PHYSICAL REVIEW A 112, 012801 (2025)

Spin manipulation and nuclear polarization enhancement in particle beams
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A theoretical study of spin dynamics in nonrelativistic particle beams with interacting angular momenta
traversing static, spatially varying magnetic fields is presented. The computational framework evaluates sinu-
soidal magnetic field configurations, calculating key observables such as average spin projections and state
populations during the interaction. It is demonstrated that such fields can effectively enhance nuclear polarization
in partially, incoherently polarized hydrogen and deuterium atomic beams, as well as coherently rotationally
state-selected hydrogen deuteride molecular beams. This enhancement is attributed to transitions induced within
the hyperfine regime of these systems. The study spans frequency ranges from gigahertz scales for atoms
to hundreds of kilohertz for molecules, corresponding to magnetic field variations on spatial scales from

submillimeters to meters.

DOI: 10.1103/4nr6-xt7m

I. INTRODUCTION

Control over angular momentum degrees of freedom in
physical systems has enabled numerous applications across
various fields. For instance, nuclear magnetic resonance
(NMR) spectroscopy and magnetic resonance imaging (MRI)
utilize hyperpolarized tracers to enhance signal strength, cru-
cial for medical diagnostic accuracy [1-3]. In fundamental
physics research, applications such as quantum computation
[4], electric dipole moment searches [5], and neutron decay
studies [6] rely heavily on achieving high degrees of spin
angular momentum polarization, hereafter referred to as spin
polarization or simply polarization. While nuclear spin is of-
ten the main focus, electron spin polarization and rotational
polarization are also crucial in fields like magnetometry [7]
and molecular spectroscopy [8], respectively.
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An important application of nuclear polarization is po-
larized fusion [9]. It has been shown that certain reactions,
commonly referred to as five-nucleon reactions, employed
for artificial fusion offer several advantages [10,11] when the
reactants are polarized compared to the unpolarized case. The
alignment of nuclear spins in these reactions can enhance the
fusion cross section and improve reaction dynamics, leading
to increased efficiency. In particular, spin polarization in the
deuterium-tritium reaction has been demonstrated to enhance
tritium burn efficiency, thereby reducing tritium startup inven-
tory requirements [12]. Aneutronic fusion reactions between
proton and boron (!'B) show similar advantages [13]. Conse-
quently, polarization could potentially play a crucial role in
the development of clean energy production technologies.

The particles involved in five-nucleon reactions have spin
quantum numbers 1/2 (tritons/helions) and 1 (deuterons).
However, tritium is scarce, radioactive, and thus expensive
and difficult to handle. Helium-3 is also rare but nonradioac-
tive and comparatively more cost effective than tritium. As
a result, research on the production of polarized fuel often
focuses on hydrogen (also spin 1/2) and deuterium atoms.
These atoms and their molecules are the subject of this study.

Specifically, we investigate the dynamics of interacting
angular momenta in inhomogeneous magnetic fields, con-
sidering specific initial preparation scenarios. While the

Published by the American Physical Society
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preparation methods are not discussed in detail, some rep-
resentative examples are mentioned. The main focus of this
work is to introduce the theoretical framework for evaluating
spin dynamics and to demonstrate its application to selected
atomic and molecular states. Through these examples, the av-
erage spin orientation and its correlation to the populations of
the related energy levels are discussed. The selected cases are
intentionally chosen to highlight the enhancement of nuclear
polarization achieved through carefully configured magnetic
fields.

Magnetic field configurations with the analyzed character-
istics can be implemented in experimental setups and serve as
tools to manipulate polarization or transfer it, e.g., from the
electron to the nucleus, more efficiently. The computational
framework presented here can predict changes in the aver-
age polarization for experiments where particle beams pass
through apparatuses that produce unequal or inhomogeneous
magnetic fields. This is possible because the time-dependent
equations governing spin dynamics are solved using numeri-
cal approaches.

II. THEORETICAL BACKGROUND

The atomic and molecular systems considered here consist
of at least two angular momentum entities. We denote the
nuclear spin operator as I, the total electron angular mo-
mentum operator as S, and the molecular rotational angular
momentum operator as J. For the representation of operators
and the calculation of observables, two bases are employed:
the coupled and the uncoupled basis.

Assuming a system of two interacting angular momenta
L1 », the uncoupled basis vectors are defined as |L; [1, L, ) =
L1 11) ® |Ly 1), where L, , are the angular momentum quan-
tum numbers and /; , are the corresponding projections along
the quantization axis. In the following framework, the in-
dividual angular momentum quantum numbers L;, L, are
preserved; hence, it is convenient to simplify the uncoupled
notation to include only the projections, i.e., |/1, [3).

For the coupled basis, an additional angular momentum
operator is defined as K = Ly + L,. This can be expressed
as K=L; ® 1+ 1 ® L,, where the operator 1 in the first
(second) term stands for the identity operator in the second
(first) angular momentum space. The state vectors in this
basis are represented by the total angular momentum quantum
number K and its projection k along the quantization axis,
denoted as |K, k). The uncoupled and coupled representations
are related by a linear transformation, which will be specified
whenever necessary in the studied cases.

The collection of noninteracting identical systems (e.g.,
hydrogen atoms in a particle beam), whose observables are
examined here, are assumed to be nonidentically prepared.
Specifically, the initial state of such an ensemble is described
by a statistical mixture of the states of its constituents. For this
purpose, we adopt the density operator formalism, where the
(Hermitian) density operator and its matrix representation are
denoted by p. The diagonal elements of the matrix are non-
negative real numbers that sum to one and are referred to as
populations. The off-diagonal elements are complex numbers,
named coherences. The time evolution of p is governed by the

FIG. 1. Schematic of two particles (cyan spheres), one at r = 0
and one at r # 0, on the z = 0 plane in the laboratory frame, in the
presence of a spatially varying magnetic field. The orange circles rep-
resent two cylindrical coils generating a longitudinal field B;, along
with a radial component B, (omitted for simplicity). For illustration
purposes, the magnetic field configuration has been shifted to the
right.

Liouville—von Neumann equation,
ap
ih— = [H, p], 1
th— [H, p] (D

where H is the Hamiltonian of the system. It consists of the ef-
fective hyperfine Hamiltonian Hy and the interaction term Hp,
accounting for an external magnetic field. The first term, Hp,
is time independent, while the second term, Hp, describes the
interaction with an external sinusoidal magnetic field, defined
as B, = By sin (%) with By the magnetic field amplitude and
A the wavelength of the trigonometric function.

