF) between simulated and empirical FCs, and GoF is considered as simulated 
features which involved simulated data. Then the connectome relationships between empirical and simulated 
brain connectomes were calculated by Pearson’s correlation between empirical SC (eSC), empirical FC (eFC) 
and simulated FC (sFC). These connectome relationships were considered as brain features and utilized by 
machine-learning techniques for prediction of behavioral characteristics of individual subjects, for instance, 
sex classification or prediction of cognitive scores and five personality traits. The subsections below describe 
details of each step in the workflow. All methods were performed in accordance with the relevant guidelines and 
regulations.

Multi-modal MRI data: step 1
The current study used the Human Connectome Project (HCP) S1200 young adult dataset25 including 270 
unrelated subjects of 142 females and 128 males with ages in 28.5 ± 3.5 (mean ± standard deviation) years. HCP 
data were acquired using MRI protocols approved by the Washington University institutional review board (IRB 
#20124036). Informed consent was obtained from all subjects. Anonymized data are publicly available ​(​​​h​t​t​p​s​:​
/​/​d​b​.​h​u​m​a​n​c​o​n​n​e​c​t​o​m​e​.​o​r​g​​​​​)​. Multi-modal MRI data including T1-weighted MRI (T1w), rsfMRI, and dwMRI 
were used in the current workflow.

MRI processing: step 2
A pipeline of MRI processing that consists of structural and functional modules was applied to the multi-modal 
MRI data, i.e., T1w, rsfMRI, and dwMRI. The pipeline is available via a public repository (​h​t​t​p​s​:​​/​/​j​u​g​i​​t​.​f​z​-​j​​u​
e​l​i​c​h​​.​d​e​/​i​​n​m​7​/​p​u​​b​l​i​c​/​v​​b​c​-​m​r​i​​-​p​i​p​e​l​i​n​e). The pipeline uses functions in AFNI26, ANTs27, FreeSurfer28, FSL29, 
MRtrix330, and Connectome Workbench31. The entire MRI pipeline was aiming at obtaining the whole-brain 
human connectome. The Schaefer atlas with 100 parcels7 and the Harvard-Oxford atlas with 96 parcels32 were 
utilized in this study for brain parcellation in the MNI space. T1w was employed for preprocessing and co-
registration between rsfMRI and dwMRI, although it was not directly included in the connectome analysis. 
However, cortical volumes extracted from T1w were used as a confounding factor in machine learning to classify 
males and females.

Resting-state BOLD signals were extracted from the rsfMRI processed with FMRIB’s ICA-based X- noiseifier 
(ICA-FIX) provided by a pipeline of the HCP repository33. There were four rsfMRI sessions (1200 volumes, 
TR = 720 ms) conducted over two different days and consisting of two different phase-encoding directions on 
each day. In order to obtain the mean regional BOLD signals, the brain was parcellated according to a given brain 
atlas, and the voxel-wise BOLD signals in every brain region were averaged over all voxels of the region at each 
time point. A concatenated BOLD signal was then generated by combining all four z-scored BOLD signals from 
the four rsfMRI sessions.

For the whole-brain tractography (WBT) calculation, response functions were estimated for spherical 
deconvolution using the constrained deconvolution algorithm34. Fiber oriented distributions (FODs) were 
estimated from the dwMRI using spherical deconvolution35, and WBT including 10 million streamlines was 
created through the fiber tracking by second-order integration over the FOD by a probabilistic algorithm36.

Whole-brain connectome: step 3
For eFC, Pearson’s correlation coefficients between the concatenated regional BOLD signals of each pair of 
brain regions of the considered brain parcellation were calculated, resulting in the whole-brain resting-state 
FC. For eSC, the atlases were transformed from the MNI space to the native space of dwMRI. Following the 
transformation, labeled voxels masked within gray matter were selected for seed and target regions and applied 
to the WBT. Subsequently, streamlines connecting the seed and target regions were selected for each pair of 
brain regions, and we ultimately obtained the whole-brain SC matrices including streamline counts and average 
path lengths of them. With eFC and eSC, we can apply connectome and graph-theoretical network properties 
for further analyses.

