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Most of the novel energy materials contain multiple elements occupying a single site in their lattice. The
exceedingly large configurational space of these materials imposes challenges in determining low(est)
energy structures. Coulomb energies of possible configurations generally show a satisfactory
correlation to computed energies at higher levels of theory and thus allow to screen for minimum-
energy structures. Employing an expansion into a binary optimization problem, we obtain an efficient
Coulomb energy optimizer using Monte Carlo and Genetic Algorithms. The presented optimization
package, GOAC (Global Optimization of Atomistic Configurations by Coulomb), can achieve a speed
up of several orders of magnitude compared to existing software. In this work, heuristic optimization
on various material classes is performed. Thus, GOAC provides an efficient method for constructing
low-energy atomistic models for ionic multi-element materials with gigantic configurational spaces.

Many state-of-the-art solid-state high performance materials are com-
posed of several different types of elements sharing the same lattice sites.
Examples for application areas are, but not limited to, energy conversion
and storage systems'™" as well as other special-purpose applications'*™".
In some of the most interesting materials for these applications (e.g.,
layered oxides, ionic conductors), numerous element types with various
concentration ratios are combined in a single-crystal phase. While such
compositions can be represented with the help of partial site occupations,
the configurational complexity becomes a severe challenge for simulation
methods that require structural models with integer site occupations,
such as commonly used density functional theory (DFT)"". The pro-
blem of determining reasonable atomistic configurations out of all pos-
sible configurations therefore constitutes a serious challenge for
modelling and simulation'’™*. To represent complex compositions with
integer occupations the so-called supercell approach is frequently
employed, where multiple periodic images of the unit cell are treated
explicitly. For computational studies it is often of interest to determine
low(est)-energy atomistic configurations which can be a hard combi-
natorial problem for large supercells. For complex compositions it is
generally infeasible to evaluate all possible configurations (even when
accounting for symmetry), especially when using high-level methods
such as DFT. Therefore, special techniques such as the Coherent
Potential Approximation (CPA)®, Special Quasirandom Structure
(SQS)*, Cluster Expansion (CE)***, Virtual Crystal Approximation
(VCA)”, or Small Set of Ordered Structures (SSOS)* have been

developed that approximate the energy and/or are able to find special
atomistic configurations that have relevant properties for further inves-
tigations. Approximations such as CE where many-particle interaction
terms up to a certain order are taken into account can reduce the com-
putational demand drastically’’. Other approaches that try to mimic
highly accurate energies at low computational costs include machine-
learned potentials and/or try to reduce the amount of configurations that
must be evaluated with other machine learning approaches, e.g., active
learning”™™”".

Naturally, the number of possible configurations becomes higher if
the supercell contains more sites, more positions per site, and also when
more elements can occupy a site, especially when elements are mixed in
equimolar amounts. All of these factors generally apply to novel energy
materials and yield a combinatorial explosion of the total number of
possible configurations. For highly symmetric cells, this number can be
reduced by several orders of magnitude if symmetry operations are
taken into account and only symmetrically irreducible configurations
are considered™. There are several software packages and methods such
as the site-occupancy disorder (SOD) code®, ENUMLIB® (also acces-
sible through PYMATGEN"), the solid-solution tools*** in the com-
mercial CRYSTAL code*, the so-called SUPERCELL software”, the
DISORDER code™ and its recently published tree search algorithm™,
and the SHRY package” that all focus explicitly on determining sym-
metry in-equivalent structures. The number of available software and
considerable computational effort spent highlights the importance of
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the atomistic combinatorial problem in computational materials
research.

For ionic crystals, the Coulomb energy with ionic point charges
represents a simple energy model allowing to evaluate numerous atomistic
configurations with limited computational resources. In practice, the model
requires the assignment of the ion valencies and the electrostatic energy is
calculated by Ewald summation™ to obtain the exact Coulomb energy of the
periodic lattice”. This allows to consider plenty of atomistic configurations
explicitly and, in some cases, even the complete enumeration of all possible
configurations for practical simulation supercells. This full enumeration
approach, sometimes also referred to as brute force method or exhaustive
sampling, is implemented with Coulomb energy evaluation in the so-called
SUPERCELL software®. More recently, the EWALDSOLIDSOLUTION
software™ was released offering the brute-force approach with an option for
sparser sampling of the density of states based on Coulomb energy eva-
luation. In addition, EWALDSOLIDSOLUTION also features a post-
processing gradient-descent-like algorithm for optimizing atomistic con-
figurations. However, treating complex combinatorial problems as they
appear in modern energy materials by brute forcing is computationally very
demanding, even for simple Coulomb energy evaluation. Therefore, clas-
sical optimization approaches and the use of heuristics is commonly
required.

The atomistic combinatorial sampling can be considered as a general
optimization problem and commonly used meta heuristics can be applied.
Do Lee et al”' applied some well-known heuristics, including genetic
algorithms, particle swarm optimization, harmony search, cuckoo search,
bayesian optimization, and deep Q-networks, to configurational optimi-
zation in argyrodite utilizing Coulomb energies. Out of the vast amount of
meta heuristics especially the Genetic Algorithm (GA)> should be men-
tioned that is known to be effective for the atomistic combinatorial
problem® ", as well as for global optimization of complex chemical struc-
tures in general™. Next to these classical approaches, more physically
motivated approaches such as Monte Carlo (MC)™ simulations were also
shown to be efficient in approaching the atomistic configurations
problem™ >, with the respective Monte Carlo methods implemented, e.g.,
for determination of SQS in the MCSQS code™ as part of the ALLOY
THEORETIC AUTOMATED TOOLKIT (ATAT)® or for general cluster
expansions within the recently released STATISTICAL MECHANICS ON
LATTICES package®'. Binninger et al.” recently also demonstrated that the
configuration problem can be solved on existing quantum-computing
hardware by formulating it as a binary optimization problem that can be
mapped onto a quantum annealer.