Our focus is on particles propagating parallel to the z axis
with a constant, nonrelativistic velocity v as they pass through
the external magnetic field. Assuming an axially symmetric
field, and applying Gauss’s law for magnetism in cylindrical
coordinates (r, ¢, z), we obtain the radial component B,
L aaii = —By %" cos (27” ), where r is the radial distance from
the Z axis. Thus for a partlcle traveling along the z axis, i.e.,
at r = 0, only the longitudinal component B; is present.

The description above corresponds to the laboratory refer-
ence frame (see Fig. 1), where the two key features are (a)
time-dependent particle position (7, ¢, z) and (b) static—but
spatially varying—magnetic fields. The transverse coordi-
nates (r, ¢) are assumed to remain constant throughout the
particle’s motion, while the longitudinal position z evolves
as z = vt. It is convenient to change the reference frame
and employ the rest frame of the particle. In this frame, the
particle’s position is constant (+' = r, ¢’ = ¢, 7/ = 0), where
Z' = 0 by convention. Since the transverse coordinates remain
unaffected by the change of reference frame, we will use un-
primed coordinates in the rest frame; the distinction between
the two frames becomes clear from the context.
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As a result of this transformation, the spatial variation
of the magnetic field components in the laboratory frame is
perceived as a time-dependent variation in the particle’s rest
frame. The magnetic field in this frame is obtained by substi-
tuting z with vt in the laboratory-frame expressions, yielding

. . . (2wt r 2ot
B = B,Z2 + B,t = Bysin — z—BoTcos . r,

or equivalently, in Cartesian coordinates, B = B, cos¢ X +
B,sin¢gy + B, Z, where the azimuthal angle ¢ is measured
from the x axis.

In the rest frame, the key features are now (a) constant
particle position and (b) time-dependent magnetic field com-
ponents. Consequently, there is no need to include a kinetic
term in the Hamiltonian, and the angular momenta involved
in the particle dynamics can be treated as if the particle were
stationary in a time-dependent magnetic field given by Eq. (2).
This equivalent description will be employed to evaluate the
systems’ dynamics. It is a purely magnetic model that neglects
the presence of additional external fields (see Sec. IIIC for a
discussion of electric fields), ensuring that the angular mo-
mentum quantum numbers /, S, and J remain conserved.

It is useful to introduce the time of flight#; = A /v, whichis
defined to be equal to the period of the trigonometric function.
In other words, we choose to determine the optimal mag-
netic field configurations based on the corresponding time of
flight. This is the key parameter in our analysis, with residual
parameters, such as A, determined by it and the experimen-
tal conditions. In the following section, the spin dynamics
are obtained by solving Eq. (1), and relevant observables
are calculated for time ¢, 0 <t < #y. As a convention, the
quantization axis is taken to be fixed and aligned with the
z axis. Positive spin projections are therefore parallel to the
first (positive-valued) half of the longitudinal magnetic field
component, while negative projections align with the second
half.

III. RESULTS AND DISCUSSION

This section is divided into three subsections. First, we
analyze the spin dynamics for hydrogen and deuterium atoms,
then for hydrogen deuteride (HD) molecules, and finally, we
discuss limitations of the analysis.

A. Hydrogen (H) and deuterium (D) atoms

We focus on atomic states where the total electron angular
momentum equals the electron spin, thereby avoiding unnec-
essary complexity introduced by additional angular momenta.
Specifically, we examine the ground and first metastable states
of hydrogen (H) and deuterium (D) atoms. The effective hy-
perfine Hamiltonian governing such states is expressed as [14]

éI -S, 3)

where A is the hyperfine-structure constant. The electron spin
is 1/2, while the nuclear spin is 1/2 for H and 1 for D. The

interaction with the applied magnetic field B is described by

gsMBS + glMNI) ‘B, (4)

h h

where p is the atomic magnetic dipole moment, comprising
contributions from both the electron and nuclear magnetic
moments. These contributions are proportional to the g factors
gs.1 and the Bohr and nuclear magnetons pp y, respectively.
In SI units, the latter are given by g = 9.27x1072* J/T and
uy = 5.05x107%7 J/T. The g factors are well approximated
by their free particle’s values: g, = —2.002 for an electron
(no orbital contribution), g; = 5.586 for a proton (H nucleus),
and g; = 0.857 for a deuteron (D nucleus).

Before presenting the results for the atomic systems, it
is useful to introduce one more observable related to spin
polarization, which is calculated using the density matrix:
the average spin projection of the nucleus ({m, ,)) and the
electron ({m,_.)), defined as

1

1
(mq,(n/e)) = E(Sq,(n/e)) = ETr(qu,(n/e)) (5)

along the gth axis (x, y, or z). S,’s denote the spin matrices and
the subscripts n and e correspond to the nuclear and electron
spins, respectively. The spin matrices in the uncoupled repre-
sentation can be derived from the Pauli matrices and are listed
in Appendix A, along with all basis states for the two repre-
sentations and the corresponding transformation. As expected,
the spin projection along a given axis relates to the (vector)
polarization along the same axis, by dividing the former with
the corresponding quantum number. For example, the electron
and proton spin polarizations are twice the corresponding spin
projections, whereas the deuteron polarization equals its spin
projection.

In our first example, for H, we consider an initial equal
population of the states |F = 1,mp = 1) and |F = 1, mp =
0) with the quantization axis parallel to the z axis. This
is described by the density matrix p. = diag(1/2, 1/2, 0, 0),
whose off-diagonal elements vanish, and can hence be char-
acterized as incoherent. Such an initial preparation can be
achieved for the metastable 25/, state of H [15], for instance,
by directing an unpolarized beam into a region with a mag-
netic field of ~57.5mT and a weak transverse electric field.
In this setup, two of the states are quenched to the ground
state 151/, and the beam is then gradually, i.e., adiabatically
transferred to a low-field region B — 0, where the eigenstates
are described by the coupled basis. For the ground state of H
[16], optically pumped polarized rubidium vapor can induce
electron spin polarization in a high magnetic field, which is
subsequently adiabatically reduced to a value well below the
critical field [17].

