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Enhancing Brain Age Prediction
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Results

Discussion

• Ridge regression (MAE = 3.37) outperformed
Random Forests as a stacking method (MAE =
3.53), especially with increasing training sample
size.
• Including sex as a predictive feature in the stacking
models did not lead to substantial improvement
suggesting that either the input features already
encode information related to sex, or that sex itself
does not contribute meaningful information for
predicting age in this specific task.
• Fine-tuning the Peng model yielded only marginal
gains.

• When fine tuning, the validation method (training on
80% of the data and stopping when validation error
on 20% data is at its lowest) seems to be on
average better than the full training method (same
validation as before but followed by retraining on
100% of the data stopping at same epochs).
• The latter approach seems to give rise to more
jumps in error therefore compromising the average.
• Fine tuning plateaued rather early (N=200)
compared to stacking, RF (N=1500) and Ridge
(N=500), and performed in between the two
methods (MAE=3.5).
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Methods (steps)

• MRI can help us produce a biomarker for an overall
‘brain age’ such that it more accurately measures
disease and mortality risks than chronological age.

• However, due to site and scanner differences brain
age models do not usually work well on new datasets
that were not used for training. This drawback
prevents clinical use of ‘brain age’ as an informative
and relevant biomarker.

• Train different algorithms the on same seven datasets

• UK Biobank as a new test site

• Evaluate stacking of ML models and fine-tuning of a DL
model using increasing size of UKB training samples
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• Among the three classical ML models, More
yielded the best results (MAE = 4.40),
outperforming brainageR (MAE = 15.45) and Kalc
(MAE = 16.97).
• Calibrating each ML model using a linear 
regression led to improvement suggesting that a 
linear shift can improve the models (example
displayed for calibration of the Kalc model).
• The Simple Fully Convolutional Network (SFCN) 
model Peng generalized best as an "out-of-the-box" 
model, achieving lowest MAE of 3.74. 

• Same UKB samples were used for model

enhancement (stacking and fine tuning) 

• Samples stratified by age (using age bins) and 

sex to preserve the actual data distribition.

• All samples were from healthy, white individuals.

• For stacking, Ridge Regression and Random 

Forest were compared, with and without sex as a 

feature.

• For fine-tuning, we compared validation approach

and full training approach.
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Contour plot of true age vs predicted age
for the three ML models

Contour plot of true age vs predicted age for 
the DL model from Peng
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Evolution of MAE with respect to the training sample size for 
Random Forest and Ridge Regression

Evolution of MAE with respect to the training 
sample size for DL fine tuning using Validation and 

no Validation

Methods

True age vs predicted age of the Kalc model 
(blue) and calibrated (orange) using linear

regression
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