Mathematical whole-brain model and model fitting: step 4
We simulated a whole-brain dynamical model of N  coupled phase oscillators37,38. Their temporal dynamics can 
be described by the following set of differential equations:

	
ϕ̇ i (t) = 2π fi + C

N

∑
N
j=1kijsin

(
ϕ j (t − τ ij) − ϕ i (t)

)
+ σ η i, i = 1,2, · · · , N.� (1)
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The number of oscillators N  corresponds to the number of brain regions as defined by a given brain atlas, where 
ϕ i (t) models the phase of the mean BOLD signal of the corresponding region, and the simulated BOLD was 
calculated as sinϕ i (t). C  is a global coupling which scales the level of couplings of the whole-brain network. 
η i is an independent noise perturbing oscillator i, which is sampled from a random uniform distribution from 
the interval [-1,1]. σ = 0.3 denotes the noise intensity. The natural frequencies fi were estimated from the 
empirical data as frequencies of the maximal spectral peaks (restricted to the frequency range from 0.01 Hz to 
0.1 Hz) of the empirical BOLD signals of the corresponding brain regions. kij  stands for the coupling strength 
between oscillators i and j, and τ ij  approximates the time delay of the signal propagation between oscillators 
i and j. They were calculated from the streamline counts and average path-length matrices and determined by 
the following equations:

	
kij = wij

⟨W ⟩ ,� (2)

where wij  is the number of streamlines between the ith and jth parceled region, and ⟨W ⟩ is an average 
number of streamlines over all connections except self-connections. The delays were calculated as

	
τ ij = Lij

⟨V ⟩ = τ Lij ,� (3)

where Lij  is the average path length of the selected streamlines connecting the ith and jth region, and τ  is 
a global delay, which is a reciprocal of an average speed of signal propagation ⟨V ⟩ through the whole-brain 
network. The time step of the numerical integration of Eq. 1 by the stochastic Heun method was fixed to 0.04 s, 
and the simulated signals were generated for 3,500 s after skipping 500 s of the initial transient. The simulated 
BOLD signals and the corresponding sFC matrices were calculated from the phases down-sampled to TR = 0.72 s, 
which is the repetition time of the current rsfMRI acquisition.

The considered mathematical model (Eq. 1) has two global parameters: global coupling C  and global delay 
τ . These were optimized within the ranges C ∈ [0,1] and τ ∈ [0,100] with the aim to maximize Pearson’s 
correlation between eFC and sFC. We will refer to this setting with two free parameters as the low-dimensional 
parameter optimization. Further, we also considered the model fitting in high-dimensional spaces of model 
parameters, where the noise intensity σ  and additional local (regional) parameters of natural frequencies 
fi(  see Eq. 1) of the brain regions were included in the optimization process. For both scenarios, we applied the 
Covariance Matrix Adaptation Evolution Strategy (CMAES) for parameter optimization39,40. At the parameter 
optimization by CMAES, the number of particles sampled per generation was chosen as λ = 24 based on the 
previous study41. To account for a possible result variability of such a parameter optimization, we performed 
CMAES 30 times for every subject with different initial conditions and selected the optimal model parameters 
corresponding to the largest GoF for further analyses.

Machine learning for model-based prediction: step 5
To illustrate the benefits in machine learning via including simulated data into the features, we used the 
empirical connectome relationship (Pearson’s correlation between eFC and eSC) and the simulated connectome 
relationship (Pearson’s correlation between eFC and sFC, that is the best GoF of the model to eFC). The empirical 
and simulated connectome relationships were used for sex classification (n = 270) as well as the prediction of 
cognitive composite scores (n = 268, 2 subjects had no cognitive scores) and personality traits (n = 269, 1 subject 
had no data on personality traits) by using machine learning. We also merged the two features (empirical and 
simulated) and used them for the same machine-learning approach for the classification and prediction analyses. 
Afterward, we compared the performances with feature conditions of empirical only, simulated only, and merged 
features.

For the sex classification, we used a nested 5-fold cross-validation (CV) scheme, where every outer CV loop 
(k = 5) included the embedded 5 inner loops as a nested CV (inner 5-fold CV) for training the prediction model 
using hyperparameter optimization. The training procedure started with a random splitting of the entire subject 
sample into 5 equally-sized subgroups while maintaining the ratio of female/male in each subgroup. Subsequently, 
in every outer loop, one subgroup was selected after another as a testing set, and the other 4 subgroups were 
united into a training set. In the inner loop with the training set, we performed a confound removal (CR) to 
remove the effect of brain volumes on the sex classification from the features, i.e., connectome relationships. 
For this we used the univariate linear regression with the brain volumes (sum of cortical, subcortical and white 
matter volumes), estimated the parameters of the linear model, and z-scored the obtained residuals across 
subjects in the training set. Finally, we used a logistic regression with an L2 penalty for the training in the nested 
CV, and the regularizing parameter was optimized by the Limited memory Broyden-Fletcher-Goldfarb-Shanno 
algorithm (L-BFGS). After the training in the nested CV, the best model was selected and applied to the testing 
set to classify the unseen subjects as females or males. Here, the respective CR and z-scoring with parameters 
obtained for the training set were applied beforehand. Such a CV-CR scheme prevents a data leakage, where no 
information from the testing set was used during the training42. We repeated this prediction process 100 times 
for different random subject splits into 5 subgroups. Finally, we calculated a balanced accuracy using predicted 
probability and target variables (female or male).