The aforementioned software and approaches for determining
lowest energy atomistic configurations are either effectively or explicitly
limited in the size of the configurational space®*'™****"*! or do not
specifically aim to determine the low(est) Coulomb energy structures by
optimization®*******’, As modern high-performance materials introduce
more and more species, approaches are required that can reliably and
quickly optimize even large combinatorial problems comprising of ten to
the power of several hundreds of configurations. For that purpose, either
heuristics or general-purpose optimization software can be used while
the latter one bears the opportunity for exact global optimization within
limited computational resources. Even though some works already
employed heuristic optimization methods to the configuration problem,
as discussed before, there is still, to the best of our knowledge, no pub-
lished tool that allows for optimization of such complex problems yet.
Efficient energy evaluation methods, even faster than the commonly
applied Ewald summation, along with specifically tailored heuristics
must be employed to achieve optimization in difficult atomistic combi-
natorial problems within reasonable computation time. Creating opti-
mized atomistic configurations for complex problems in a high-
throughput manner allows for efficient structure pre-selection for
computational studies, such as DFT calculations, of novel materials and
thereby offers the opportunity to enhance computational materials dis-
covery in several important research fields.

In this work, we therefore approach the atomistic combinatorial pro-
blem in novel energy materials as an optimization problem utilizing a basic
but reformulated Coulomb energy model. We present a Python-based code,
termed GOAC (Global Optimization of Atomistic Configurations by
Coulomb), that enables to interface any configuration problem of ions with
distinctive valancies given as a crystallographic information file (CIF)** to
existing (free or commercial) optimization software. CIFs are read with help
of the PYMATGEN* package. Moreover, we introduce several Fortran-
based routines that can be called from the Python code to apply various
heuristics to the configurational optimization problem, including GA and
MC. To provide a highly efficient implementation, the Coulombic energy is
expressed by a binary optimization problem and the optimization heuristics
are parallelized using OpenMP*. The methodological details of the
implementations and the capabilities of the GOAC code are discussed in the
next section, followed by a discussion of the results and benchmarking to
alternative methods.

Results

Implementation and theoretical background

A supercell is assumed comprising S sites with partial occupations and each
site having P; positions within the cell. Moreover, a site should be occupied
by N, ions of the element e while in total E; elements can occupy the given
site 5. The total number of possible configurations C in the supercell, without
considering any symmetries, is then given by:
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For a given problem, the Global Optimization of Atomistic Config-
urations by Coulomb (GOAC) code aims to determine low(est) energy
atomistic configuration(s) out of all possible configurations by employing
various optimization techniques. To this end, GOAC offers a command line
interface to provide a CIF with partial occupations and assumed charge
states (valencies) for the different ions. The general workflow of GOAC is
sketched in Fig. 1.
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Fig. 1| Schematic workflow of the GOAC code and connection to external packages.
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Fig. 2 | Correlation between relative DFT (details are described in the Method
section) and Coulomb energies of different ionic configurations for

Na[Lig 33Mny 7] O,. Coulomb energies were obtained with the following ionic
valencies: Na: +1; Li: +1; Mn: +4; O: —2. A linear fit of the data points is shown as a
red dashed line, along with the ideal correlation diagonal (black solid line).

In a first step, GOAC calculates the required pairwise Ewald energy
matrix-elements, which is discussed in the next section. Then, a binary
optimization problem is constructed by expansion to site-specific terms that
can be either interfaced to external optimizers, e.g., the GUROBI solver®, or
solved by internal Fortran heuristics. Both approaches are discussed in the
following sections. Finally, the n lowest energy atomistic configurations are
outputted as a CIF along with the respective Coulomb energies. It should be
noted that, in its current implementation, GOAC is not able to identify
symmetry-equivalent structures and all optimizers run on the full config-
urational space. However, filtering by energy is possible to only include
structures that are different in energy, which can be useful for many pro-
blems but might exclude symmetry in-equivalent structures in some
problems.

Pre-calculation of Coulomb energy terms. As optimization methods
generally require evaluating the energy of many different atomistic
configurations, GOAC implements an ionic Coulomb energy model due
to the low computational demand. Naturally, such simple point charge
models cannot account for quantum mechanical effects and there is no
guarantee that the order of different ionic configurations by Coulomb
energy is aligned with the one obtained by more accurate calculations,
e.g., based on DFT. However, several studies showed that structures with
a low Coulomb energy are often also good candidates for low DFT
energies’”"”***®, As an example, a satisfactory correlation between DFT
and Coulomb energies at randomly selected configurations is shown in
Fig. 2 for ionic configurations in the layered oxide Na[Lij33Mng 6,10,
(assumed ionic charges: Na: +1; Li: +1; Mn: +4; O: —2) that was syn-
thesized by Wang et al.*. The relative energies show a strong correlation
between DFT and Coulomb models and the linear fit well matches the
diagonal representing perfect correlation. A commonly employed
approach therefore consists in pre-selecting a certain number of low
Coulomb energy structures to be used for more accurate DFT calcula-
tions and eventually determine low DFT energy configurations®>”~"".
Following this approach, GOAC utilizes point-charge Coulomb
energies and expands them into a binary optimization model with
site coefficients up to the second order. We note that for the specific
case of the point-charge Coulomb energy this expansion is exact due
to the pairwise character of Coulomb point-charge interactions. This
allows for an efficient evaluation of different atomistic configurations

Eot = Eoont +  Zj0i%X + 2By xxixX
- B (SR oo

Fig. 3 | The energy calculation approach. Schematic visualization of the expansion
approach to binary variables for iterative sites for the energy calculation of atomistic
configurations along with the simplified energy formula and an example on how to
map specific atomistic configurations on a binary vector. Arrows indicate pairwise
interaction terms in the Ewald matrix while for the constant term only interactions
for one site are shown exemplary.

during optimization as the energy can be expressed as a sum of pre-
calculated coefficients. In periodic systems, Coulomb energies are,
however, difficult to converge and the Ewald summation technique is
required for the energy calculation.

