001043654 001__ 1043654
001043654 005__ 20250717202250.0
001043654 0247_ $$2doi$$a10.5194/egusphere-egu25-4311
001043654 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02958
001043654 037__ $$aFZJ-2025-02958
001043654 041__ $$aEnglish
001043654 1001_ $$0P:(DE-Juel1)133944$$aStreun, Matthias$$b0$$eCorresponding author
001043654 1112_ $$aEuropean Geoscience Union General Assembly 2025$$cVienna$$d2025-04-27 - 2025-05-03$$gEGU25$$wAustria
001043654 245__ $$aphenoPET: Observing Carbon Transport within Individual Plants
001043654 260__ $$c2025
001043654 3367_ $$033$$2EndNote$$aConference Paper
001043654 3367_ $$2BibTeX$$aINPROCEEDINGS
001043654 3367_ $$2DRIVER$$aconferenceObject
001043654 3367_ $$2ORCID$$aCONFERENCE_POSTER
001043654 3367_ $$2DataCite$$aOutput Types/Conference Poster
001043654 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1752749145_2296$$xAfter Call
001043654 520__ $$aIndividual plants vary in their ability to respond to environmental changes. For dynamic responses in plants, long-distance carbon (C) transport is required to support growth. Therefore, investigating C allocation in plants is crucial for developing a mechanistic understanding of plant functioning. However, little is known about short-term assimilate transport patterns and velocities, as literature values from singular and invasive measurements are hard to interpret for a highly susceptible system. To study the transport of photo assimilates within plants, we developed phenoPET, a plant dedicated positron emission tomography (PET) scanner. While PET scanners have been widely used in medical science since decades, their use in plant research is less common. For tracing the transport, carbon dioxide containing the short-lived positron-emitting isotope carbon-11 (<sup>11</sup>C) is applied as <sup>11</sup>CO<sub>2</sub> to a single leaf or the whole canopy of a living plant. The plant fixes CO<sub>2</sub> and the <sup>11</sup>C is subsequently transported in the form of photosynthates towards C sinks, e.g. through leaf and stem towards the root system. The decaying tracer can then be located inside the plant by detecting its radiation. To this end, the living plant is placed in the field-of-view of the scanner, which is a volume with a diameter of 18 cm and a height of 20 cm. A lifting table can move the scanner vertically and allows for repeated measurements of different regions of interest along the plant axis. The phenoPET system is located in a climate chamber equipped with LED panels in order to create defined environmental conditions. <br>In our presentation, we will highlight our workflow for gathering quantitative data on C tracer transport velocities between different plant types, single plants, for different plant parts, during a day, and over days. We believe that this will provide new insights into the functioning and dynamics of C transport processes in in the plant-soil system.
001043654 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001043654 588__ $$aDataset connected to CrossRef
001043654 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
001043654 65017 $$0V:(DE-MLZ)GC-170-2016$$2V:(DE-HGF)$$aEarth, Environment and Cultural Heritage$$x0
001043654 7001_ $$0P:(DE-Juel1)173093$$aScherer, Benedikt$$b1
001043654 7001_ $$0P:(DE-Juel1)129360$$aMetzner, Ralf$$b2$$ufzj
001043654 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b3
001043654 7001_ $$0P:(DE-Juel1)131784$$aPflugfelder, Daniel$$b4$$ufzj
001043654 7001_ $$0P:(DE-Juel1)129303$$aChlubek, Antonia$$b5$$ufzj
001043654 7001_ $$0P:(DE-Juel1)165733$$aKoller, Robert$$b6
001043654 7001_ $$0P:(DE-HGF)0$$aKnief, Claudia$$b7
001043654 7001_ $$0P:(DE-Juel1)133959$$aWüstner, Peter$$b8
001043654 7001_ $$0P:(DE-Juel1)133962$$aZimmermann, Egon$$b9$$ufzj
001043654 7001_ $$0P:(DE-Juel1)142196$$aNatour, Ghaleb$$b10$$ufzj
001043654 773__ $$a10.5194/egusphere-egu25-4311
001043654 8564_ $$yRestricted
001043654 8564_ $$uhttps://juser.fz-juelich.de/record/1043654/files/EGU25-4311_Posrer_Streun.pdf$$yOpenAccess
001043654 909CO $$ooai:juser.fz-juelich.de:1043654$$pdriver$$pVDB$$popen_access$$popenaire
001043654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133944$$aForschungszentrum Jülich$$b0$$kFZJ
001043654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173093$$aForschungszentrum Jülich$$b1$$kFZJ
001043654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129360$$aForschungszentrum Jülich$$b2$$kFZJ
001043654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b3$$kFZJ
001043654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131784$$aForschungszentrum Jülich$$b4$$kFZJ
001043654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129303$$aForschungszentrum Jülich$$b5$$kFZJ
001043654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165733$$aForschungszentrum Jülich$$b6$$kFZJ
001043654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133959$$aForschungszentrum Jülich$$b8$$kFZJ
001043654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133962$$aForschungszentrum Jülich$$b9$$kFZJ
001043654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142196$$aForschungszentrum Jülich$$b10$$kFZJ
001043654 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001043654 9141_ $$y2025
001043654 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043654 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001043654 920__ $$lyes
001043654 9201_ $$0I:(DE-Juel1)ITE-20250108$$kITE$$lInstitute of Technology and Engineering$$x0
001043654 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
001043654 980__ $$aposter
001043654 980__ $$aVDB
001043654 980__ $$aUNRESTRICTED
001043654 980__ $$aI:(DE-Juel1)ITE-20250108
001043654 980__ $$aI:(DE-Juel1)IBG-2-20101118
001043654 9801_ $$aFullTexts