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Abstract
Heterostructures based on superconductors and ferromagnets show strong potential for innovating
device applications in spintronics and quantumcomputing. SrRuO3 (SRO)has recently attracted
much attention among transitionmetal oxides because it is the only 4d oxide to exhibit itinerant
ferromagnetism andmetallic conductivity. YBa2Cu3O7−x (YBCO) is one of themost studied high
critical temperature (high-Tc) superconductors with awide range of potential applications.We report
morphological, structural,magnetic andmagnetotransport characterization of YBCO/SRO (HS-YS)
and SRO/YBCO (HS-SY)heterostructures grown on lowmiscut SrTiO3 (001) single crystals by high
oxygen pressure sputtering. All samples exhibit epitaxial growthwith good crystal quality and sharp
interfaces. The heterostructures exhibitTc of 87K and 57K forHS-YS andHS-SY, respectively, both
reduced compared to bulk YBCO (91K). The reduction inTc and intriguing features in
magnetoresistancemeasurements around the onset of superconductivity are robust indicators that a
proximity effect takes place in such heterostructures, and inspire further theoretical and experimental
investigations.

1. Introduction

Proximity effects are intriguing phenomena that emerge from the interfaces of thinfilmheterostructures. Of
particular interest are such effects at interfaces between superconductors and ferromagnets, due to the
intrinsically strong electron correlation effects in these classes ofmaterials [1]. Such phenomena originate from
the competition between the superconducting (SC) and ferromagnetic (FM) electronic structures. They have
been studied theoretically and experimentally [2–4]. The potential exploitation of proximity effects in
superconducting spintronics [5], in the development offluxonic devices [6, 7] for quantum computing and in
the development of quantum electronics [8], hasmotivated theirmore detailed study.

Recentmagnetotransport and neutron scattering experiments onNb/FePd heterostructures have revealed
proximity effects associatedwith the strength of the perpendicularmagnetic anisotropy (PMA) of the FM layer
[9–11]. Domain-wall and reverse domain superconductivity were observed in heterostructures with FePd layer
showing high PMAandmazemagnetic domain structure, whereas long-range supercurrents through the FePd
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layer were observed in heterostructures with lowPMAand stripemagnetic domain structure. These results
demonstrate that it is possible to control the superconducting order parameter at the nanoscale by adjusting the
PMA. Important to note is that these proximity effects appear due to the comparable energy and length scales: on
the one hand the comparablemagnitudes of the FM stray-fields and the second critical field (Bc2) of the SC, and
on the other hand, the generation of spin-triplet Cooper pairs with large penetration length into the FM
compatible with the typical dimensions of the in-planemagnetic texture of the FM layer [4, 12–14]. Typical
proximity effects in the formof oscillations of the critical temperature (Tc) and divergingmagnetoresistance are
observedwhen the thickness of the FM layer is varied in FM/SC/FMandmultilayer heterostructures based on
conventional SC and FMmetals andmetallic alloys [15, 16].

Unique proximity effects are observed in SC/FM thin film heterostructures based on high-Tc SC and FM
spin-valves, which generally show in-planemagnetic anisotropy [17], such as YBa2Cu3O7−x