The procedure of expressing the atomistic combinatorial problem as a
binary optimization problem is sketched in Fig. 3. The total energy (E,,,) ofa
given atomistic configuration can be expressed as a sum of the energy of the
fixed ions (zero-order term, E,,,), the interaction of each placed iterative
ion with the fixed ions as well as its self-interaction due to periodic boundary
conditions (first-order term, a), and all particle-particle interactions
between all placed iterative sites (second-order term, f3). All interactions in
the resulting binary optimization model can be pre-calculated for efficient
energy evaluation during optimization. In order to do this, the elements of
the pairwise interaction matrix of the Ewald energy ' can be calculated
by’":
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In these equations i and j are the indices of two sites, 7 is their
position, g their charge, and d;; the Euclidean distance between them.
The cell volume is denoted as V, L is the sum over all real-space lattice
vectors and k over (non-zero) reciprocal-space lattice vectors within the
respective cut-off radii and # is the screening length. While the theory
and implementation of Ewald summation is already extensively dis-
cussed in the literature, for example by Faber etal.”, we want to highlight
that for the energy calculation of configurational optimization problems,
the real-space and reciprocal-space terms can be split into an charge-
dependent (g-dependent) and position-dependent (r-dependent or d-
depended) term. The computationally demanding parts are in the
position-depended expressions as the sum over all real-space (L) and
reciprocal-space (k) lattice vectors has to be considered. As the pre-
calculation of all pairwise interactions of a configurational optimization
problem requires to evaluate multiple charges on fixed positions, the
position-dependent terms of the real- and reciprocal-parts only have to
be considered once for each site-pair. This can result in an additional
speed-up compared to standard Ewald summations of different con-
figurations as not just every pairwise interaction is only considered once,
but also the computationally demanding summations over lattice vec-
tors are only performed once for each pair of different positions. GOACs
implementation to calculate the pairwise interaction Ewald summation
energy matrix for configurational optimization problems utilizes this
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shortcut and in addition parallelizes the calculation of the matrix ele-
ments. From the Ewald summation matrix it is straight forward to
construct the binary optimization problem by summing up the matrix
elements that correspond to the black arrows in Fig. 3 to obtain the
values for E,,,,;; and all expansion coefficients « and 8. We note, that this
expansion can be considered as special case of a general second-order
cluster expansion without the requirements for any distance cut-offs as
periodic pair-wise interactions are considered exactly by Ewald sum-
mation. Thus, cutting the expansion at the second interaction order
yields the exact Coulomb energy of a configuration.

GOAC also allows to consider Gaussian smeared charges instead of
point-charges by applying to following correction to the point-charge
energy-terms’*:

erfc | —22-d,
Pamr < Z Z J) (6)
Y44 2y

In this equation o is related to the smearing width ¢ of the Gaussian
shaped charge by 1/(+/20). It should be noted that no correction to the self-
energy is applied to ensure a convergence towards the point-charge energy
for 6 — 0. This does practically also do not influence the configuration
search as the self-energy cancels out when two different configurations are
compared.

For the exemplary problem in Fig. 3 with two sites that are both
occupied by 50% by two different species, all possible configurations can be
expressed by a binary solution vector x that has a position for each site for
each species. A possible solution would than have a 1 on every position
where a species is placed and a 0 everywhere else. By that, the total energy of
a given instance becomes a simple sum of products of pre-calculated first-
order () and second-order (f3) coefficients and the binary solution vector x.
To ensure that only second-order terms are counted where both ions are
placed, the S-coefficients are multiplied by the two corresponding positions
in the binary solution vector. Due to the pairwise character of Coloumb
energies such an expansion to a binary optimization problem is able to give
the correct periodic energy for each configuration by pre-calculated
coefficients.

For implementing the binary optimization problem, a slight refor-
mulation of the equation in Fig. 3 appears to be practical where the solution
vector x has two dimensions, one for the site-species (i) and one for the
positions this site-species can occupy (j). Consequently, the expansion
coefficients & and 8 become higher in dimensionality as well. By reformu-
lation of the sums it is ensured that each interaction is only counted in one
direction and just one half of the diagonal « and $ matrices must be stored.
Lastly, for a full optimization problem the constraints have to be defined.
Beyond the binary constraint for the x variables (Eq. (10)) it must be also
ensured by additional constraints that the desired total occupancy (O)) is
matched for each site-species i (Eq. (8)) and that a certain position j is not
occupied by multiple species i (Eq. (9)). In summary, the optimization
problem of atomistic configurations is implemented in GOAC as shown in
Egs. (7-10).
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Even though Coulomb (Ewald summation) calculations are compu-
tationally comparably inexpensive, for high-throughput evaluations of
atomistic configurations Eqs. (7-10) represent a significant speed-up
compared to a full Ewald summation for each atomistic configuration.
Moreover, by storing the expansion coefficients (« and f3), the pre-calculated
energy terms conveniently allow to test multiple optimization approaches

without performing energy calculations every time.

Optimization strategies for atomistic configurations

Two main categories of optimizers, namely exact and heuristic optimizers,
can be distinguished. A successful run of an exact optimizer guarantees that
the global optimum is found or, if specified, not just the global optimum but
the n lowest energy structures while # can be freely chosen by the user. The
heuristic optimizers guarantee to output a valid, low energy structure that
might be the global minimum or just a local minimum or no minimum at
all, depending on the optimizer. The focus of heuristics is to create valid,
high-quality solutions fast, while exact optimizers spend significant effort on
proving optimality without improving the actual minimum solution.
Depending on the needs of the user, both approaches can be valuable and are
accessible via the GOAC code as described in the next sections.

Interfacing to external exact optimizers. Generally speaking, Egs.
(7-10) describe a so-called mixed integer non-linear programming
(MINLP) problem with the special circumstance that all variables are not
just integer but binary variables which technically allows for a refor-
mulation to a mixed integer linear programming (MILP) problem.
Problems of the same type frequently appear in the context of business
economics under the collective term Operations Research, where the aim
is, e.g., to determine the optimal (shortest/fastest) delivery route” or to
optimize production planning’*. Due to the economic value connected to
this problem type plenty of optimizers exist”. Their aim is to find the
global optimum and also prove that the global optimum was found
employing advanced mathematical strategies that can be faster than a full
enumeration of all possible solutions (brute forcing), which, by defini-
tion, is also an exact optimization method.

For a given atomistic combinatorial problem, GOAC can create a
standard MINLP with the help of the licensed Gurobi* software and the full
problem statement is written to a standard MPS (Mathematical Program-
ming System) file. By default, GOAC passes this MINLP also to Gurobi for
solving, however, it should be noted that the MPS file can be used to run the
problem in other (commercial or free) optimization software. GOAC
supports interfacing to the Gurobi optimizer and its solver parameters. It is
worth noting that Gurobi (and other software) is technically capable of
linearizing the quadratic terms in the MINLP to an MILP due to the binary
character of the integer variables. This is not done by default in GOAC but
was found to be efficient for some problems. Such a reformulation can also
allow the use of other standard optimization software that are not capable of
general MINLPs. However, results for exact optimizations presented in this
work were obtained with the default Gurobi parameter set in GOAC, which
was found to be most robust for different configuration problems. It should
be noted that the MPS file of the problem can be also handed to non-exact
heuristic solvers.
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Internal Fortran heuristics in GOAC. The core of the GOAC code offers
different heuristic optimizers for the atomistic combinatorial problem
that are all tailored for this specific problem and implemented in Fortran.
All of these heuristics are capable of generating valid low energy struc-
tures. The following methods are currently supported in the GOAC code:
a random structure generator, a Greedy Heuristic, a Gradient Descent
algorithm (GD), a Metropolis Monte Carlo code (MC)™, a simulated
annealing extension of the MC code (SA), a Replica Exchange Monte
Carlo scheme (REMC)’, and a Genetic Algorithm (GA)> with roulette
wheel selection””. The random structure generation occupies sites ran-
domly and resulting structures are not as random as structures obtained
by, e.g., SQS. It is also possible to combine some of the aforementioned
heuristics to a hybrid approach. Such combinations were already pro-
posed and proven successful for chemical optimization problems’™” and
a combination of the REMC and GA heuristic is benchmarked and
referred to as HY in the following. The functionalities of the different
algorithms are discussed in more detail in the manual and the code can be
directly accessed within the project repository (see Code Availability
Statement).

