001043631 001__ 1043631
001043631 005__ 20250804115220.0
001043631 0247_ $$2doi$$a10.1073/pnas.2411406122
001043631 0247_ $$2ISSN$$a0027-8424
001043631 0247_ $$2ISSN$$a1091-6490
001043631 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02939
001043631 0247_ $$2pmid$$a39813253
001043631 0247_ $$2WOS$$aWOS:001413631400007
001043631 037__ $$aFZJ-2025-02939
001043631 082__ $$a500
001043631 1001_ $$0P:(DE-HGF)0$$aSinghvi, Charvi$$b0
001043631 245__ $$aTuning the electronic structure and SMSI by integrating trimetallic sites with defective ceria for the CO2 reduction reaction
001043631 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2025
001043631 3367_ $$2DRIVER$$aarticle
001043631 3367_ $$2DataCite$$aOutput Types/Journal article
001043631 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751459756_21828
001043631 3367_ $$2BibTeX$$aARTICLE
001043631 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043631 3367_ $$00$$2EndNote$$aJournal Article
001043631 520__ $$aHeterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO2) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO2)-based electronically tuned trimetallic catalyst for CO2 to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them. The catalyst showed CO productivity of 49,279 mmol g−1 h−1 at 650 °C. CO selectivity up to 99% and excellent stability (rate remained unchanged even after 100 h) stemmed from the synergistic interactions among Ni-Cu-Zn sites and their SMSI with the defective ceria support. High-energy-resolution fluorescence-detection X-ray absorption spectroscopy (HERFD-XAS) confirmed this SMSI, further corroborated by in situ electron energy loss spectroscopy (EELS) and density functional theory (DFT) simulations. The in situ studies (HERFD-XAS & EELS) indicated the key role of oxygen vacancies of defective CeO2 during catalysis. The in situ transmission electron microscopy (TEM) imaging under catalytic conditions visualized the movement and growth of active trimetallic sites, which completely stopped once SMSI was established. In situ FTIR (supported by DFT) provided a molecular-level understanding of the formation of various reaction intermediates and their conversion into products, which followed a complex coupling of direct dissociation and redox pathway assisted by hydrogen, simultaneously on different active sites. Thus, sophisticated manipulation of electronic properties of trimetallic sites and defect dynamics significantly enhanced catalytic performance during CO2 to CO conversion.
001043631 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001043631 536__ $$0G:(EU-Grant)101058414$$aReMade-at-ARI - RECYCLABLE MATERIALS DEVELOPMENT at ANALYTICAL RESEARCH INFRASTRUCTURES (101058414)$$c101058414$$fHORIZON-INFRA-2021-SERV-01$$x1
001043631 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043631 7001_ $$0P:(DE-HGF)0$$aSharma, Gunjan$$b1
001043631 7001_ $$0P:(DE-HGF)0$$aVerma, Rishi$$b2
001043631 7001_ $$0P:(DE-HGF)0$$aPaidi, Vinod K.$$b3
001043631 7001_ $$0P:(DE-HGF)0$$aGlatzel, Pieter$$b4
001043631 7001_ $$0P:(DE-Juel1)151296$$aPaciok, Paul$$b5
001043631 7001_ $$0P:(DE-HGF)0$$aPatel, Vashishtha B.$$b6
001043631 7001_ $$0P:(DE-HGF)0$$aMohan, Ojus$$b7
001043631 7001_ $$0P:(DE-HGF)0$$aPolshettiwar, Vivek$$b8$$eCorresponding author
001043631 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2411406122$$gVol. 122, no. 3, p. e2411406122$$n3$$pe2411406122$$tProceedings of the National Academy of Sciences of the United States of America$$v122$$x0027-8424$$y2025
001043631 8564_ $$uhttps://juser.fz-juelich.de/record/1043631/files/singhvi-et-al-tuning-the-electronic-structure-and-smsi-by-integrating-trimetallic-sites-with-defective-ceria-for-the.pdf$$yOpenAccess
001043631 909CO $$ooai:juser.fz-juelich.de:1043631$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001043631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151296$$aForschungszentrum Jülich$$b5$$kFZJ
001043631 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001043631 9141_ $$y2025
001043631 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001043631 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001043631 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
001043631 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-10
001043631 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001043631 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-10
001043631 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
001043631 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001043631 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
001043631 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10
001043631 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001043631 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001043631 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043631 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001043631 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-10
001043631 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-10$$wger
001043631 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001043631 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001043631 920__ $$lyes
001043631 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
001043631 980__ $$ajournal
001043631 980__ $$aVDB
001043631 980__ $$aUNRESTRICTED
001043631 980__ $$aI:(DE-Juel1)ER-C-2-20170209
001043631 9801_ $$aFullTexts