(YBCO)/La1−xCaxMnO3 (LCMO) andYBCO/La1−xSrxMnO3 (LCMO). In such heterostructures, amagnetic
proximity effect is observed aboveTc, where amagnetic dead or depleted layer forms at the SC/FM interface and
suppresses themagneticmoment in the FM layer [3]. BelowTc, a superconducting proximity effect occurs. Spin-
triplet Cooper pairs leak into the FM-layer resulting in a subsequent decrease inTc. In oxidemultilayers and
tunnel-junctions with uniformmagnetization, it has been observed that the FM layers can align
antiferromagnetically, resulting in the induction of a smallmagneticmoment into the SC via charge-transfer
driven by orbital ordering, and giantmagnetoresistance [18–21]. Additionally, spin-triplet characteristics have
been detected in SC/FMplanar devices utilizing high-Tc SCwith FM junctions exhibiting in-plane
magnetization. The decay of supercurrents at distances around a fewmicrometers and themodulation of the
magnetoresistance signal, with an oscillation periodicity of≈ 30mT, aswell as the increase of in-plane
supercurrents when theCu orbitalmoment is aligned perpendicular to themagnetization of the FM layer
suggests that spin-triplet Cooper pairs are present and are responsible for a long-range proximity effect [22, 23].
Long-range spin-triplet correlations have also been reported in SC/FM thinfilm heterostructures with
noncollinearmagnetization. In such systems, the noncollinearmagnetization arises from two FMoxide layers,
where one exhibits PMAand the other exhibits in-planemagnetic anisotropy. Superconducting currents were
observed up to a total heterostructure thickness of 50 nm, related to spin-polarized (spin-triplet)Cooper pairs
generated by the noncollinearmagnetization of the FM layers in the heterostructure [24–26]. Althoughmany
results have been reported on proximity effects in heterostructures based onhigh-Tc SC and FMmaterials with
in-planemagnetic anisotropy, a detailed study is still lackingwhen considering proximity effects of high-Tc SC
with FMexhibiting PMA.

Recently, SrRuO3 (SRO) has attracted considerable interest as a promisingmaterial in the emerging field of
quantum electronics, a novel formof electronics based on the quantumdegrees of freedom [8]. This new
application of SROwouldmove it beyond consideration as only an electrode in ferroelectric capacitors and
superconducting junctions [27, 28]. SRO is the only one 4d oxide that presents both itinerant ferromagnetism
andmetallic conductivity belowTCurie= 160K, and also exhibits strong PMAwhen epitaxially grown on SrTiO3

(STO) substrates [8, 29].Moreover, it shows high spin–orbit coupling aswell as anomalousHall and Berry
effects, desirable properties for developing Berrytronics and topological superconductivity [8, 30–34]. The
structural compatibility and subsequent interplay of physical properties between SROand other technologically
relevant oxides are being explored, paving theway for applications in various fields such as electronics, catalysis,
energy storage, andmore [35]. In the present context, the SROnarrowdomainwall width of 3 nm,with
magnetic periodicity ranging from200 nm to 1μm [36], which is suitable for the generation of spin-triplet
states, hasmotivated amore detailed study of its interfacial proximity effects with high-Tc superconductors. A
highly localized long-range proximity effect has been observed in a bilayer heterostructure of SRO/YBCO [37].
Low-temperature scanning tunnelingmicroscopy revealed that crossedAndreev reflections aroundwell-
defined stripe regions near domainwalls are responsible for the penetration of the SC order parameter into the
SRO layer to depths up to 20 nm.

STO is considered the standard substrate for the epitaxial growth ofmany complex oxides, such as SRO,
because above 105K it has cubic perovskite crystal structurewith a lattice parameter of 3.905Å[38, 39]. SRO,on
the other hand, has an orthorhombic crystal structure (space groupPbnm)with lattice parameters of aor= 5.53Å,
bor= 5.57Å and cor= 7.85Å[8, 40]. Since SROhas an aristotypeperovskite structure, its orthorhombic unit cell
comprises four units derived from theperfect cubic perovskite structure. This arrangement leads to a pseudocubic
lattice constant apc= 3.93Å[8, 40, 41], which is quite compatiblewith STO substrate. YBCOhas anorthorhombic
crystal structure (space groupPmmm)with lattice parameters of a= 3.8227Å, b= 3.8872Å and c= 11.6802Å
[42]. Therefore, epitaxial growth is possible given the latticemismatchof 0.64% for SRO/STO, 1.66% forYBCO/
STOand∼2%forYBCO/SRO [43].

