001     1043654
005     20250717202250.0
024 7 _ |a 10.5194/egusphere-egu25-4311
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02958
|2 datacite_doi
037 _ _ |a FZJ-2025-02958
041 _ _ |a English
100 1 _ |a Streun, Matthias
|0 P:(DE-Juel1)133944
|b 0
|e Corresponding author
111 2 _ |a European Geoscience Union General Assembly 2025
|g EGU25
|c Vienna
|d 2025-04-27 - 2025-05-03
|w Austria
245 _ _ |a phenoPET: Observing Carbon Transport within Individual Plants
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1752749145_2296
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Individual plants vary in their ability to respond to environmental changes. For dynamic responses in plants, long-distance carbon (C) transport is required to support growth. Therefore, investigating C allocation in plants is crucial for developing a mechanistic understanding of plant functioning. However, little is known about short-term assimilate transport patterns and velocities, as literature values from singular and invasive measurements are hard to interpret for a highly susceptible system. To study the transport of photo assimilates within plants, we developed phenoPET, a plant dedicated positron emission tomography (PET) scanner. While PET scanners have been widely used in medical science since decades, their use in plant research is less common. For tracing the transport, carbon dioxide containing the short-lived positron-emitting isotope carbon-11 (11C) is applied as 11CO2 to a single leaf or the whole canopy of a living plant. The plant fixes CO2 and the 11C is subsequently transported in the form of photosynthates towards C sinks, e.g. through leaf and stem towards the root system. The decaying tracer can then be located inside the plant by detecting its radiation. To this end, the living plant is placed in the field-of-view of the scanner, which is a volume with a diameter of 18 cm and a height of 20 cm. A lifting table can move the scanner vertically and allows for repeated measurements of different regions of interest along the plant axis. The phenoPET system is located in a climate chamber equipped with LED panels in order to create defined environmental conditions.
In our presentation, we will highlight our workflow for gathering quantitative data on C tracer transport velocities between different plant types, single plants, for different plant parts, during a day, and over days. We believe that this will provide new insights into the functioning and dynamics of C transport processes in in the plant-soil system.
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
650 1 7 |a Earth, Environment and Cultural Heritage
|0 V:(DE-MLZ)GC-170-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Scherer, Benedikt
|0 P:(DE-Juel1)173093
|b 1
700 1 _ |a Metzner, Ralf
|0 P:(DE-Juel1)129360
|b 2
|u fzj
700 1 _ |a Huber, Gregor
|0 P:(DE-Juel1)129333
|b 3
700 1 _ |a Pflugfelder, Daniel
|0 P:(DE-Juel1)131784
|b 4
|u fzj
700 1 _ |a Chlubek, Antonia
|0 P:(DE-Juel1)129303
|b 5
|u fzj
700 1 _ |a Koller, Robert
|0 P:(DE-Juel1)165733
|b 6
700 1 _ |a Knief, Claudia
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wüstner, Peter
|0 P:(DE-Juel1)133959
|b 8
700 1 _ |a Zimmermann, Egon
|0 P:(DE-Juel1)133962
|b 9
|u fzj
700 1 _ |a Natour, Ghaleb
|0 P:(DE-Juel1)142196
|b 10
|u fzj
773 _ _ |a 10.5194/egusphere-egu25-4311
856 4 _ |y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1043654/files/EGU25-4311_Posrer_Streun.pdf
909 C O |o oai:juser.fz-juelich.de:1043654
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)133944
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)173093
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129360
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129333
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129303
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)165733
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)133959
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)133962
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)142196
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ITE-20250108
|k ITE
|l Institute of Technology and Engineering
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ITE-20250108
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21