Independent of the preparation method, the resulting beam
exhibits proton and electron spin polarizations of 50%, which
persist in the absence of external fields [18]. Now, consider
this beam passing through the static sinusoidal field, intro-
duced earlier, at r = 0, so that it experiences only the B,
component. By choosing the field wavelength A so that the
time of flight matches the inverse of the hyperfine frequency
vgr :=A/h, ie., ty = 1/vgr, it becomes possible to maxi-
mize proton polarization. Figure 2 shows the average spin
projection along the z axis for the proton ({m, ,)) and electron

HB=—IL'B=—(
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FIG. 2. Average spin projections (m_ ) (blue) and (m_ ) (red) of
a ground-state H atom at time ¢, ~ 0.7 ns as a function of B, for
an initially incoherently, partially polarized beam at r = 0. The right
vertical axis represents the corresponding polarization.

({m..)) in a ground-state atom at time #; as a function of
the magnetic field amplitude By. The hyperfine frequency is
vyr = 1.42 GHz [19], or equivalently A = hvygp = 5.87 peV.

It is insightful to look closer at the dynamics during pas-
sage through the sinusoidal field for By = 25 mT, at which
the nuclear polarization peaks at 99.12%. Figure 3 illus-
trates the populations in terms of the coupled and uncoupled
states. The two states that transform trivially (overlapping
lines p11., = p11.c and p33,, = p33..) have constant populations
over time. The second and fourth state of the uncoupled rep-
resentation directly reveal the evolution of the average spin
projection of the electron and the proton, respectively. This
occurs because the other states have constant populations, and
the longitudinal spin matrix is diagonal in this representation.
Measurements of occupation in the uncoupled basis therefore
provide direct information about the spin polarization. On the
other hand, in the coupled basis, this information is encoded
in a more indirect manner [see off-diagonals in Eq. (A12)].
No spin polarization develops along the x or y axes.

— P11u

Population
(=] (=) (=]
o w S

o
S

0.0 : ; : ; : ; :
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (ns)

FIG. 3. Populations of uncoupled (subscript «) and coupled (sub-
script ¢) states during the motion through the applied longitudinal
magnetic field with v/A = 1.42 GHz and By = 25 mT. The states are
ordered according to Appendix A 1.
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FIG. 4. Average spin projections (m, ,) (blue) and (m_ ) (red) of
a ground-state H atom at time #; ~ 0.7 ns as a function of By, for an
initially incoherently, partially polarized beam at » = 0.3 mm. The
right vertical axis represents the corresponding polarization.

Obtaining the eigenenergies, and subsequently the evo-
lution dynamics for the applied conditions, involves the
evaluation of elliptical integrals, which is performed numer-
ically. The results reveal oscillations between states with
the same total angular momentum projection, mp = mgs +
my, when their initial populations are uneven. This behavior
reflects the selection rule Amyp = 0 for magnetic dipole tran-
sitions, indicating that the sum of spin projections along the
z axis, or equivalently the total longitudinal polarization, is
preserved.

The experimental realization of this field for a beam
with a kinetic energy of 1keV (velocity v ~ 4.4x10° m/s)
corresponds to a wavelength of A ~ 0.3 mm. This wave-
length increases proportionally with the beam velocity, as
the time of flight #; is fixed to the inverse of the hyper-
fine frequency. Achieving submillimeter periodic magnetic
fields with amplitudes of several millitesla cannot be ac-
complished using conventional wire coils. Instead, techniques
such as microfabricated magnetic arrays, superconducting
microcoils, magnetized ferromagnetic gratings, and other ad-
vanced methods are required. For metastable 2S,, H, where
the hyperfine interaction is approximately eight times weaker,
A/h = 177.56 MHz [20], the time of flight must increase by
the same factor, resulting in a wavelength of A ~ 2.5 mm
under the same beam conditions. As expected, the proton
polarization in the metastable state peaks at By ~ 3.1 mT,
namely, at a field that is eight times weaker. This effect can
be observed via Lamb-shift polarimetry [21].

For particles positioned off axis, r # 0, the additional ra-
dial field component B, disrupts the polarization dynamics.
The magnitude of B, is proportional to the ratio r/X, as
indicated by Eq. (2). At r/A < 1, the influence of B, is neg-
ligible; for instance, at /A = 1073, the loss of polarization
is well below 1% for the magnetic field amplitudes consid-
ered here. As the radial distance increases, the impact of B,
becomes significant, leading to differing polarization results
across radii. Figure 4 shows an example of this effect for r =
A = 0.3 mm. In this case, polarization along the quantization
axis is disrupted, and a transverse polarization component is
developed due to the radial field. Consequently, the sum of
average spin projections is no longer conserved. In contrast,
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FIG. 5. Populations of uncoupled (1) and coupled (c) states at
time ¢ ~ 0.7 ns as a function of By, at r = 0.3 mm. The states are
ordered according to Appendix A 1.

the sum of the populations remains constant, as illustrated in
Fig. 5. The Hamiltonian matrix governing such dynamics is
derived in Ref. [22] and presented for both representations of
H and D atoms. The size of the matrix is (25 + 1)(2] + 1) x
(28 + 1)(2I + 1), leading to a system of (25 + 1)>(21 + 1)?
differential equations for the corresponding density matrix
elements, as described by Eq. (1). Due to their large number
and relatively complex form, the explicit equations used to
obtain the presented results are omitted.

This effect has also been experimentally observed [23]
for metastable beams initially prepared in a single hyperfine
state during the investigations of Sona transitions [24]. Sona
transition units are components that generate a longitudinal
magnetic field with a reversing direction, thereby prompting
more extensive studies on interacting angular momenta in
such environments. A detailed discussion of this phenomenon
is beyond the scope of this work; further experimental inves-
tigations will be carried out in the future. Briefly, similar to
B, the B, component induces magnetic dipole transitions, but
with the selection rule Amp = £1.