We report on the growth and characterization of YBCO/SRO and SRO/YBCO thin filmheterostructures,
with the aim to investigate proximity effects in high-Tc SC coupledwith FMwith PMA. The coexistence of SC
and FM together with the reduction ofTc and anomalousmagnetoresistance near the SConset suggest that a
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proximity effect occurs at the YBCO/SRO interface. This effectmay be driven by the competition of the SC and
FManisotropies and inspires further investigation.

2. Experimental details

SrTiO3 (001) single crystals withmiscut angle between 0.05o and 0.1owere used as substrates as they provide the
most suitable surface for the coherent growth of SROfilmswhile ensuring the presence of PMA [29]. Prior to
growth, the substrates were chemically etched for 30 s using a bufferedNH4F-HF (BHF) solution and then
annealed at 950 oC for 2 h in air to obtain awell definedTiO2 surface termination [44].

The thin films and heterostructures described in this workwere prepared from stoichiometric SRO and
YBCO targets usingHighOxygen Pressure Sputtering (HOPS) [45–47]. Prior to deposition, a base pressure of
10−6mbar is stabilized and the targets are pre-sputtered for one day to ensure a clean deposition chamber and a
target free of contaminants. Pure oxygen (99.99%) is used as a process gas and pressures (PO2) in the range of 1
to 3mbar are achieved by the combination ofmassflow controller, oil-free backing pump and turbomolecular
pump. The substrates are placed directly on a heater block.We define the temperature of the heater block as the
growth temperature (Tdep). The target-substrate distance (DTS) ranges between 1 and 3.5 cm.DTS directly
correlates to growth rate and surface quality, and has been separately optimized for both SROandYBCO. The
targets can be sputtered using two differentmethods of plasma generation, Radio frequency (RF) andDirect
Current (DC).

SRO layers were deposited using RF sputtering atTdep= 785 oC, PO2= 1.5mbar andDTS= 2.5 cm in a
HOPS systemdedicated to the growth of transitionmetal oxide films. YBCO layers were deposited usingDC
sputtering atTdep= 930 oC, PO2= 2.5mbar andDTS= 1 cm in a separate dedicatedHOPS system. Precise
pyrometermeasurements of the substrate temperature show that it is about 110 oC lower thanTdep. This is in
agreementwith [48]. SROhas a growth rate of 12.5 nm/h, while YBCOhas a growth rate of 100 nm/h. To
achieve the correct oxygen vacancy concentration in YBCO and ensure the highest possibleTc, a post-annealing
treatmentwas carried out by cooling the YBCO to 500 oCand holding it at this temperature at a pressure of 10
mbar for 24 hours [49, 50]. Heterostructures of YBCO/SRO (HS-YS) and SRO/YBCO (HS-SY)were prepared
by a two-step process that combines the above described deposition of SRO andYBCO.HeterostructureHS-SY
was subjected to two post-annealing processes: one after YBCOgrowth and another after SRO growth. The
second annealing timewas 30 min. This is performed to assure a high critical temperature in the heterostructure,
as during the high oxygen pressure growth of SRO the oxygen content in YBCO is reduced and recoversmuch
more slowly during a second annealing due to the limited diffusion of oxygen through the SRO layer.

Samplemorphology and local roughness were characterized byAtomic ForceMicroscopy (AFM) using an
Agilent 5400AFM/SPMmicroscope in intermittent contactmodewithMikromash typeHQ:NSC15
cantilevers. The crystal structure, layer thickness and total roughness were investigated bymeans of X-ray
diffraction (XRD) andX-ray reflectivity (XRR)measurements performed on aRigaku SmartLab diffractometer.
The epitaxial growth and the atomic scale structure were probed by cross-sectional high-resolution transmission
electronmicroscopy (HR-TEM) on a FEI TitanG2 60-300HOLOmicroscope and a FEI Titan 80-300TEM.
Magnetic hysteresis, zero-field cooled andfield cooledmeasurements were performed to investigate the
magnetic field and temperature dependence of themagnetization. Themeasurements were carried out on a
SuperconductingQuantum InterferenceDevice (SQUID)MPMS-XLMagnetometer and on a Physical
PropertiesMeasurement System (PPMSDynaCool)with theVibrating SampleMagnetometer (VSM) option.
Temperature dependence of the electrical transport andmagnetotransportmeasurements were performed
using the standard four-point probemethod on a Physical PropertiesMeasurement System (PPMS) from
QuantumDesign. Sample stoichiometry was characterized by Rutherford Backscattering Spectroscopy (RBS).