Most heuristics that are directly implemented in the GOAC code are of
stochastic nature and it can be useful to run the same heuristic multiple
times. By that procedure, the probability and confidence that the global
minimum and other low energy structures are found can be increased. For
convenience, GOAC allows to run the same heuristic multiple times in
parallel with the help of OpenMP® which allows to achieve an statistic
ensemble over multiple runs with the same heuristic. Moreover, trivial
parallelizations such as, e.g., parallelization over the different temperatures
in REMC are also implemented via OpenMP in GOAC to further boost the
performance of the code. The scaling behaviour of the different algorithms is
also sketched in Supplementary Fig. 1. Finally, the internal heuristics in
GOAC offer abortion by run time or heuristic steps without improvement
on the global minimum. More detailed descriptions of GOAC’s features and
how to employ them can be found in the manual inside the project repo-
sitory (see Code Availability Statement).

Performance of exact optimization methods

As explained above, GOAC has the possibility to interface to external
optimization software for exact optimization of atomistic configurations.
For this benchmark, the Gurobi optimizer, which utilizes an advanced
branch-and-cut method, is employed with the default parameter set GOAC
uses to interface to Gurobi. This parameter set enforces strong pre-solving of
the model (Presolve =2) along with a focus on proving optimality (MIP-
Focus = 2). It also ensures that the n lowest energy structures are found by
setting the convergence boundaries to zero (MIPGap =0 and MIPGa-
pAbs = 0) and the “PoolSearchMode” to 2. To the best of our knowledge, the
existing software for exact optimization of configurations, i.e., including
proof of optimality, employ the full enumeration approach. An efficient
implementation of the latter can be found in the SUPERCELL software,
which is used as a reference for timings of full enumeration. Here it should
be noted that the SUPERCELL software only considers the symmetry in-
equivalent structures which reduces the number of explicitly considered
atomistic configurations drastically compared to the total number of con-
figurations when ignoring symmetry.

The SUPERCELL software and the optimization with Gurobi of
the model prepared by GOAC were tested on a layered-oxide
sodium-ion-battery cathode material (Na[Li;;sMn,;3]0,)* with one
layer in the c-direction and partial occupations in both the transition-
metal and sodium-ion sites, cf. Fig. 4. By changing the sodium-ion
stoichiometry from 1.0 to 0.52, configuration combinatorics with
steadily increasing number of total possible configurations ranging
from ca. 10” to 10" were created and evaluated by both approaches.
Such variation of the sodium concentration is also a practical
example as it is a common task of battery material simulations to find
sodium configurations at various concentrations that are suitably low
in energy to predict accurate operation voltages®. Charge states of
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Fig. 4| Scaling of full enumeration versus optimization. log,-log, , representation
of run time (estimated from outputted timings of the software) to find the global
optimum atomistic configuration versus number of total possible configurations
using the full enumeration approach and external optimization software.

Na', Li", Mn*" and a variable oxidation state of oxygen ranging from
—2.0 (for a Na stoichiometry of 1) to —1.75926 (for a Na stoichio-
metry of 0.52) to ensure charge-neutrality were assumed as
the compound is reported to show anionic redox from O®" to O""
(n < 2)*. As both approaches guarantee to determine the global
optimum after a successful run, it is only of interest to benchmark the
run time of both methods. The timings on 128 physical processor
cores are plotted against the total number of configurations in Fig. 4.
For smaller problem instances with up to ca. 10’ configurations, full
enumeration was faster than optimization due to the overhead of
interfacing to an external optimization code combined with the
capability of the SUPERCELL software to reduce the solution space
to just symmetry in-equivalent structures. However, it should be
noted that timings on these problem instances are well below 10s
and therefore computationally inexpensive in both approaches. For
more complex problems the full enumeration approach scales per-
fectly linearly while run time of the branch-and-cut optimization
method increased more irregularly from the small offset caused by
the overhead. In general, the computation time of the branch-and-cut
optimization was significantly lower for more complex instances of
this problem and also appeared to scale lower towards problems with
many configurations. Overall, a speed-up of up to three orders of
magnitude was achieved by the optimization with Gurobi compared
to full enumeration with the SUPERCELL software at the most dif-
ficult considered problem instance with ca. 10** total configurations.
The respective run times to find the global optimum atomistic con-
figuration in Coulomb energy were ca. 18h by full enumeration
versus ca. 1.5min by Gurobi optimization.

Figure 4 clearly highlights the computational advantages that can be
accessed by using GOAC to formulate a general optimization problem for
the combinatorial ground-state search that can be handed to external
optimization software. However, extrapolating the scaling behaviour to
much larger problems also reveals that even with the significant speed up
achieved, still only problems of intermediate difficulty/size can be tackled. It
must be also noted that the actual performance of the branch-and-cut
optimization is very much problem dependent. By introducing (slight)
changes to the presented problem (e.g., more species per site or more
sodium sites by using a P-type layered structure®), problems can be con-
structed where optimization of the complete configuration space is even
slower than full enumeration of symmetry in-equivalent structures or
problems that formally have as many as 10*° configurations, but are being
optimized within seconds, might be obtained.
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Fig. 5 | Heuristic optimization in NaCl. Single-Core (1 physical CPU core, 1
OpenMP thread) performance of the MC (a), SA (b), REMC (c), GD (d), GA (e), and
HY (f) approaches as implemented in GOAC on the atomistic combinatorial pro-
blem of NaClin a 3 x 3 x 3-supercell with 10* possible configurations. All heuristics
were run for 300 seconds and averages over 16 independent runs along with their

statistics (standard deviations, minimum, maximum) and the obtained minimum
structure are shown in the plots. For MC, averages and standard deviations over 16
runs are visualized for 10 different temperatures, respectively. The temperature
evolution for SA is shown in the respective inset and the REMC parallel temperatures
are indicated in the corresponding plot.