An alternative method for preparing initial spin states,
based on molecular photodissociation [25,26], can lead to up
to 100% nuclear polarization. This approach uses very short
laser pulses (<300 ps) to dissociate hydrogen halides, trans-
ferring the laser circular polarization to the electrons of the
fragments (7i/2 to the H-atom electron and /7i/2 to the valence
electrons of the halide atom), while leaving the nuclear spin
effectively unpolarized. The resulting state for H atoms is
described by the density matrix p, = diag(1/2, 1/2, 0, 0) for
positive electron polarization. Transforming this to the cou-
pled basis yields p. = Qp, Q~!, which includes two nonzero
off-diagonal elements, allowing polarization to oscillate be-
tween the electron and nuclear spins with a period of 1/vgg.
This is commonly referred to as coherent preparation, which
in terms of timescales differs significantly from the incoherent
preparation discussed earlier.

For incoherent preparation, the initial polarization is also
induced in the electron spin, but within a hyperfine-resolved
regime at high magnetic fields. This means that the atomic
states approach the uncoupled states, but after reducing the
magnetic field adiabatically to the low-field limit, the atomic
states transition to the coupled states. This slow process re-

o
w
o
e Polarization

-0.25

0 10 20 30 40 50
By (mT)

FIG. 6. Average spin projections (m, 4) (blue) and (m, ) (red) of
a ground-state D atom at #; ~ 3 ns as a function of By, for an initially
incoherently, partially polarized beam at » = 0. The right vertical
axis represents the electron spin polarization, while the deuteron
polarization is directly given by (m, 4).

sults in a partial, steady-state polarization of 50% for both
electron and proton spins. In contrast, photodissociation with
short pulses, which operates without resolving the hyperfine
structure, can induce up to 100% electron spin polarization
in a field-free environment. This polarization oscillates due to
the hyperfine interaction, transferring entirely to the nuclear
spin after a time of 1/2vyp. Several studies [26-28] validate
this technique, demonstrating its scalability to macroscopic
quantities by means of high-power lasers.

Next, we examine a similar, incoherent preparation of deu-
terium atoms. Both methods discussed earlier for ground-state
and metastable H can also be applied to D, e.g., for the
metastable state, see Ref. [29]. At ¢ = 0, the resulting density
matrix takes the form p, = diag(1/3, 1/3, 1/3,0, 0, 0), indi-
cating equal population of the states |F = 3/2, mp = 3/2),
|F =3/2,mp =1/2), and |F =3/2,mp = —1/2). In con-
trast to H, the hyperfine frequency is not equal to A/h, but
vgr = 3A/2h, corresponding to the hyperfine splitting (in
frequency units) between the quadruplet FF = 3/2 and the
doublet F = 1/2. For the ground state, this has been measured
as vyr = 327.38 MHz [30]. Consequently, the favorable time
of flightis 7, ~ 3 ns. Figure 6 illustrates how the average spin
projection of the electron and deuteron vary as a function of
the amplitude By of the longitudinal magnetic field B,. Recall
that the electron spin polarization is twice the expectation
value of its spin projection, and hence both the electron and
deuteron exhibit equal polarization of 1/3 at By = 0.

At By = 6 mT, the nuclear polarization reaches a peak of
63.7%. This value is slightly higher than the maximum po-
larization of 59.3% achieved by molecular photodissociation
[31], which involves coherent preparation of electron spin po-
larization followed by polarization transfer via the hyperfine
interaction in the absence of external fields.

For comparison with hydrogen, we plot the time evolu-
tion of the state populations in the uncoupled and coupled
representation for By = 6 mT in Figs. 7 and 8, respectively.
The populations p11,, and pi1,, as well as pas, and paqc,
correspond to the same states assigned by electron and pro-
ton spin projections parallel to each other, and parallel and
antiparallel to the quantization axis, respectively; for details
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FIG. 7. Populations of uncoupled states during the motion
through the applied longitudinal magnetic field with amplitude
By = 6 mT. The states are ordered according to Appendix A 2.

see Appendix A 2. Overall, the sum of average spin projec-
tions and that of the state populations are preserved in the
presence of a longitudinal sinusoidal field. That is because,
as in H, transitions occur obeying the selection rule Amg = 0.
Specifically, states with the same my in Fig. 8 appear as mirror
images of each other. This behavior is also exhibited by the
uncoupled states in Fig. 7, e.g., I%, 0) (state 2) and | — %, 1)
(state 6). No polarization buildup occurs in the transverse
plane.

The realization of such a setup for a 1-keV beam (ve-
locity v ~ 3.1x10° m/s) corresponds to a wavelength A ~
0.9 mm. In the metastable 25/, state, where the hyperfine
splitting is 40.92 MHz [32], achieving an eightfold longer
time of flight would require a correspondingly longer wave-
length, A ~ 7.6 mm. Similarly, the optimal field amplitude for
high nuclear polarization would be eight times weaker, i.e.,
0.75 mT. It should be noted that particle beams with such a
small diameter are generally not very intense, making these
examples rather idealized cases.

Next, we provide an example of how the radial magnetic
field component affects the spin polarization. In particular, we

Population

o
=y
(=}

0.05}

0.00 - ; ‘ ‘ : "
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (ns)

FIG. 8. Populations of coupled states during the motion through
the applied longitudinal magnetic field with amplitude By = 6 mT.
The states are ordered according to Appendix A 2.
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FIG. 9. Average spin projections (m, 4) (blue) and (m, ) (red) of
a ground-state D atom at time ¢, ~ 3 ns as a function of By, for an
initially incoherently, partially polarized beam at r ~ 0.9 mm. The
right vertical axis represents the electron spin polarization, while the
deuteron polarization is directly given by (m; 4).

consider a radial distance equal to the wavelength A of the
applied field. Figure 9 shows how the average spin projections
along the z axis vary as By increases for this radial distance.
The longitudinal polarization is disrupted due to additional
transitions induced by the radial field component B,, leading
to nonzero transverse polarization. As a result, the total ini-
tial polarization is not conserved. However, these transitions
redistribute the state populations without losses. To illustrate
this behavior, graphs of the state populations at this radial
distance, evaluated at the final point of the magnetic field, as
a function of B, are provided in Appendix B 1 (see Figs. 16
and 17).