3. Characterization and results

3.1.Morphology and structural characterization
Post-etched and annealed STO substrates exhibited a TiO2 surface termination, characterized by a terraced
morphology of one STOunit cell in height. A schematic representation of the SRO thin film,HS-YS andHS-SY
are depicted infigures 1(a), (b) and (c), respectively. The thicknesses of the SRO thinfilm and theHS-YS andHS-
SY heterostructures weremeasured using X-ray reflectivity and cross-sectional TEM (see Supplementary
Material [51],figures S1 and S2). Themorphology of the YBCO thinfilms has been extensively studied and is
reported elsewhere [52, 53]. TheAFM topography and phasemicrographs of all prepared samples are shown in
figures 1(d)–(i). The SRO thin film exhibits a smooth surface with local rootmean square roughnessσ< 1 nm.
A terraced terminationmimicking the TiO2 termination of the STO substrate can be observed infigure 1(d). The
homogeneity of the SRO thinfilm can be observed across the 5 x 5μm2 scan area of the phasemicrograph shown
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infigure 1(g). Despite achieving a considerable degree of surface quality, the presence of small islands along the
terrace edges implies a growthmode that deviates from step-flow [54–58]. Therefore, thefilm shows a tendency
towards a step-bunching growthmode accompanied by island formation.

Themorphology characterization ofHS-YS is presented in the AFMmicrographs shown infigures 1(e) and
(h). The rectangular grains are related to the local growth of YBCO ab-planes oriented perpendicularly to the
SRO surface (a-axis epitaxial growth), and the spirals are related to the growth of YBCO ab-planes oriented
parallel to the SRO surface (c-axis epitaxial growth) [52, 53, 59, 60]. The local rootmean square roughnessσ is
2.9 nm± 0.4 nm. TheAFM topography and phasemicrographs of theHS-SY, presented infigures 1(f) and (i),
respectively, indicate that the SRO grew in islandmodewith twinning along the [110] direction.HS-SY exhibits
a high local rootmean square roughness (σ= 6.8 nm± 0.4 nm)when compared toHS-YS. Such a value is
expected considering that the YBCOprepared directly on STO substrates can havemixed a-axis and c-axis
orientation [45, 47, 52, 53] and that YBCO thin films are usually rougher than SRO thin films, with a local
roughness of≈ 3 nm. Furthermore, during the growth and post-annealing process of the YBCOfilms, the
formation of CuO andBaCuO3 precipitates/nanoparticles can occur [61, 62]. These nanoparticles protrude
from the film’s surface, influencing the YBCOmorphology. They can be seen as dots at the surface ofHS-YS in
the AFMmicrograph shown infigure 1(h) and partially dissolved in the SRO layer deposited onYBCO layer.
Therefore, the SRO layer ofHS-SYwas not grown on a smooth buffer layer as in the case ofHS-YS, where it grew
on a smooth andwell-terminated surface of the SRO.

TheXRDpatterns of all samples are shown infigure 2. The SRO thin film exhibits long range Laue
oscillations, confirming its high crystalline quality and large coherent volume ([51],figure S3). The thickness
estimated by the period of the oscillations is 57 nm,which is in good agreement with the thickness obtained by
XRR (60.0 nm± 0.5 nm) ([51], figure S1).While the thickness determined by Laue oscillations corresponds to
the single crystalline layer thickness, the thickness determined by reflectivity corresponds to the total layer
thickness. In addition, the epitaxial growthwas verified by high resolution reciprocal spacemapping ([51],
figure S3).

