001043638 001__ 1043638
001043638 005__ 20250716202229.0
001043638 037__ $$aFZJ-2025-02946
001043638 041__ $$aEnglish
001043638 1001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b0$$ufzj
001043638 1112_ $$aUK Small Angle Scattering User Meeting 2025$$cDidcot$$d2025-06-16 - 2025-06-18$$wUK
001043638 245__ $$aCriticality of Quasi-Binary Complex Fluids with and without Confinement
001043638 260__ $$c2025
001043638 3367_ $$033$$2EndNote$$aConference Paper
001043638 3367_ $$2DataCite$$aOther
001043638 3367_ $$2BibTeX$$aINPROCEEDINGS
001043638 3367_ $$2DRIVER$$aconferenceObject
001043638 3367_ $$2ORCID$$aLECTURE_SPEECH
001043638 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1752680988_22258$$xInvited
001043638 502__ $$cISIS
001043638 520__ $$aThe Ising criticality of quasi-binary fluids is investigated using SANS. For confinement, either an antagonistic salt or a surfactant is added. The charge density waves that are locally planar encapsulate the binary fluid between the wavefronts and thus make the criticality 2-dimensional. Using DLS and NSE, the dynamic criticality besides the structural criticality in terms of the forward scattering and the correlation length are observed. A master curve of the diffusion constant as a function of length scales was obtained. When looking at the high-Q end of the SANS data, the critical correlation function exponent eta was obtained that can also be compared via a scaling relation to the structural criticality. The 2-dimensionally confined system lets us assume a directional exponent eta. Finally, in latest SANS measurements on ZOOM with a magnetic field, the domains were aligned and a directional exponent eta was obtained. The scaling relation rationalizes the exponent eta for the 2-dimensional confinement.
001043638 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001043638 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001043638 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
001043638 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
001043638 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x1
001043638 693__ $$0EXP:(DE-MLZ)KWSX-20231024$$5EXP:(DE-MLZ)KWSX-20231024$$eKWS-X: SAXS-WAXS laboratory beamline$$x0
001043638 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x1
001043638 909CO $$ooai:juser.fz-juelich.de:1043638$$pVDB:MLZ$$pVDB
001043638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b0$$kFZJ
001043638 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001043638 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001043638 9141_ $$y2025
001043638 920__ $$lyes
001043638 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001043638 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
001043638 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
001043638 980__ $$aconf
001043638 980__ $$aVDB
001043638 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001043638 980__ $$aI:(DE-588b)4597118-3
001043638 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001043638 980__ $$aUNRESTRICTED