B. Hydrogen deuteride molecule

The case of two interacting angular momenta, described
by a term of the form I - S, in sinusoidally varying magnetic
fields was reviewed in the preceding section. Naturally, the
next logical step is to investigate the spin dynamics of a more
complex system. Here, we focus on HD, the molecule formed
by combining the previously studied atoms. The analysis con-
siders the electronic state 'S, and the rotational levels J = 1
and J = 2. The effective hyperfine Hamiltonian is expressed
as [33]

5d,
+ 4
(2] — 1)(2J + 3)h

3
|:§(Ip ~Dda - J)

3
+ E(Id Ddp - -1 - Isz]

5d,
+ 7
2J—-1)QR2J+3)h

h2
[3(Id 7+ 37(1.1 )

- Idsz}, (6)

where I, and Ig denote the proton and deuteron spins, re-
spectively, and J is the rotational angular momentum of the
molecule. Detailed derivations of these interactions can be
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found in Refs. [33-35]. The parameters of the interactions
have been experimentally determined (in frequency units):
¢p/h = 85589 Hz, c¢4/h = 13118 Hz, §/h =43 Hz, d\/h =
17764 Hz, and d, /h = —22452 Hz.

The interaction Hamiltonian with an external magnetic
field B is given by [33]

HBz—ﬁI .B_ﬁld.B_EJ.B
nt h I

5f

320 — (2] + 3R

BJ-B*-JB>», (O

where the interaction parameters are a’p /h = 4257.796x10*
Hz/T, d,/h = 653.5832x10* Hz/T, b'/h = 505.5870x 10*
Hz/T, and f'/h = —2630 Hz/T?.

Coherent excitation techniques enable the preparation of
molecules in rotational states with specific projections (e.g.,
my = +J) [36,37], effectively transferring 100% of the popu-
lation to such a state. This polarization of molecular rotational
angular momentum can subsequently transfer to the nuclear
spins through hyperfine interactions [38,39]. For orthospecies
of homoatomic molecules such as H, (J/ = 1) and D, (J = 2),
polarization values reach up to 99% [40] and 72% [41], re-
spectively, under field-free conditions.

However, achieving high nuclear polarization is more chal-
lenging in some molecules, especially heteroatomic ones with
at least two nonzero nuclear spins, such as HD [42]. For
J =1, proton and deuteron polarizations peak at 70% and
64%, respectively, within 50 us after coherent state prepa-
ration, in the absence of external fields. For J = 2, these
values are approximately 64%—65%. Homogeneous magnetic
fields, which decouple interacting angular momenta [43], can-
not enhance nuclear polarization. Instead, the sinusoidal-field
technique presented earlier for atomic systems is adapted here
to enhance nuclear polarization in coherent rotationally state-
selected molecules. The main challenge lies in determining
the optimal time of flight, as molecular hyperfine interactions
are more complex than those in atomic systems. Nonetheless,
the approach remains consistent: the time of flight is chosen
based on the size of hyperfine splittings. For HD, these are on
the order of tens to hundreds of kilohertz, significantly smaller
than the gigahertz-scale splittings in atomic systems.

Figure 10 illustrates the variation of the average spin pro-
jections for the rotational level J = 1 at the exit of the applied
magnetic field B, with a frequency 1/ty = 153935 Hz, plotted
as a function of the magnetic field amplitude By. The initial
preparation assumes coherent excitation to states with m; = 1,
specifically the six states |m; =1, m, = :I:%, mg =0, £1).
The deuteron polarization reaches approximately 83% at By =
48.6mT. Since the total number of states involved is quite
large (18), making the state population dynamics complex,
the spin projection evolution during the interaction time for
this magnetic field amplitude is presented in Fig. 11 instead
of the corresponding state populations.

The same methodology is applied for J = 2, focusing
on enhancing proton polarization. Unlike J = 1, where pro-
ton polarization can already reach high values (up to 70%)
without external fields, J = 2 requires such to reach similar
values. Figure 12 displays the average spin projections for B,
with 1/t; = 87852 Hz, considering an initial state prepared

p Polarization

By (mT)

FIG. 10. Average spin projections (m,), (my), and (m;) along the
z axis forJ =1 att; ~ 6.5u s as a function of By. The right vertical
axis represents the proton spin polarization, while the deuteron polar-
ization is directly given by (m,). An initially coherently rotationally
state-selected HD beam at » = 0 is considered.

1.0 ' '
0.8
=
0.6- my) g
~  F— (ma) E
E —m 105
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» g
0.6 o
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0.2
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0 1 2 3 4 5 6

Time (us)

FIG. 11. Average spin projections (m,), (my), and (m;) along
the z axis for J/ = 1 and By = 48.6mT as a function of time. The
right vertical axis represents the proton spin polarization, while the
deuteron polarization is directly given by (my). An initially coher-
ently rotationally state-selected HD beam at » = 0 is considered.

1.5\/\/\/\/\/\/\/\/

=

[ — (myp) =

1.0+ =
~ L — (mg) N
\E, — (myp) ol
S

~

o,

P f

0.0 I I | I

By (mT)

FIG. 12. Average spin projections (m,), (m4), and (m;) along the
zaxis forJ =2 att; ~ 11.4us as a function of By. The right vertical
axis represents the proton spin polarization, while the deuteron polar-
ization is directly given by (m,). An initially coherently rotationally
state-selected HD beam at » = 0 is considered.
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FIG. 13. Average spin projections (m,), (mq), and (m;) along
the z axis for / =2 and By = 4.3 mT as a function of time. The
right vertical axis represents the proton spin polarization, while the
deuteron polarization is directly given by (m,). An initially coher-
ently rotationally state-selected HD beam at r = 0 is considered.

coherently and equally distributed among the six states
my =2, mp, = j:%, my =0, £1). The proton polarization
peaks at 73.5% for By = 4.3 mT. The time evolution of the
average projections for this magnetic field amplitude is shown
in Fig. 13. For this rotational level, the number of states
increases to 30.

An Appendix section for HD is not provided, as there is
no need to introduce a specific coupling scheme to facilitate
the description of the initial states, and the large number of
states makes writing out the matrix representation of operators
impractical. The spin matrices required for the calculations of
the average spin projections are obtained similarly to those for
H and D atoms (see Appendixes A 1 and A 2). For example,
S.au=1;®1, ® ho, 1, which is represented by a diagonal
matrix with elements 0 and 1, each appearing with a multi-
plicity of 6 for J/ = 1. Here, 1; and 1, are the 3x3 and 2x2
identity matrices, respectively, while o ; is the Pauli matrix
for spin 1, as defined in Appendix A 2.