The CV-CR scheme (5-fold nested CV and CR with brain volumes and ages) was used for predicting the 
total cognitive function composite score (CogTotalComp_Unadj) as general intelligence acquired in the NIH 
toolbox (https://www.nihtoolbox.org) and also the Five-Factor Model43 known as the big five personality traits 
including openness, conscientiousness, extraversion, agreeableness and neuroticism. The entire group was 
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split into training and testing sets as before while keeping the shape of scores’ distributions for the training 
and testing sets for an efficient and reliable CV performance44. Here, the training and testing sets were created 
by stratifying the subjects among 7 subgroups balanced within 7 intervals of each target score (cognitive and 
personality traits) in order to mimic the distribution of the entire cohort. We applied a ridge regression with 
an L2 penalty for training the prediction model, and the optimal regularizing parameter values were selected 
among several discrete values of 10− 6, 10− 5, ..., 105, and 106. The model with the optimal regularizing parameter 
was selected, which demonstrated the highest Pearson’s correlation coefficient between predicted values and the 
target scores across subjects in the training set. Consequently, the best model trained through the nested CV 
on the training set was applied to the testing set to predict the target scores of unseen subjects. We repeated this 
CV-CR prediction 100 times with each iteration having different stratified subject splits. Finally, we calculated 
Pearson’s correlation between predicted and measured scores for prediction performance.

For the machine-learning approach, we used Python version 3.11 with modules including Scikit-learn 
version 1.3.045, NumPy version 1.24.446, and SciPy version 1.11.147.

Statistical analysis
Effect sizes of the difference between prediction performance of feature conditions were calculated by the 
Rosenthal formula48 which used z-statistics also utilized for calculation of the p-values of Wilcoxon rank-
sum two-tail test. Bonferroni correction was applied for corrected p-values in multiple comparisons. Principal 
component analysis (PCA) was performed for features, and loadings of each principal component were 
estimated. All statistical tests and data visualizations were performed in MATLAB (R2024a; MathWorks).

Code availability
The features for machine learning in this study can be found in the GitHub repository including Python scripts 
for training prediction models and a MATLAB script to analyze results and generate figures illustrated in this 
study (​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​k​y​e​s​a​​m​-​j​u​n​​g​/​m​o​d​e​​l​-​b​a​s​e​​d​-​p​r​e​d​​i​c​t​i​o​n).

Results
By leveraging empirical whole-brain connectomes for the whole-brain dynamical modeling, we successfully 
generated sFC that can be used alongside the eFC. This allows us to characterize whole-brain dynamics through 
connectome relationships, highlighting inter-individual variability. Both empirical and simulated connectome 
relationships can be considered as individual features of whole-brain dynamics and used to classify subjects 
into different categories or predict their behavioral characteristics using machine-learning approaches. Here, 
simulated data can complement empirical neuroimaging data or serve as stand-alone features, which can 
improve the prediction performance. As an example of the proposed framework, we demonstrate that the 
modeling results can effectively classify subjects by sex (male vs. female) and predict their general intelligence as 
well as personality traits, showing improved performance compared to using empirical features alone.

Model-based connectome relationships as leveraged feature information
To calculate brain connectomes and their relationships, we utilized two brain parcellation schemes. One is the 
Schaefer atlas with 100 regions7, where the cortical surface was divided based on functional characteristics of 
the brain. The other one is the Harvard-Oxford atlas with 96 regions32, where structural brain characteristics 
were used for cortical parcellation. The connectome relationships as given by the Pearson’s correlation between 
the respective connectivity matrices were calculated for every subject leading to distributions of their values 
for a given subject cohort (Fig. 2a). We observed that the two considered parcellation schemes yielded different 
distributions for the empirical structure-function connectome relationships corr(eFC, eSC) (Fig.  2a, Emp.). 
In particular, the Harvard-Oxford atlas supported a somewhat stronger structure-function relationship as 
compared to the Schaefer atlas. Similarly, the simulated connectome relationships corr(eFC, sFC) also produced 
different ranges of values depending on the parcellation scheme applied (Fig.  2a, Sim.). The considered 
functional connectome relationship involving the simulated data sFC is important in the brain modeling and 
frequently used in the literature as a measure of the best fitted model to empirical functional data15. We observed 
that the simulated connectome relationships (eFC vs. sFC) exhibited a much broader spread as compared to 
the empirical connectome relationships (eFC vs. eSC) including an enhanced inter-individual variability when 
the simulated data were involved (interquartile ranges, empirical vs. simulated features: 0.033 vs. 0.104 for the 
Schaefer atlas, and 0.044 vs. 0.136 for the Harvard-Oxford atlas). The effect size of the difference between the 
atlases was similarly large for both empirical and simulated data (effect size: 1.088 vs. 1.077 for empirical data 
and simulated data, respectively). Furthermore, the difference between the mean values of each atlas is larger 
for the simulated data (effect size: 0.679 vs. 1.189 for the Schaefer and Harvard-Oxford atlas, respectively, see 
Fig. 2a).

