001043633 001__ 1043633
001043633 005__ 20250717075654.0
001043633 0247_ $$2doi$$a10.48550/arXiv.2506.23178
001043633 037__ $$aFZJ-2025-02941
001043633 041__ $$aEnglish
001043633 1001_ $$0P:(DE-Juel1)190190$$aBarends, R.$$b0$$ufzj
001043633 245__ $$aPerformance-centric roadmap for building a superconducting quantum computer
001043633 260__ $$barXiv$$c2025
001043633 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1751459907_23394
001043633 3367_ $$2ORCID$$aWORKING_PAPER
001043633 3367_ $$028$$2EndNote$$aElectronic Article
001043633 3367_ $$2DRIVER$$apreprint
001043633 3367_ $$2BibTeX$$aARTICLE
001043633 3367_ $$2DataCite$$aOutput Types/Working Paper
001043633 520__ $$aOne of the outstanding challenges in contemporary science and technology is building a quantum computer that is useful in applications. By starting from an estimate of the algorithm success rate, we can explicitly connect gate fidelity to quantum system size targets and define a quantitative roadmap that maximizes performance while avoiding distractions. We identify four distinct phases for quantum hardware and enabling technology development. The aim is to improve performance as we scale and increase the algorithmic complexity the quantum hardware is capable of running, the algorithmic radius, towards a point that sets us up for quantum advantage with deep noisy intermediate-scale quantum computing (NISQ) as well as building a large-scale error-corrected quantum computer (QEC). Our hope is that this document contributes to shaping the discussion about the future of the field.
001043633 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001043633 536__ $$0G:(DE-Juel1)BMBF-13N16149$$aBMBF 13N16149 - QSolid - Quantencomputer im Festkörper (BMBF-13N16149)$$cBMBF-13N16149$$x1
001043633 588__ $$aDataset connected to DataCite
001043633 650_7 $$2Other$$aQuantum Physics (quant-ph)
001043633 650_7 $$2Other$$aFOS: Physical sciences
001043633 7001_ $$0P:(DE-Juel1)184630$$aWilhelm-Mauch, Frank$$b1$$eCorresponding author$$ufzj
001043633 773__ $$a10.48550/arXiv.2506.23178$$tQuantum Physics$$y2025
001043633 909CO $$ooai:juser.fz-juelich.de:1043633$$pVDB
001043633 9141_ $$y2025
001043633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190190$$aForschungszentrum Jülich$$b0$$kFZJ
001043633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184630$$aForschungszentrum Jülich$$b1$$kFZJ
001043633 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001043633 920__ $$lyes
001043633 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001043633 9201_ $$0I:(DE-Juel1)PGI-13-20210701$$kPGI-13$$lQuantum Computing$$x1
001043633 980__ $$apreprint
001043633 980__ $$aVDB
001043633 980__ $$aI:(DE-Juel1)PGI-12-20200716
001043633 980__ $$aI:(DE-Juel1)PGI-13-20210701
001043633 980__ $$aUNRESTRICTED