In summary, the performance of applying standard optimization
software to the atomistic combinatorial problem is strongly problem
(material) dependent. However, our results indicate that especially for
problems of intermediate difficulty (ca. 10" to 10 possible configurations),
such as configuration of charge carriers in rechargeable energy storage
materials, optimization can give a significant computational advantage over
full enumeration approaches, even if the full enumeration method accounts
for symmetry equivalents.

Benchmark of heuristics in GOAC

As the heuristics do not guarantee to find the global minimum, a
suitable benchmark could either compare the lowest energy that is
found within given computational resources or the time that it takes
to find a known global optimum. However, the implemented heur-
istics are of stochastic nature which makes it important to average
their performance over multiple runs. Such comparisons of the dif-
ferent internal heuristics in GOAC are discussed for several examples
with various complexity in the following. Moreover, an additional
benchmark of FeSbO, is shown in the supplementary information
(Supplementary Table 1). All examples in the following were exe-
cuted on the same hardware and run times (given in real time) were
estimated by the CPU time required to perform each calculation.

Atomistic configurations in NaCl. The site occupation in NaCl is not
a true combinatorics problem as the unit cell contains two distinctive
sites, one for Na and one for Cl. However, for testing purposes both
sites can be modified such that each site is occupied by 50% of each

species, yielding an atomistic combinatorial problem. With this
model, in a 3 x 3 x 3-supercell the total number of possible con-
figurations is ca. 10*, a rather difficult combinatorial problem. As the
global optimum still remains trivial, a perfectly alternating pattern of
Na and Cl in all dimensions, this problem statement is a rather
suitable benchmark. Moreover, calculation of the Madelung
constant®,

M. — 4 X ey XrX|E|
< NIons/zxe ' (11)
is straight forward and convergence to the literature value of M =
1.74756...* can be tracked for the different heuristics over run time. In this
equation, €, is the electric constant, r the lattice distance of two neighbouring
sites (2.81 A), E the Coulomb energy of the considered structure, N;,s the

total number of ions in the structure (216), and e the elementary charge.
The convergence towards the Madelung constant for the heuristics
implemented in GOAC is plotted in Fig. 5. It is observed that the Gradient
Descent heuristic requires some time before the first solutions can be
obtained. In this algorithm, the first solution is written as soon as the local
minimization from a random starting point is finished and then the next
random starting structure is optimized. The time required to reach this first
solution is also different for random starting structures as different amounts
of optimization steps are necessary to reach a local minimum. Therefore, in
the beginning of the GD plot, averages over less than 16 runs are contained,
which also explains the drop in the average caused by more independent
runs that obtained their first solution being included. Even though the
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average becomes flatter and standard deviations as well as min-max dif-
ferences become smaller towards the end of the 5 minutes run time, no run
was able to find the global minimum. This highlights the problem of this
algorithm as it guarantees to find a local minimum but on shallow energy
surfaces with many local minima it becomes highly unlikely to find the
global minimum as there is a high chance to get trapped in another local
minimum. However, in other use cases one might also be interested in
studying these local minima.

The same tendency can be observed in Fig. 5 for Monte Carlo per-
formed atlow temperatures (ca. 0.1-0.5 eV) as the average quickly flattens to
a constant value since the algorithm gets trapped in local minima at a low
sampling temperature, similar to the outcome of the GD method. At higher
temperatures (ca. 0.6-0.8 V), however, the averages are observed to get
closer to the Madelung constant (corresponding to the global energy
minimum) over time as local barriers can be passed with a certain prob-
ability to eventually find lower minima. At high temperatures (ca. 0.9-1.0
eV) the algorithm is able to pass even higher energy barriers, thus spending
only short times for local optimization and resulting in a decrease of average
performance. In this example, the best result (on average) was obtained at a
temperature of 0.8 eV and the performance was quite sensitive to the
simulation temperature, even though multiple runs at various temperatures
were able to find the global optimum within five minutes of run time. To
overcome these temperature sensitivity, methods that make use of tem-
perature variation to improve the optimization performance are dis-
cussed next.

The average performance of Simulated Annealing was similar to that of
MC at lower to intermediate temperatures with a relatively high variance in
solutions, as some runs returned the global optimum. This behaviour can be
explained by the rather fast cooling rate chosen, which exponentially
decreased from an initial simulation temperature of 1.0 eV to almost 0 eV
during the run time (cf. inset in Fig. 5). Such a high cooling rate, which was
required to scan a sufficiently large temperature range within the given run
time limit, makes it more unlikely that a sufficient temperature is present at
the crucial optimization steps leading to a high risk of local minima trap-
ping. Nevertheless, SA was able to find the global optimum in some runs.

The last tested approach from the MC family, namely Replica
Exchange Monte Carlo, shows a better performance than SA. The algorithm
showed a pronounced optimization, especially in the first ca. 100 s, before
almost constant values for average, standard deviation, and min-max were
reached. This behaviour indicates that the optimization got trapped in local
minima for some runs, while in other runs the global optimum was suc-
cessfully reached. As only about one third of the run time (ca. the first 100 s)
was effectively used for optimization, the performance might be improved
by using more than four temperatures in REMC, including also largely-
different and higher temperatures. Compared to the other heuristics, REMC
performed very well within the given run time.

Among the approaches compared in Fig. 5, the Genetic Algorithm
shows the slowest increase in average performance versus run time. Several
generations and selection procedures are required to obtain more optimized
structures resulting in the steep improvement of average energy. Even
though some GA runs successfully reached the global optimum, the average
over all runs was still substantially below the correct Madelung constant
after 300 s of run time, showing that some runs got trapped in local minima.
The trapping also goes along with high standard deviations and a large min-
max difference. This occurs if the structural variation in the generations
becomes low and centred around a deep local minimum. Another problem
can be that the generation consists of symmetry equivalents of the same local
minimum or if the local minimum is so deep that it can not be exited at small
mutation rates which are required for a systematic optimization.