The illustrated empirical and simulated connectome relationships can be considered as features for the 
machine-learning prediction approaches, where the enhanced inter-subject variability of the simulated features 
(larger spread of the feature distributions) might be a good indication for involving the simulated data in the 
analyses. To examine the extent of overlap and difference in the feature information under the considered four 
conditions (2-by-2) shown in the legend in Fig. 2a, we performed PCA using empirical and simulated features 
of the connectome relationships. Interestingly, we found that the first two principal components (PC1 and PC2), 
which deliver the largest fraction of the explained variance of all connectome relationships, primarily related 
to the simulated features (Fig. 2b-c), while the next two components (PC3 and PC4) explained the empirical 
features. Furthermore, PC1 and PC3 represented common contributing factors in the simulated and empirical 
connectome relationships, respectively, of the two parcellation schemes (Fig.  2b). In contrast, PC2 and PC4 
distinguished the parcellation schemes in the respective simulated and empirical feature conditions (Fig. 2b). 
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The two first PCs with the loading by simulated data cumulatively explained up to 90% of the variance of all 
features (Fig. 2c). The observed segregation of the empirical and simulated features into different PCs as well as 
the leading role of the latter features in PCA further support the expectations of a positive contribution of the 
simulated features to prediction results, which can be used either as stand-alone features or as a complement to 
empirical ones.

Classification and prediction performance
Since the empirical and simulated connectome relationships exhibit distinct variabilities across individuals 
(Fig.  2), these two types of connectome relationships might contribute differently to a machine-learning 

Fig. 2.  Empirical and simulated features (connectome relationship) for machine learning. (a) Feature 
distributions across individual subjects for two brain parcellations given by the Schaefer atlas (100 regions) 
and the Harvard-Oxford atlas (96 regions) as indicated in the legend. (b,c) Principal component analysis 
(PCA) of the feature variability across 4 feature conditions: empirical, simulated and the two considered brain 
parcellations. The loadings and the fractions of the explained variance by different principal components 
are illustrated in plots (b) and (c), respectively. The color and line schemes are as in plot (a). The cumulative 
explained variance across all conditions is depicted in plot (c) by bars in light green color. eFC empirical 
functional connectivity, eSC empirical structural connectivity, sFC simulated FC, PC principal component.
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prediction process. To investigate this, we prepared three distinct feature sets: empirical (Emp.), simulated 
(Sim.), and combined empirical and simulated (Emp. & Sim.) features. Here, the first feature set (Emp.) includes 
the empirical structure-function relationships (Pearson’s correlation between eSC and eFC), the second feature 
set (Sim.) includes the relationships between eFC and sFC (GoF values), and the third feature set (Emp. & Sim.) 
includes both the empirical and simulated features. We then performed two machine-learning analyses using 
these features to (i) classify the individual subjects as females or males and (ii) predict a continuous behavioral 
score as given by the general intelligence based on the total cognitive function composite score49. For both cases 
and under each feature condition, we calculated prediction performance on the training set and after applying 
the model to the testing set of unseen subjects (Fig. 3a, b). Sex classification on the test subject sets shows that the 
balanced accuracy was significantly enhanced, when the simulated features were employed in the classification 
analysis as compared to the case of the empirical features (Bonferroni-corrected p < 0.05) (Fig.  3c, compare 
“Emp.” to " Sim.“). The machine-learning analysis applied to predict the general intelligence also exhibited 
improved performance with features that contain the simulated data. This was confirmed by statistical tests 
demonstrating a significant improvement of the prediction performance for the simulated features (Sim.) as well 
as for a combination of the empirical and simulated features (Emp. & Sim.) compared to the case of the empirical 
features (Emp.) (Fig. 3d).