The heterostructures exhibit a high crystalline quality, as evidenced by the intensity of the crystallographic
reflections. The intense (h00) reflections indicate that the YBCOhas a greater amount of a-axis domains
embedded in amatrix of c-axis domains forHS-YS than forHS-SY. CuO, BaCuO2, Y2BaCuO5 andYBa3Cu4Ox

nanoparticles are also indexed, as indicated by the triangles infigure 2 [61, 62]. In theHS-SYXRDpattern, the
YBCO reflections are slightly shifted to smaller angles, which can be related to strain. In addition, the XRD

Figure 1. Sketch of the (a) SRO thin film, (b)YBCO/SRO (HS-YS) (b) and (c) SRO/YBCO (HS-SY) heterostructures deposited on low
miscut STO substrates. Atomic forcemicroscopy topography and phasemicrographs of the (d, g) SRO thinfilm, (e, h)HS-YS and (f, i)
HS-SY heterostructures.
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pattern ofHS-SY shows broad and low-intensity SROpeaks asmarked by the empty circles, indicatingmultiple
c-axis orientations and non-uniform lattice parameters, suggesting an SRO layerwith inferior crystalline quality
in comparison to the one inHS-YS. This is expected since SROwas deposited on a relatively roughYBCO
surface containing growth spirals, a-axis grains and possible precipitates, whereas inHS-YS, it was grown on a
well-defined STO surface.

To further investigate the samples crystalline structure and,more importantly, the interface quality, an SRO
(35 nm)/YBCO(20 nm)/SRO(35 nm)heterostructure was grown on an STO substrate and lamellas along the
[001] and [110] crystallographic directions were prepared for characterization via transmission electron
microscopy (TEM). Figure 3 shows cross-sectional images obtained along the [110] crystallographic direction.
Figure 3(a) shows awide panel of the lamellawith the SRO/YBCO (top), YBCO/SRO(middle) and SRO/STO
(bottom) interfaces highlighted. One can see the reduced structural quality of the SRO layer grownon the YBCO
layer in comparisonwith the SRO layer grown on the STO substrate. The epitaxial growth of the
heterostructures is confirmed infigures 3(b)–(d), given the cube-on-cube relationwith considerable sharp
interfaces.

Table 1 summarizes the experimentally determined values for thickness (calculated fromXRR andTEM),
surface (AFM) and interfacial (XRR) roughness described in this section. Table 1 also presents values ofTCurie
andTc determined frommagnetization curves discussed in subsection 3.2.

3.2.Magnetic and electrical transport properties
Field cooled (FC) and electrical transportmeasurements of a 60 nmSRO thin film are shown infigure 4. It can be
seen that although the SRO thin film hasTCurie= 154.7K± 0.5 K and exhibits PMA, the saturationmoment
values calculated at 5 K aremuch lower (≈ 0.2μB/Ru) compared to the bulk value (≈ 1.6μB/Ru) [8, 40]. In
addition, the temperature dependence of resistivity is similar to that of a semiconductor. RBSmeasurements
([51], figure S4) revealed that our SROfilms can have≈ 25%of Ru deficiency, resulting in SRO thinfilmswith
reducedmagnetization, reduced PMA and poormetallicity. This happens due to the high volatility of Ru during
thinfilm growth [63] and the low growth rate, a characteristic of the RF sputteringmethod.However, even films
preparedwithDC sputtering present a Ru deficiency of approximately 16% [54]. This suggests that the SRO thin
filmsmay have a considerable number of defects due to Ru vacancies, which results in the observed
semiconductor-like property unlike stoichiometric SRO films. Although our samples have Ru deficiency,
affecting their electric andmagnetic properties, PMA is present in all samples.