For a 1-keV HD beam (v ~ 2.5x10°m/s), the times of
flight corresponding to the analyzed field frequencies trans-
late to wavelengths of 1.6 and 2.9 m. These are significantly
longer than the (sub)millimeter wavelengths typical of atomic
systems, reflecting the difference in energy (or frequency)
scales of the hyperfine splittings. The effect of the radial field
component on off-axis particles is analyzed for r =2 cm,
rather than at radial distances comparable to A. As previously
explained, the influence of B, is minimal because r < A. The
slight loss of polarization at this radial distance for both wave-
lengths is demonstrated in Appendix B2 (see Figs. 18 and
19) while varying the magnetic field amplitude By. If, instead,
velocities of 1 km/s are adopted, e.g., from supersonic beam
expansion, wavelengths of a few centimeters can be used.

C. Limitations

The theoretical framework developed in this work de-
scribes a purely magnetic spin model that simulates ensembles
of noninteracting particles exposed to a time-dependent mag-
netic field of the form given in Eq. (2), while disregarding
interactions with additional fields, such as electric fields, that

may also be present. It is devised as an equivalent picture for
the spin dynamics of a particle beam moving with a constant
nonrelativistic velocity v through a static, spatially varying
magnetic field. The transformation between the two reference
frames assumes that the time coordinate is the same for both.
Such a transformation is known as a Galilean transformation
and is an approximation of the Lorentz transformation in the
limit of relative speeds v much less than the speed of light
¢ in vacuum. However, the framework can be expanded to
relativistic beam velocities by incorporating the necessary
modifications dictated by a Lorentz transformation. Below,
we give the restrictions on the beam kinetic energy range for
which this approximation is valid.

Conventionally, relativistic effects are ignored when
B=v/c<1%, ie., v<2.998x10°m/s. This sets an upper
limit on the kinetic energy for beams of H, D, or HD, at
46.9, 93.8, and 140.7 keV, respectively. These limits cover a
wide range of experimental setups in which ions are acceler-
ated electrostatically before forming neutral systems, such as
atoms or molecules.

As mentioned above, the model introduced for evaluating
spin dynamics assumes purely magnetic interactions. How-
ever, transitioning from the laboratory frame to the beam’s rest
frame introduces an additional electric field due to the relative
motion of the particle beam. This field is described in the
nonrelativistic limit by E = v x B [44,45]. The phenomenon
of the interaction of the system with such a field is known
as the motional Stark effect [46]. It arises from the radial
magnetic field component B, (i.e., when r # 0). Since the
beam velocity is parallel to the z axis, the electric field lies
in the transverse plane,

E =B, (}3 = vB,(—sing X+ cos¢p §). (8)

The amplitude of this field scales with the beam velocity and
the radial magnetic field component.
The interaction Hamiltonian is given by

Hp = —d - E, €))

where d is the electric dipole moment of the system. This
interaction does not couple states within the hyperfine regime
considered here, but states with opposite parity. For example,
for hydrogen and deuterium atoms the closest opposite-parity
states to the ground state 1Sy, or the metastable 2S;,, are
the 2Py > and 2P;, levels. A rough estimate of the energy
difference that this interaction can cover is given by the
quantity evB,ay, where e is the elementary charge and q is
the Bohr radius. For v ~ 10° m/s and B, ~ 1-100 mT, this
energy ranges from 5x 107 to 5x 1077 eV. For comparison,
the energy differences 1S1,, — 2P and 25/, — 2Py, for H are
on the order of 10 eV and a few ueV, respectively. A detailed
calculation of this effect would require an expanded basis,
incorporating higher orbitals beyond the hyperfine regime of
single orbitals examined here. An example of such calcula-
tions for metastable H can be found in Refs. [47,48].
Moreover, while this work uses analytically defined mag-
netic field configurations for clarity, exact adherence to such
configurations is not strictly necessary for the effective ap-
plication of spin-enhancement techniques. By tuning the
magnetic field amplitude and/or time of flight, high nuclear
polarization can still be achieved even with nonideal field
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FIG. 14. Comparison of average spin projections (m; ,) (blue)
and (m,,) (red) for a ground-state H atom under two magnetic field
shapes: sine (solid line) and sine cubed (dashed line). The right
vertical axis represents the corresponding polarization.

shapes. To demonstrate this, Figs. 14 and 15 compare the re-
sults for a longitudinal field B, proportional to a sine function
(see Figs. 2 and 6) versus a sine-cubed function, for H and D,
respectively. The dashed lines correspond to the sine-cubed
magnetic field configuration. The nuclear polarization peaks
at different field amplitudes By and reaches slightly higher
values, 99.6% for the protons and 64.1% for the deuterons.
The applicability of this study also depends on achieving
and maintaining the discussed initial state preparations. For
atomic systems, where initial partial polarization is assumed,
this can be sustained by minimizing depolarization effects.
The same applies to molecular systems, but an additional
factor is the coherence involved in the presumed excitation. A
typical example is stimulated Raman adiabatic passage (STI-
RAP) [37], which is susceptible to decoherence effects. The
dominant source of decoherence is phase relaxation, which
can be mitigated by reducing the pulse width and/or increasing
the pulse delay while maintaining adiabaticity [49]. Decoher-
ence also arises from interactions between the system and its
external environment. However, for the timescales considered

1.00

0.75

0.50

0.25

e Polarization

—0.25

By (mT)

FIG. 15. Comparison of average spin projections (m,,) (blue)
and (m_,) (red) for a ground-state D atom under two magnetic field
shapes: sine (solid line) and sine cubed (dashed line). The right verti-
cal axis represents the electron spin polarization, while the deuteron
polarization is directly given by (m;, ).

here, preserving coherence is not expected to be a significant
challenge.

Furthermore, this framework focuses exclusively on the
internal degrees of freedom of the system, such as spin or
rotational angular momentum, and does not explicitly treat the
external degrees of freedom, such as position and momentum,
in a quantum-mechanical manner. In the current treatment, the
spatial motion is handled classically, assuming well-defined
values for position and momentum. This approximation is
valid when the spatial extent of the wave packets is much
smaller than the characteristic length scales over which the
magnetic field varies. While the initial states in our exam-
ples are assumed to be factorizable, with no entanglement
between internal and external degrees of freedom, such en-
tanglement can, in principle, develop during the particle’s
passage through spatially varying magnetic fields due to spin-
dependent forces. This spin-motion entanglement is neglected
in our model, which remains valid as long as the positions or
momenta of the particles do not become measurably depen-
dent on their spin states. In other words, our treatment applies
to experimental conditions where spin-dependent deflections
are negligible—for example, in tightly collimated beams or in
field configurations where magnetic gradients are weak across
the spatial extent of the wave packets.