Enhanced performance with high-dimensional parameter optimization
We also fitted the model to empirical data in high-dimensional parameter spaces, where around 100 model 
parameters were simultaneously optimized by the CMAES algorithm. In such a way we obtained an increased 
GoF, where the simulated FCs closely approached the empirical FCs of individual subjects leading to a higher 
model personalization. For example, the mean GoF = 0.607 and 0.724 for high-dimensional model fitting of the 
Schaefer and Harvard-Oxford atlases, respectively, may be compared to the respective GoF = 0.299 and 0.501 
for the low-dimensional model fitting (Fig. 2a). We then applied the simulated connectome relationships of the 
high-dimensional model fitting as features to machine learning. Interestingly, the results showed that involving 
the simulated features obtained through high-dimensional optimization yielded the best outcome in the sex 
classification (Fig.  4a). Likewise, the low-dimensional optimization condition showed the best prediction of 
cognition (Fig. 4b). Additionally, in the prediction of personality traits (Fig. 4c–g), the simulated features showed 
the best results in four out of five traits, except for the openness, where the empirical features demonstrated 
the best performance (Fig. 4g). These findings indicate that whole-brain dynamical modeling can enhance the 
performance of machine learning. This is especially evident in predictions of cognitive ability and personality 
traits, where the empirical features mainly showed correlations near zero, whereas the simulated features 
demonstrated clearly improved results. To assess the extent to which the results presented in this study align with 
those predicted by traditional statistical methods, we conducted group comparisons between males and females, 
as well as linear regression analyses for each feature condition: Emp., Sim. (Low dim.), and Sim. (High dim.). 
The results demonstrated that the relationships between measured and predicted scores consistently aligned 
with those obtained through out-of-sample machine learning (Supplementary Figures S1 and S2). Moreover, a 
permutation test was applied to evaluate the robustness of the current approach (Supplementary Figure S3). We 
observed that the empirical features can be predictive for sex classification and the openness personality trait 
only. On the other hand, the performance of the machine learning with simulated features showed a significant 
and relatively large positive difference from the null distributions except for the openness and neuroticism 
(Supplementary Figure S3), which is in agreement with Fig. 4.

Finally, when looking at the overall concatenated results of predicting all five personality traits, the simulated 
features obtained through the high-dimensional parameter optimization showed the highest prediction 
correlation (Fig.  5), and the difference from the results based on the empirical features was especially large 
(effect size is 0.836).

The contribution of individual features to prediction results can be examined by analyzing the coefficients 
of the trained machine-learning models (logistic and ridge regressions, see Methods). This can for example be 
approached by considering the distributions of the regression coefficients and their contribution to prediction 
accuracy across all CV loops for all individual empirical and simulated features for the two considered brain 
atlases (Supplementary Figures S4 and S5). We observe that the feature contributions vary based on the atlas 
and type of features (empirical or simulated) confirming our conclusions (Fig. 4). In many cases, the good or 
bad predictability of individual features can clearly be distinguished, see Supplementary Figures S4 and S5 and 
discussion therein.

Another approach to understanding feature contributions relates to Shapley additive explanation (SHAP) 
values50 that we calculated for the best predictors of each target (Fig. 6). The latter are empirical features for 
openness, simulated features of the low-dimensional parameter optimization for cognition and simulated 
features of the high-dimensional parameter optimization for the other five tasks including sex classification, 
and prediction of agreeableness, conscientiousness, extraversion, and neuroticism, see Fig. 4 (note the negative 
mean prediction correlations in Fig. 4f). A comparison between the distributions of SHAP values (Fig. 6) and the 
distributions of model coefficients (Supplementary Figures S4 and S5) revealed consistent trends. For example, in 
the case of the agreeableness prediction, the regression coefficients for features derived from the Harvard-Oxford 
atlas are mostly negative and strongly contributing to prediction (Supplementary Figure S5k). Correspondingly, 
the distributions of SHAP values under the same condition show the importance of the Harvard-Oxford atlas, 
where the SHAP values shift from positive to negative as the feature values increase, which is in contrast to the 
Schaefer atlas (Fig. 6, Agreeableness). As such, all best predictors exhibited a consistent alignment between the 
distributions of the model regression coefficients and the distributions of SHAP values. We also calculated the 
mean of absolute SHAP values that reflects the importance of each feature for the prediction results. In summary, 
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the SHAP-based and coefficient-based interpretations can offer complementary insights about the mechanisms 
of the machine-learning prediction procedure, which can contribute to its better understanding.