Zero-field cooled (ZFC) and FCmeasurements were performed to investigate the superconducting and
ferromagnetic properties of theHS-YS andHS-SY bilayers. As a protocol, amagnet reset was initially performed
on the SQUID coils to guarantee zero-fieldwhile cooling the sample down, therefore ensuring no trapped flux in
the superconducting layers. After reaching 5K, 10Oewas applied perpendicular to the sample surface (out-of-

Figure 2.X-ray diffraction patterns along the surface normal of STO substrate (black), SRO thinfilm (green), YBCO/SRO (HS-YS)
(orange) and SRO/YBCO (HS-SY) (blue) heterostructures. An STO substrate pattern is shown (black) as reference. The curves have
been shifted vertically for better visibility. The asterisks point to the STO (00l) peaks. The triangles point to reflections fromBaCu
oxides precipitates embedded in the SRO layer of theHS-YS heterostructure. The empty circles indicate the formation of different
SROout-of-plane lattices parameter for theHS-SYheterostructure.
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plane, B // [001] crystallographic direction). Thefield directionwas chosen to correspond to themagnetization
easy axis of SRO. Themagnetization of the samples wasmeasuredwhile heating up the sample to 300Kwith 10
Oe applied parallel to the [001] crystallographic direction. Upon reaching 300K, the samplewas cooled down
again to 5Kwith 10Oe applied parallel to the [001] crystallographic direction, while themagnetizationwas
measured during the cooling of the samples.

Figure 3.High resolution transmission electronmicroscopy images of the (a) SRO(35 nm)/YBCO(20 nm)/SRO(35 nm)
heterostructure grown on a STO substrate along the [110] crystallographic direction. The respective (b) SRO/YBCO, (c)YBCO/SRO
and (d) SRO/STO interfaces between the respective layers are pointed outwithwhite arrows.Minor smearing of the images at the
interfacemay be an artifact from sub-optimal alignment of the sample.

Table 1.Thickness byXRR (tXRR) andTEM (tTEM), roughness by AFM (σAFM) andXRR (σXRR),TCurie andTc

calculated frommagnetizationmeasurements of the SrRuO3 (SRO), YBa2Cu3O7−x (YBCO) thinfilms, and the
heterostructuresHS-YS andHS-SY, respectively.

Value SRO YBCO HS-YS HS-SY

tXRR (nm) 60± 0.5 84.3± 3 — —

tTEM (nm) — — 40.6± 0.7 82.8± 1.9

σAFM (nm) 0.23± 0.01 2.5± 0.5 2.9± 0.4 6.8± 0.4

σXRR (nm) 1.8± 0.3 2.5± 0.1 — —

TCurie (K) 154.7± 0.5 — 151± 0.5 151± 0.5

Tc (K) — 87.5± 0.6 87± 0.5 57± 0.5
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ZFCdata ofHS-YS andHS-SY are shown infigure 5(a). Initially, at lower temperatures, both
heterostructures exhibit a negativemagnetization attributed to the diamagnetic response of the SC state of
YBCO [43, 64]. As the temperature increases, themagnetization exhibits a small positive value, defining the
heterostructures SC critical temperatureTc of 87K± 0.5 K forHS-YS and 57K± 0.5K forHS-SY. The inset in
figure 5(a) provides a detailed view ofmagnetization between the temperature range of 55K and 300K.Within

Figure 4. Field cooledmagnetization acquiredwith amagnetic field of 50Oe applied perpendicular (blue) and parallel (red) to sample
surface and zerofield electrical transport ρ(T) (green) of a 60 nmSRO thinfilm.Magnetic hysteresis loops performed at low
temperature withmagnetic field applied along [001] and [100] crystallographic directions are shown in the inset.