Finally, the flexibility of the theoretical framework ex-
tends to the ability to incorporate various magnetic field
configurations as input. While this paper uses analytical ex-
pressions to facilitate discussions, the numerical evaluation of
spin dynamics readily accommodates arbitrary field configu-
rations provided as data points or interpolated functions, as in
Ref. [23].

IV. CONCLUSION

We have developed a versatile theoretical and computa-
tional framework for analyzing the spin dynamics of non-
relativistic particle beams with interacting angular momenta
in static, spatially varying magnetic fields. The framework
treats the particle’s motion classically, assuming well-defined
trajectories, and focuses on the quantum evolution of inter-
nal degrees of freedom such as spin and rotational angular
momentum. As a result, it does not account for entanglement
between internal and external degrees of freedom, and is valid
under experimental conditions where position and momentum
are not measurably dependent on spin states. The considered
field configurations are inspired by the experimental realiza-
tion of Sona’s proposal for polarized ion sources in accelerator
physics [24]. Furthermore, the same formalism can be applied
to stationary systems subjected to time-dependent magnetic
fields, provided the initial state is a statistical mixture.

A particularly promising application of this framework is
its potential to enhance nuclear polarization for the production
of polarized fuel for fusion reactors. Our studies on hydrogen,
deuterium, and hydrogen deuteride demonstrate that a single,
adaptable spin manipulation scheme can significantly boost
nuclear polarization. Future work will extend this analysis to
tritium, likely within the tritium deuteride molecule, whose
hyperfine structure has been extensively calculated [50]. In
addition, the proposed technique can be adapted to enhance
tensor polarization in deuterium. Further spin manipulations
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are also possible, not necessarily limited to nuclear spin, de-
pending on the desired spin configuration.

Moreover, the developed framework can be used to eval-
vate the spin dynamics in particle beams passing through
arbitrarily varying magnetic fields. This includes fields that
do not necessarily cross zero or change direction, as well as
transitions between regions of homogeneous fields in setups
for storing spin-polarized particles [51,52]. Magnetic fields
with structures ranging from submillimeter scales [53] to
meter scales [54] are commonly employed in experiments,
both of which are encompassed by the atomic and molec-
ular systems discussed here. In the case of periodic fields,
the Fourier transform of time-domain observables introduced
in this work enables the prediction of observed signals in
magnetic resonance experiments [53]. This feature broadens
the framework’s applicability, offering utility in diverse ex-
perimental scenarios and advancing our understanding of spin
dynamics in complex systems.
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APPENDIX A: COUPLED AND UNCOUPLED
REPRESENTATIONS

In the following, the coupled and uncoupled representa-
tions are described for the H and D atoms, for which the
total electron angular momentum equals its spin. The trans-
formation between these bases is presented and the matrix
representations of the spin components (spin matrices) are
shown. To maintain compatibility with standard conventions,
the quantization axis is considered to be the z axis.

1. System of two spin-1/2 particles

As described in Sec. II, a system of two angular momenta
with L, = % can be described by the basis vectors |/, [5),
where [; , are the projections along the quantization axis, tak-
ing values [, = :I:%. The four elements |/;, ;) compose the
uncoupled representation (note that the notation will change
from the generic L; ; and [} ; to S, I, and mg; to be compatible
with the spin operators in Sec. III). The elements of the basis

are arranged in the following sequence:

23 |5 =3

1
2
1 _1 11
=5 =3k =33 @D
Adding S and I, the resultant angular momentum F = S ®
1+ 1 ®1I has three possible projections for F' = 1 (triplet)

uncoupled basis {|mg, my)}: {

and one for F = 0 (singlet). Therefore, the coupled basis is
given by (again, note that in contrast to Sec. II, where the
generic letters K, k were utilized, here we use the notation
F, mp according to textbook nomenclature):

coupled basis {|F, mp)}: {|1, 1), |1,0), |1, —1), |0, 0)}.
(A2)

The relationships between the kets of the two representa-
tions are determined using the Clebsch-Gordan coefficients:

F=1,mp=1) = (A3a)

1 1
ms_zvml_z

Loy = 1 ‘1 1 ‘ 11 A3b
o= (5] +[-2 ) e

1 1
1, —1) = |-, —
2 2

0,0) = 1 1 1 11 (A3d)
220 2 2°2/)
If we denote the vector states on the left-hand side by |y ).

and those on the right-hand side by |x),, Eqgs. (A3a)—(A3d)
can be compactly expressed as

(A3c)

1 0 0 0
0 —} 0 —}
— : — 2 2
e=Qx), with Q@=[o = | Z | (A
1 1
0 % 0 -5

where Q is the transformation matrix that transforms a state
vector expressed in the uncoupled basis into its representation
in the coupled basis. It is an orthonormal matrix, so the inverse
transformation

1X)u =97 X, (AS5)

is given by the transpose of the matrix Q, i.e., 97! = Q.
Operators also transform between the two representations
as follows:

Te=QT.Q", (A6)
T.=9'TQ, (AT)

where 7., are the operators in the coupled and uncoupled
basis, respectively.
Using the Pauli matrices oy, 1/, for g = x,y, z,

0 1 0 —i 1 0
Ox,1/2 = 1 0 » Oy 172 = i 0 » Oz12 = 0 —1)
(A3)

we derive the spin matrices for the proton (subscript p) and
electron (subscript e) in the uncoupled representation accord-
ing to

h h
Sq’p,u =1,® 504’1/2 and Sq,e,u = qu,1/2 ® ]lp, (A9)

where

(A10)
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The spin matrices in the uncoupled representations are
listed below:

0 1 0 O 0 0 0 1
¢ _ffr oo of o _mfo o 1 0
et o0 0 0 1 T T 210 10 O
0 0 1 O 1 0 0 O
0 —i 0 O
¢ _fli 0 0 0
PRET 100 0 il
0 0 —i O
0 0 0 —i
¢ _floo i o
ret=aH10 i 0 0
i 0 0 O
1 0 0 o0
¢ _fifo -1 0 o0
o100 -1 0)
0 0 0 1
1 0 O 0
ERlo 1 0 0
Sz,e,u—z 0 0 -1 0 (All)
0o 0 0 -1

As an example, we calculate the proton spin matrix in the
coupled representation, combining Eqgs. (A11) and (A6),

1 0 0 0
L _hlo 0o 0 -1

Sepe=98pu Q" = Slo o -1 o AP
0 -1 0 0

Likewise, the other spin matrices can be obtained in the cou-
pled representation.