Discussion
In this report, we demonstrated that connectome relationships derived from the whole-brain dynamical 
modeling can represent individual variability of brain dynamics in a distinct way compared to empirical 

Fig. 3.  Machine-learning performances in sex classification and prediction of general intelligence. (a) 
Accuracy of sex classification as given by the fraction of correctly classified subjects for the training and testing 
sets as indicated in the legend. Distributions of balanced accuracy across cross-validation (CV) folds are 
shown. The mean values of the distributions are indicated by vertical dashed lines. The three plots illustrate the 
cases of (from top to bottom) the empirical features (Emp.), the simulated features (Sim.), and combination 
of the empirical and simulated features (Emp. & Sim.). The features of the two parcellations were merged in 
each condition. (b) Prediction of the total cognitive function composite scores (Pearson’s correlation between 
predicted and empirical scores) for training and testing sets with the same scheme of a. (c) Comparison of 
the sex classification and (d) prediction performance of the three feature conditions. The magenta bars depict 
statistically significant differences (with p < 0.05 of the Wilcoxon rank-sum two-tail test Bonferroni-corrected 
for multiple comparisons) in the distribution of prediction between the feature conditions indicated on the 
horizontal axis.
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connectome relationships. We also showed that involving simulated connectomes in the machine-learning 
prediction analysis can enhance its prediction performance. Furthermore, machine learning using simulated 
and empirical features in a complementary way exhibited comparable or even improved performance in relation 
to a separate utilization of these feature configurations. Our results suggest that incorporating model-based 

Fig. 5.  Overall concatenated prediction of personality traits. Each distribution includes Pearson’s correlation 
coefficients between predicted and measured personality of all five traits in machine learning with 100 
iterations and 5 folds cross-validation scheme, leading to 2,500 points.

 

Fig. 4.  Prediction results with different feature conditions based on empirical features: Emp., simulated 
features with low-dimensional parameter optimization: Sim. (Low dim.) and high-dimensional parameter 
optimization: Sim. (High dim.). (a) Results of sex classification with five different feature conditions shown 
in the figure legend in the center. Dashed vertical lines indicate mean values of performance in each feature 
condition. (b–g) Results of prediction for cognition (b general intelligence) and five personality traits (c–g 
agreeableness, conscientiousness, extraversion, neuroticism, and openness).
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features alongside empirical ones can enhance the extent of information extracted from the features provided 
by neuroimaging data. Building on these findings, it is important to delve into the specific advantages offered by 
the model-based approach.

The framework for the effective workflow proposed in this study consists of five steps, and the necessary 
procedures and possible approaches for each step are as follows:

•	 Step 1: For the whole-brain dynamical modeling, three types of MRI data are required: T1w, dwMRI, and 
resting-state fMRI. For neuroimaging research, raw data, i.e., Digital Imaging and Communications in Med-
icine (DICOM)51 can be converted to a standard format such as Neuroimaging Informatics Technology In-
itiative (NIfTI)52. In addition, the data can be organized according to a consensus data organization called 
Brain Imaging Data Structure (BIDS)53. Nowadays, many published datasets exist, which provide brain MRI 
necessary for the workflow such as OpenNeuro (https://openneuro.org) or other data collections, e.g., ADNI 
(https://adni.loni.usc.edu), AOMIC54, PPMI55 and research projects like 1000BRAINS56, HCP25, MOUS57, 
PNC58, etc.

•	 Step 2: This step of the workflow involves completing the preprocessing of MRI data and signal extractions 
through a pipeline. In this step, a careful selection of the data processing parameters with high quality control 
is necessary to check for errors or missing information in the acquired data. Small differences at the early stag-
es can have a significant impact in the final stage of data modeling20,21,23,59–62. The pipeline for processing MRI 
provided in this study (​h​t​t​p​s​:​​/​/​j​u​g​i​​t​.​f​z​-​j​​u​e​l​i​c​h​​.​d​e​/​i​​n​m​7​/​p​u​​b​l​i​c​/​v​​b​c​-​m​r​i​​-​p​i​p​e​l​i​n​e) can be configured in various 
ways depending on the purpose of the study. Alternatively, public pipelines such as fMRIPrep63, MRtrix330, 
QSIPrep64, SPM65, and FreeSurfer66 can be used. The processed data can be utilized to study the functional or 
structural characteristics of the brain through imaging analysis, as well as for modeling.