To overcome these limitations the Hybrid approach can be
employed which provided the best performance among the methods
compared in Fig. 5. Here, a pre-trained (from REMC) generation was
used for the GA which greatly improved the average performance
within the first seconds of the run. Moreover, the REMC steps
between the GA runs can help to improve the variation in the

generation pool of the GA. Vice versa, the GA offers a systematic
procedure to make rather large steps on the potential energy surface
that cannot be efficiently achieved by pure REMC. Therefore, both
approaches can complement each other and the results demonstrate
that HY was very effective with the average of 16 independent runs
being fairly close to the correct Madelung constant after just 5 min-
utes of run time and with many runs ending in the global optimum.
Moreover, the average kept increasing at longer run times indicating
that most of the runs would eventually converge to the global opti-
mum. Notably, the HY strategy performed better than the two
individual approaches (GA and REMC) and was the best out of all
investigated methods, indicating that a beneficial synergy effect
between GA and REMC was achieved.

Li-site occupation and Ta doping in LLZO. Li;La;Zr,O,, (LLZO) is a
widely studied electrolyte for all-solid-state batteries and therefore of
high practical interest. However, the global minimum energy structure or
in general low energy configurations are rather hard to approach com-
putationally due to its large unit cell (8 formula units). The computational
challenge becomes even more severe when dopants and defects are
introduced that require even larger supercells. For these cases, the con-
figurational space is extremely large, representing an interesting test for
GOAC to obtain optimized atomistic configurations in terms of Cou-
lomb energies. As an example, we consider LigLa, 960210 906121.094012
(Charges: Li'*, La®*, Zr**, Ta>*, 0*") which can be modelled by a 2 x 2 x
1 supercell (32 formula units). The modelled composition is in good
agreement with the experimental one reported by Redhammer etal.*. We
define the structure such that all lithium ions can be placed in both the
tetrahedral and octahedral sites, resulting in a total of ca. 10" possible
atomistic configurations. The corresponding structure model is also
shown in Supplementary Fig. 2.

Performances over 10 independent optimization runs are visualized
for each heuristic of GOAC in Fig. 6. As discussed previously at the
example of NaCl, the GD algorithm requires some time before the first
local optimizations are finished and therefore the average plot begins at
ca. 1000 s in Fig. 6. The overall performance of GD was found to be
among the worst out of the GOAC heuristics. The GA solutions con-
verged to a similar average energy as GD, but also had the largest var-
iation between the best and worst independent runs, hinting at local
minima trapping. This behaviour might be reasoned by the different
parallelization approaches as discussed in the supplementary informa-
tion and the code documentation in the project repository (see Code
Availability statement). However, averages shown in Fig. 6 are still a fair
comparison of optimization performance versus CPU time, revealing
that the heuristics including some sort of MC are more efficient than a
pure GA for LLZO.

The MC approach returned an intermediate average energy per ion,
while the SA and REMC methods yielded significantly lower energies after
one hour of run time. For most heuristics the convergence was rather flat
beyond the first ca. 500 s, but SA showed an exponential decrease over the
whole run time which was matching the exponential decrease of
the respective simulation temperature from ca. 12,000 K to almost 0 K
(cf. Fig. 6). Interestingly, also the variance between the best and worst runs
became rather small for the SA approach. In contrast to the results obtained
for NaCl, SA performed well for the present example due to the longer run
times that allowed for a slower cooling rate. The final average energies
obtained from SA and REMC were similar, but the energy of the best REMC
run was slightly lower than that of the best SA run, and the corresponding
minimum-energy structure is shown in Fig. 6. The superior performances of
SA and REMC over the other methods demonstrate that MC approaches
with some temperature variation are very effective for the complex LLZO
configuration problem. While in this example, the HY approach was not
able to improve on the performance of REMGC, still a much lower average
energy than for the pure GA was found. The overall performance of HY
might be increased by longer run times and adjusted heuristic parameters.
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The determined minimum energy structure can be analysed in
terms of the ratio of lithium ions in tetrahedral versus octahedral
coordination of oxygen as all lithium ions were freely iterated over both
classes of sites during optimization. A ratio of 2% ~ 0.67 is obtained
which is in very good agreement with the ratios of 0.74, 0.64, and 0.59
(after different treatments) and an average of 0.66 reported from
experiments*’. This highlights again the predictive quality of point-
charge Coulomb energies for the configuration of ions in complex
structures and validates the approach of pre-selecting atomistic low
energy configurations by Coulomb energies for higher-level calcula-
tions. It should be mentioned that in a practical study one might be
interested in the n lowest energy configurations as the material probably
encounters some disorder in experiment. However, referencing to the
lowest energy configuration is desirable to assess which meta-stable
configurations might exist at a given temperature. Moreover, the dis-
cussed LLZO example can hardly be approached by exact optimization
or computationally more demanding energy evaluation models proving
the practicability of heuristic optimization with Coulomb energies. To
the best of our knowledge, heuristic configurational optimization of
Coulomb energies has not been reported before for any comparably
complex atomistic combinatorial problem. However, it should be
mentioned that heuristic optimization was carried out on different, more
complex problem settings beyond site-configurational optimization and
Coulomb energies such as, e.g., protein folding™.

Layered oxide cathode materials. To further demonstrate the optimi-
zation capabilities of GOAC, we addressed the atomistic combinatorial
problem in a high-entropy layered sodium-ion-battery cathode material.
The composition of O3-Nay;[Li;/sFe;6C01/6NiysMn; 3]0, was recently
proposed by Yao et al.*, while O3 indicates that the structure has three
layers in the c-direction and octahedral coordination of the sodium ions®.
We modelled the system in a /3-unit cell (a = 5.0 A, c=192A) assuming
ionic charges of Na™, Li*, Fe***, Co®", Ni*", Mn**, and O'”>". The cationic
charges were chosen to agree with the ones observed in experiment™ while
the charge of Fe was decreased by 0.5 and the one of Co was increased by 0.5
to ensure that all configurations are distinguishable in Coulomb energy. The
oxygen charge was set to achieve a overall charge-neutral compound and
can be reasoned by the experimentally reported oxygen redox. All sodium
ions were iterated over all sodium positions in every layer (one sodium site
in the whole structure with nine positions in the unit cell) and all ions in the
transition metal layers were iterated over all positions in each layer (one
transition metal site in the whole structure with nine positions in the unit
cell), allowing for the maximal configurational space. To highlight the
scalability and limitations of GOAC, this configuration problem was solved
in supercells of different sizes ranging from 4 unit cells (2 x 2 x 1,
Na,y[LigFegCogNigMn;,]0,,) to 108 wunit cells (6 x 6 x 3,
Nagyg[LijsoFe16:C0162Ni162Mns4] O1044). Structure models for the smallest
and largest considered supercells are visualized in Supplementary Fig. 4.
Results for optimizing the atomistic configurations with the heuristics in
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Table 1| Energies per ion of the lowest energy structures obtained for differently sized supercells of 03-Nay/3[Li6Fe1/6C01/6Ni,
6Mn4,3]0, with the different heuristics implemented in GOAC (all calculations performed on 128 physical CPU cores and using