2. System of a spin-1/2 and a spin-1 particle

The electron and deuteron spin quantum numbers, consid-
ered here, are 1/2 and 1, respectively. The same procedure as
in Appendix A 1 is followed. The uncoupled basis comprises
the following vector states:

{ms,m)} {5, 1), 15,0). |5, =1)
=5 =1 =200 =50k (A1)
while the coupled basis consists of
UEme)y {13 3) 130 2) 13, =3) 13, =3),
3 =3) 330 (Al4)
The Clebsch-Gordan decomposition yields
3 3 1
‘F = E,mp = §> = |mg = E’ml = l> (Al5a)

3 ] —\/51 0 : : 1 Al15b
33) =30 ) @

SO DL L \/510 Al5
373)= e s

33 1
'E’_§>= ‘_5 _1> (A15d)

‘11_\/5‘11 1‘10 AlS
z’—5>— §§">_ﬁ_§’ >< ©

11_110\F11 (L5
2°2[ /3|2 3| 27 /)

Similar to Appendix A 1, the orthonormal transformation
matrix Q is expressed as

&’o o
SIS

(Al6)

©

I
c o oo o =
© THosl- o o
©c o ~o o o

S o oo Tye

O&l_o

and the basis transformations follow Eq. (A4) for vector states
and Eqgs. (A6) and (A7) for operators.

The Pauli matrices for spin 1, denoted by o, with ¢ =
X, y,7,are

01 0 0 —i 0
Y1 o 1 L
O = —= . oo =—|i —i|,
V2\o 1 o V2\o i o
1 0 0
o=lo 0 o). (A17)
00 -1

The spin matrices for the deuteron and electron are ob-
tained as follows:
(A18)

h
Sq,d,u =1, ® FlO'q'l and Sq,e,u = 50‘1’1/2 ® 1,4,

where

1 0 O
1I,=10 1 0], (A19)
0 0 1
and 1, and 0, 1/> are 2x2 matrices given in Appendix A 1.

The matrices in the uncoupled representation are summa-
rized:

01 .00 00
101 .00 0

¢ _hJo 100 00

o= pslo0 0 0 1 of
00 0 1 01
000 0 10
0 — 0 0 0 0
i 0 - 0 0 0

¢ _Mnhjo i 0o 0 0 0

whe="pl0 0 0 0 i of
0 0 0 —i 0
00 0 0 —i 0
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1 0 0 0 0 0
00 0 0 0 0
00 -1 0 0 0
Scan="nlo o o -1 0 0
00 0 0 0 0
00 0 0 0 1
0000 0 1
0000 1 0
¢ _Ho o0 1 00
wen =310 0 1 0 0 0f
0100 0 0
1 00 0 0 0
000 0 0 -—i
000 0 —i 0
¢ _flo oo i 0o o0
veu=3lo 0 i 0o o ol
0 i 0 0 0 0
i 00 0 0 0
1 00 0 0 0
010 0 0 0
ilo o1 0 o o
S2eu=310 0 0 -1 0 0 (A20)
000 0 -1 0
000 0 0 -1

The calculation of the z component of the deuteron spin
matrix is given below as an example of the basis transforma-
tion application:

Sz,d,c =Q Sz,d,u Q71

1 0 0 0 0 0
o 1! o 0 o -
_qo0 0 =5 o -2 9
o 0 0 -1 0 0
o 0 £ 0o -2 0
o -2 o o o 2
(A21)

Likewise, the other spin matrices can be obtained in the cou-
pled representation.

APPENDIX B: SUPPLEMENTAL FIGURES

Additional visualizations for D and HD are presented here
to complement the main results discussed in this work.

1. Deuterium plots

The following figures (Figs. 16 and 17) illustrate the pop-
ulations of the uncoupled and coupled states for an off-axis
deuterium beam as a function of the magnetic field amplitude
By.

2. Hydrogen deuteride plots

A comparison of average spin projections in HD between
beams propagating on-axis and at a radial distance of 2 cm
is presented in Figs. 18 and 19. A slight polarization loss is
expected under the assumed conditions.

0.35}
0.30f
- 0.25) — P11u
.é 0.201 — Pazu
= — P33u
§ 0.15¢ 1 — Pasu
0.10 — Ps5u
— Pe6u
0.05f --- sum/3
0.00 . . . . .
0 10 20 30 40 50

By (mT)

FIG. 16. Populations of uncoupled states at time t; ~ 3 ns as a
function of By, at r ~ 0.9 mm. The states are ordered according to
Appendix A 2.

0.35}
0.30F
- 0.25¢ — Pi1c
2 0.20; R
< I
= P33,c
g. 0.15 — Pa4c
~ R
o0.100 Pss,c
— Ps6.c
0.05} --- sum/3
0.00 . . . . .
0 10 20 30 40 50

By (mT)

FIG. 17. Populations of coupled states at time #; ~ 3 ns as a
function of By, at r ~ 0.9 mm. The states are ordered according to
Appendix A 2.
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p Polarization

By (mT)

FIG. 18. Average spin projections (m,), (my), and (m;) along the
zaxis forJ =1 at¢; ~ 6.5 ps as a function of By. The right vertical
axis represents the proton spin polarization, while the deuteron polar-
ization is directly given by (m,). An initially coherently rotationally
state-selected HD beam at r = 0 (solid lines) and r = 2 cm (dashed
lines) is considered.
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FIG. 19. Average spin projections (m,), (m4), and (m;) along the
zaxis forJ =2 att; ~ 11.4 ps as a function of By. The right vertical
axis represents the proton spin polarization, while the deuteron polar-
ization is directly given by (m,). An initially coherently rotationally
state-selected HD beam at r = 0 (solid lines) and r = 2 cm (dashed
lines) is considered.
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