•	 Step 3: This step involves parcellating the brain into multiple regions according to a given brain atlas consid-
ering various schemes7,32,67–69 and calculating functional and structural connectivity of each pair of regions 
in order to construct the human brain connectome1. At this stage, the data necessary for the modeling (step 
4) will finally be prepared. A few datasets of BOLD signals, SC and FC calculated for many brain parcella-
tions are available on the EBRAINS (https://www.ebrains.eu) platform ready for analysis and modeling70–72. 
Furthermore, since the structural and functional connectivities between brain regions can be interpreted as 
underlying structures of the information flow and its processing within the brain networks73, studies can be 
conducted to explore the relationships between network characteristics of SC and FC and behavioral, cogni-
tive and clinical scores2,3.

•	 Step 4: A whole-brain dynamical model can be constructed based on the empirical whole-brain connectomes 
and used to simulate brain dynamics such as electrical neuronal activity and BOLD signals. By varying the 
model parameters, one can analyze the simulated brain dynamics in comparisons with empirical data using 

Fig. 6.  Beeswarm plots of SHAP values for the best predictors of each target. Data points are reflecting the 
individual subjects, where the SHAP values were averaged across 100 iterations of the nested 5-fold cross-
validation for each individual. The vertical axis includes the prediction target (leftmost column), the feature 
type (middle column) and the brain atlas (rightmost column). Colors of the dots depict feature values of the 
best predictors with the scaling given on the color bar. The numbers in the plot indicate the mean absolute 
SHAP values (mean(|SHAP|)) reflecting the SHAP feature importance. The abbreviation ‘Emp.’ is for empirical 
features, ‘Sim. (Low dim.)’ and ‘Sim. (High dim.)’ are for the simulated features of the low- and high-
dimensional parameter optimizations, respectively.
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BOLD signals74, FC15, dynamic FC that captures evolution of FC over time75, SC21, metastability76, behavioral 
or clinical scores18,20, etc. This allows us to find optimal model parameters, where the model best replicates 
empirical brain dynamics and behavior depending on the study objectives. Several software packages are 
available for the modeling of neuronal brain dynamics, for example, The Virtual Brain77, NEST78 and DCM74 
to mention a few. Furthermore, by employing dedicated parameter optimization algorithms41, we can obtain 
fine-tuned models for an improved replication of empirical data. Such a whole-brain dynamical modeling 
approach provides personalized optimal model parameters after model fitting toward specific target neu-
roimaging or behavioral scores of individual subjects, thereby showing the strongest relationship between 
simulated results of optimal models and clinical characteristics18–20 or cognitive functions as demonstrated 
in the present study.

•	 Step 5: This stage involves conducting machine-learning prediction analysis using model-based data obtained 
from the previous steps. In this step, the cross-validated model-based scheme20 extracts effective simulated 
features derived from personalized optimal models, and their predictive performances are evaluated using 
machine-learning techniques. This approach allows us to incorporate additional model-based features into 
the machine-learning process while keeping the established protocols of conventional machine-learning 
methodologies based on neuroimaging empirical data such as Julearn (https://juaml.github.io/julearn)79. 
The cross-validated model-based machine-learning approach has demonstrated improved prediction perfor-
mance, as evidenced by medical data20 and this study.

In this study, the suggested workflow was applied to sex classification and prediction of behavioral scores for the 
healthy population of young adults. We report on improved sex classification and prediction of cognition scores 
by simulated connectome relationship compared to empirical structure-function relationship. Furthermore, 
the discussed workflow of the model-based prediction led to significant improvement in the prediction of 
personality traits that were only weakly predicted by empirical structural connectomes80 or by the empirical 
structure-function relationship as shown in this study. In order to better explain the feature contributions to the 
machine-learning models and prediction results, we calculated the distributions of the regression coefficients 
of the trained models (Supplementary Figures S4 and S5) and the SHAP values50 (Fig. 6), which confirmed our 
conclusions that the simulated features appeared to be important in most considered prediction cases and also 
illustrated the role of the considered brain parcellations in the prediction analysis.

The primary objective of this study was to illustrate a model-based prediction approach incorporating 
personalized whole-brain modeling, where the models were derived from and fitted to neuroimaging data of 
individual subjects. Within this framework, researchers may utilize either their own models or established ones; 
however, careful consideration should be given to model-specific dynamics when applying and interpreting 
the results. For instance, in the present study, high-dimensional parameter optimization may pose a limitation 
due to potential risk of overfitting if the optimized model parameters obtained for one subject were to be tested 
on another one. Additionally, the choice of initial parameters for optimization may still have influenced the 
fitting and prediction results, although we conducted repeated optimizations using different initial parameters 
to mitigate the variability in the outcomes.