128 OpenMP threads)
Energy per ion [eV]
3-Cell Ncons tc[s] tr [h] GD MC SA REMC GA HY

2x2x1 10% 0.0 1 —22.080 —22.080 —22.080 —22.080 —22.080 —22.080
2x2x2 10% 0.0 1 —22.071 —22.082 —22.096 —22.096 —22.096 —22.096
4x4x1 10" 0.1 1 —22.040 —22.027 —22.087 —22.087 —22.042 —22.087
4x4x2 10%%° 0.5 2 —22.013 —22.006 —22.096 —22.096 —21.772 —22.040
6x6x1 1038 0.5 2 - —22.003 —22.078 —22.083 —21.814 —22.029
8x8x1 10°% 1.6 4 - —21.975 —22.031 —22.022 —21.625 —21.986
6x6x2 10°" 1.9 8 - —21.984 —22.040 —22.031 —21.589 —21.992
6x6x3 10%° 3.8 16 - —21.970 —22.018 —22.006 —21.548 —-21.975

Even though energy differences appear to be small as they are scaled per ion to allow for comparisons, they are very significant (usually more than 1 eV) when the energy of a whole supercell is considered.
Thetable also shows the total number of configurations (Ncony) of the different combinatorial problems along with the required time to calculate the Coulomb matrices and expansion coefficients (tc). The run
times for each heuristic were limited to tg for the shown problems. Minimum energies found for each of the problem sizes are highlighted in bold.

GOAC within a given run time (given computational resources) are sum-
marized in Table 1.

Remarkably, all solvers were capable to find the same minimum,
likely the global minimum, for the smallest problem ofa 2 x 2 x 1 supercell
within just one hour of run time. It should be also noted that most
heuristics identified this minimum within the first minutes (cf. the con-
vergence versus run time plots in Supplementary Figs. 5-10). Compared
to the exact solvers presented in the previous section, this represents a
huge speed up as a problem with 10°' total configurations would be
(almost) impossible to solve with an exact solver in a reasonable run time,
especially not within just one hour. This highlights the practicability of
GOAC as problems of this size regularly appear when high-entropy
structures or similarly complex structures are to be pre-selected for DFT
calculations. The suitability to pre-select low(est) energy structures for
DFT calculations was also checked by performing single-point DFT cal-
culations on the 10 lowest energy configurations obtained by the REMC
approach (Supplementary Fig. 11). This is particularly practical as one is
usually interested in selecting a sufficiently low or several low energy
configurations but in the following just the global minimum is discussed
to better compare the performances of the different heuristic optimizers.

For the next larger problem, a 2 x 2 x 2 supercell, only the more
advanced heuristics, namely SA, REMC, GA, and HY, were able to find
the same lowest energy structure, which makes it again a likely candidate
for the global minimum in Coulomb energy. The respective minimum
energy is lower than the minimum energy obtained for the smaller
problem, because the increased problem size allows for larger, energe-
tically more favourable superstructures. The same applies to the 4 x 4 x
1 supercell where SA, REMC, and HY obtained the same best candidate
configuration for the global minimum. As the periodicity is extended in a
different direction compared to the 2 x 2 x 2 supercell, the minimum
energy is still lower than for the 2 x 2 x 1 case but higher than for the 2 x
2 x 2 supercell. For a4 x 4 x 2 supercell, only SA and REMC were capable
to find a likely candidate for the global minimum. The respective
minimum energy is identical to the one of the 2 x 2 x 2 problem as both
consider the same periodicity, and thus same degrees of freedom, in the
c-direction. The additional degrees of freedom in a and b-direction, on
the other hand, did not seem to allow for the formation of lower energy
superstructures. These findings highlight another aspect why it is
important to consider sufficiently large supercells in the construction of
structural models with occupational disorder, because suitable supercell
sizes are required for lowest energy superstructures. To efficiently select
suitable supercell sizes and to account for the fact that it becomes
increasingly hard to obtain the lowest energy configuration in larger
supercells even if it is already known from a smaller commensurately

cell, GOAC also allows to systematically scan for increasing supercell
sizes to find low(est) energy configurations.

For an even larger 6 x 6 x 1 supercell, the GD heuristic was not able to
reach any local minimum within the given run time since more complex
problems not only increase the expected number of optimization steps
required to reach a local minimum from a random starting structure but
also heavily increase the amount of neighbouring structures that need to be
evaluated to follow the steepest descent path. Within the given framework,
10°® configurations seemed to be the maximum where GD could be applied
within reasonable computational resources, which is arguably already a
quite large configurational space. For the 6 x 6 x 1 supercell, REMC returned
the lowest energy structure, lower in energy than the 2 x 2 x 1 minimum,
which was expected given that the 6 x 6 x 1 is a multiple of the 2 x 2 x
1 supercell. SA also returned a low-energy solution, albeit not the same
minimum, probably because the cooling rate was too fast for the given
problem size and run time limitation.

For all supercells larger than 6 x 6 x 1, SA found the lowest energy
structure out of all heuristics implemented in GOAC. However, the
obtained minima did not correspond to the respective global minima as
they were higher in energy than the minimum energy structures of one of
the smaller problems with matching multiplicity. While it is still possible
to run optimizations on these extremely large problems, the results show
the limitations of the heuristics implemented in GOAC as one cannot
expect to find lowest energy configurations within reasonable run times
for such large configurational spaces. Due to the combinatorial explo-
sion in large cells it is also not surprising that it is nearly impossible to
find minimum energy structures in configurational spaces with up to
10™° configurations, a number even larger than the estimated total
number of atoms in the entire universe” to the power of ten (The actual
number of atoms in the universe must be estimated from measured
densities and hydrogen/helium distributions and is in the range of ca.
10* atoms).

The pure MC heuristic performed inferior to the more elaborate SA
and REMC extensions for all problem sizes. As it was shown for NaCl, the
MC method is quite sensitive to the simulation temperature which was not
re-optimized for every problem in the benchmark (fixed to 0.75 eV). The
GA performed rather poor for problems with a complexity of 10°* or more
in its current implementation. Combining the GA with REMC in the HY
approach did not resolve this issue for the larger problem sizes as the gain in
performance compared to the pure GA stemmed almost exclusively from
the REMC part. Therefore, the overall performance of the HY method was
still inferior to using all computational resources on REMC. More advanced
HY combination schemes or different crossing strategies in the GA might
resolve this under-performance in the future.
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Discussion

In this work, we showed that the problem of finding low(est) energy
configurations in the huge configurational space of modern energy
materials can be effectively approached by using advanced optimi-
zation methods in combination with Coulomb energy models. The
Coulomb energy variations between different configurations often
align well with energies from higher levels of theory, e.g., DFT, and
sampling by Coulomb energies is therefore an attractive method to
pre-select low-energy structure candidates. As a tool for conveniently
and effectively exploring the vast configurational space of atomistic
configurations in complex materials, we introduced the GOAC code
that can be conveniently accessed as a command line tool.

The calculation of energies of different configurations was significantly
sped up by expressing the Coulomb energy cost function as an expansion to
a binary optimization problem, which enables the use of pre-calculated
coefficients in the optimization procedure, thus providing significant
improvements over performing Ewald summations at each optimization
step. This reformulation transforms the atomistic combinatorial problem
statement into an MINLP problem and allows to employ various advanced
optimization methods. We showed that the exact optimization of the
MINLP, interfaced via GOAC to existing optimization software, was several
orders of magnitude faster than the full enumeration approach often applied
for the atomistic combinatorial problem, allowing to exactly solve config-
uration problems for larger system sizes.

Due to the combinatorial explosion of the configurational space
in complex multi-element materials, exact solving strategies cannot
be applied to more complex materials. For such problems, we
implemented several heuristics in GOAC, including Gradient Des-
cent, Monte Carlo, Simulated Annealing, Replica Exchange Monte
Carlo, Genetic Algorithms, and hybrid approaches. With these
heuristics, GOAC produced high-quality low-energy structures
within limited computational resources for extremely large config-
uration problems, which is of interest to model complex composi-
tions and identify possible superstructures. As a highlight, we showed
that GOAC was able to find likely candidates for global minimum
structures of problems with 10’ configurations in just about 2h of
run time on 128 CPU cores. It should be mentioned that this usually
implies that also the n lowest energy configurations that are of
interest for further computational studies are obtained as well.
Moreover, it was demonstrated that for problem combinatorics up to
10%%, it was still possible to perform optimizations using the GOAC
package even though finding minimum energy configurations in
reasonable computation time cannot be expected at such large
problems.

For the results presented in this work, simple point-charge Coulomb
energies were employed, which represent a rough estimation that does not
guarantee to coincide in the lowest energy configuration with higher level of
theory approaches, e.g., DFT. Moreover, atomistic combinatorial problems
with charge-neutral ions (atoms) or ions with identical valencies cannot be
optimized on the basis of Coulomb energies alone. In general, one can
expect to get reasonable energetic alignments of DFT and Coulomb when
the charges are more localized as this is more well-described by point-
charges. When studying systems with more delocalized charges, e.g., highly
charged cathode materials, the alignment of DFT and Coulomb energies
might decrease. To potentially overcome the issue of too delocalized charges
and also allow to treat different ions with the same charge, GOAC also
supports Gaussian smeared charges. Future studies will show if or how
smearing out the point-charges can improve the accuracy of the Coulomb
model in cases with strong delocalization and help to deal with different
species that have the same valency.

Finally, it should be mentioned that GOAC can perform well on
several other research questions concerning configurations, also
beyond the scaling tests and configurational selections shown in this
work. For example, GOAC might be employed to study charge-
ordering of ions that disproportionate into different valances (cf.

Supplementary Fig. 12) or charge-ordering in general. In fact, results
at the example of a layered oxide sodium-ion cathode material in
Supplementary Fig. 13 indicate that a strong correlation of energies
of charge-orderings of differently charged Mn ions exists between
Coulomb and DFT energies. In the case of layered oxide cathodes
GOAC optimizations also allow to study transition metal layer
charge-orderings and Na-orderings in a coupled fashion to get an
idea if and how theses two orderings are coupled. The examples
presented in Supplementary Fig. 14 indicate that GOAC might also
be successfully applied to this problem setting as DFT calculations
show similar trends to the GOAC optimizations. Further studies
might show in more detail how GOAC can be employed to study
various types of orderings in layered oxide materials and how well
the results match selected references, e.g., DFT calculations. Lastly,
GOAC was recently also applied to study the single-phase — two-
phase charging characteristics of lithium iron phosphate (LFP)¥.
Results showed that electrostatic optimization can reproduce the
critical particle size from experiment for the switch from the single-
phase to the two-phase charging mechanism as well as the energe-
tically most favourable interface orientation between the two phases.
This indicates that GOAC could be used to study similar materials in
the future.

In summary, GOAC can be a valuable tool for computational research
on novel energy materials and other complex materials to determine likely
candidate structures for low or lowest energy atomistic configurations with
comparably little computational resources.

Methods

DFT reference calculations

The DFT reference calculations shown in Fig. 2 were performed with
the VIENNA AB INITIO SIMULATION PACKAGE (VASP)® in the
projector augmented wave (PAW) scheme” with the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional”.
An energy cut-off of 520 eV along with a convergence criterion of
10*eV,a 1 x 1 x 2 I'centred k-point grid, and spin-polarization was
employed. Single-point calculations without any geometry optimi-
zation were performed to allow for a fair comparison to Coulomb
energies. The exact geometries can be found in the “Examples” folder
of the project repository (see Data Availability statement). Structure
models in this work were visualize with the VESTA software™.

Data availability

The underlying code, GOAC, that was designed for this study is openly
available on the Forschungszentrum Jillich GitLab and can be found here:
https: //iffgit.fz-juelich.de/k koester/goac. All raw data and input files for the
examples shown in this work can be found in the Forschungszentrum Jiilich
GitLab project in the "Examples” folder.

Code availability

The underlying code, GOAC, that was designed for this study is openly
available on the Forschungszentrum Jiilich GitLab and can be found here:
https://iffgit.fz-juelich.de/k koester/goac.
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