In this study, we propose to consider the simulated data as an additional neuroimaging data modality that 
captures distinct properties compared to empirical data and can be leveraged for machine learning. In the previous 
studies, theoretical justifications were demonstrated, where the simulated data clearly exhibited an enhanced 
inter-individual variability, test-retest reliability and subject specificity compared to empirical data21,23. This was 
in particular demonstrated for a personalized whole-brain dynamical model of coupled phase oscillators, which 
motivated its consideration in this study and possibly contributed to the improved prediction results. The use 
of oscillator models is supported by their relevance to brain oscillatory dynamics81,82. Biophysical models can 
also be considered for dynamical modeling potentially leading to translational applications18–20,83,84. Beyond 
this, various studies have used simulated brain dynamics to draw neurobiological interpretations85,86. These 
findings can contribute to a growing body of work using simulated brain dynamics for neurobiological insights 
and may inform future research on personalized whole-brain modeling and its application to investigation of 
brain-behavior relationships.

The discussed model-based approach can effectively be used for testing a variety of experimental and data-
processing conditions applicable to many topics of brain research14,19. This approach has several advantages 
including enhanced reliability and flexibility as well as cost efficiency as it eliminates the burden to repeatedly 
acquire whole-brain dynamics from participants under different experimental conditions in the scanner. 
Additionally, given the diversity of approaches for the whole-brain modeling87–90, researchers can select and 
utilize models that best align with their research objectives, thereby facilitating model-based connectome 
investigation. For example, we can also apply the proposed model-based prediction approach to other modeling 
techniques such as behavioral model fitting based on graph-theoretical network properties demonstrating an 
enhanced correlation with clinical scores when compared to empirical data18.

A critical aspect of this modeling process is the selection of data processing pipelines, including brain 
parcellation schemes and other parameters, which can significantly influence the modeling outcomes91. More 
than 20 brain parcellation schemes have been employed in neuroimaging research, contributing to the diversity 
of empirical and simulated brain dynamics as well as connectivity13,21,60 including the reliability and specificity 
of the results23. Consequently, there is no ground truth or well-justified recommendation for atlas selection for 
a given neuroimaging analysis, whether based on empirical data or modeling studies. The choice of atlas can 
also influence machine-learning outcomes, resulting in performance alterations20,80,92. It is therefore advisable 
to involve several brain atlases in contemporary studies in order to confirm and compare the results for other 
parcellations. In this study, we considered two atlases based on the structural and functional brain properties and 
providing comparably good reliability and subject specificity for simulated FC23. Additionally, merging multiple 
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atlases within the feature space may further enhance performance20, which we utilized also in this study. 
Moreover, variations in neuroimaging processing pipelines can substantially affect research outcomes59,61,62, and 
multiple strategies of model fitting can be applied to optimizing whole-brain models in different ways18,20,41,93. 
The variability of simulated connectomes across subjects can also provide more personalized data across a 
broader range of perspectives compared to analyses based solely on empirical results23.

This workflow has been applied to clinical data as well, where an improved classification performance was 
reported when simulated features were included in the machine learning20. We therefore expect that the suggested 
model-based approach can be generalized to small clinical cohorts with possibly low-quality neuroimaging data 
as has already been tested for classification of patients with Parkinson’s disease and correlation with clinical 
scores18,20. The applicability to other datasets still has to be explicitly demonstrated.

By incorporating model-based features alongside empirical data, we can extensively explore brain 
connectomes and their relationships, offering enhanced performance and other benefits. At the same time, 
researchers can gain a deeper understanding of the brain dynamics. Given the recent advancements in digital 
brain research, integrating and expanding brain models94, the systematic model-based approach proposed in 
this report represents a promising method for advancing brain models and their applications. Furthermore, 
considering modern deep learning methods with enough features extracted from various stages of the proposed 
workflow including voxel-wise, region-wise and network-wise approaches may enhance the prediction 
performance, where the models can provide additional features based on the space of model parameters hardly 
accessible for empirical data. Consequently, this approach underscores the potential for leveraging integrated 
data to provide comprehensive insights and improved predictive capabilities in neuroimaging research.

Data availability
The features for machine learning in this study can be found in the GitHub repository including Python scripts 
for training prediction models and a MATLAB script to analyze results and generate figures illustrated in this 
study (​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​k​y​e​s​​​a​m​-​j​u​​​n​g​/​m​o​​​d​e​l​-​b​a​​​s​e​d​-​p​​r​e​d​i​c​t​i​o​n).
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