Figure 5.Zero-field cooled (a) and Field cooled (b)magnetizationmeasurements ofHS-YS andHS-SY acquiredwithmagneticfields
of 10Oe applied parallel to the [001] crystallographic direction, respectively.Magnetic hysteresis loops performed at low temperature
and around the superconductorTc for (c)HS-YS and (d)HS-SY.
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this range, themagneticmoment remains positive, and distinct features emerge:HS-YS displays aminimal
magneticmoment, whereasHS-SY exhibits a broadmaximumaround 100K, and a sharpmagnetic transition is
observed at 151K for both heterostructures, whichmay correspond to theTCurie of the SRO films. The broad
hump-shaped unexpected transition observed around 100K forHS-SY, shown in the inset offigure 5(a), may be
attributed to the lattice-coherent [45]CuOandY2O3 nanoparticles formed during the growth and post-
annealing process ofHS-SY.One can see the nanoparticles at the surface of ourHS-YS sample infigure 1(h) and
elsewhere [52, 53]. Yanmaz et al [61] reported anomalousmagnetic behavior in YBa2Cu3O7 powders coming
fromCuOandY2O3 components. They observed aweak ferromagnetic signal at several temperatures, which is
correlatedwith theCuO andY2O3 components grinding time and nanoparticles size.We believe that CuO
nanoparticles, present on the surface of the YBCO layer, were incorporated into the SRO layer during the growth
of theHS-SY sample and present a plausible explanation for this observed smeared outmagnetic transition.

Although some small and positivemagnetization is observed aboveTc in the ZFC curves, the strong
diamagnetism of the superconductor hinders the study of the ferromagnetism of SRO at low temperatures. To
overcome this issue, and to specifically defineTCurie of the SRO in these heterostructures while proving that the
ferromagnetic ordering is present at low temperatures, FCmeasurements were performed for both
heterostructures and the results are shown infigure 5(b).TCurie was determined by analyzing thefirst derivative
of the FCdata, as shown in the inset offigure 5(b). Remarkably, for both samples,TCurie was found to be 151K±
0.5K, which corresponds to the sharpmagnetic transition observed in the inset offigure 5(a). One can see that
the SRO ferromagnetism is present for the entire temperature range of temperature belowTCurie, given the
positivemagnetization values at low temperatures for both samples. This confirms the coexistence of SC and FM
belowTc. A small guidefield (10Oe)was sufficient to overcome the superconducting diamagnetism of YBCO
because out-of-plane orientedmagnetic field can penetrate through superconducting film in the formof
Abrikosov vortices. Additionally, its out-of-plane orientation alignswith the easymagnetization axis of SRO,
and themixed a- and c-axis growth of YBCOdisrupts the uniformity of superconducting screening along the c-
axis. As a result, the out-of-plane diamagnetic response is weakened, potentially loweringBc1 and allowing
magnetic flux penetration even at lowmagnetic fields.

Magnetic hysteresis curves taken at different temperatures are shown infigure 5(c) forHS-YS and in 5(d) for
HS-SY.Measurements were carried out startingwith an appliedmagnetic field (Hext) of 5 T, then sweeping it to
Hext= -5 T and back toHext= 5T again, as indicated by the arrows. In both samples, there is a change from a SC
state to a FM state with increasing the temperature. From the hysteresis loops at low temperatures, we observe
that both heterostructures are in a SC state, given the diamagnetic nature of the hysteresis curve, which is
generally explained by theAnderson flowmodel [42, 65]. In addition to theMeissner effect,magneticflux lines
are trapped in defects of the sample crystal structure, nearHext= 0 for values smaller thanBc1 (≈ 10mT for
YBCO), which results inmaximummagnetization.However, asHext increases, strongermagnetic flux lines
penetrate and spread in the YBCOand themagnetization decreases. Themagnetization data shown in
figures 5(c) and (d) exhibit characteristic behavior seen in high-Tc superconductors [66–68], indicating robust
pinning effects in both heterostructures. NearTc it is possible to detect a FM response from the shape of the
hysteresis curve. This behavior becomesmore pronouncedwhenmeasuring at temperatures slightly below/
above the heterostructureTc, for example at 87K forHS-YS and 55K forHS-SY, as shown infigures 5(c) and (d),
respectively. From this behaviorwe infer that a competition between the SC and FM states occurs. The pinning
offlux lines is also confirmed, given the difference of almost three orders ofmagnitude in themagnetization of
the heterostructures when comparing the SC and FM states [66].

Electrical transportmeasurements, shown infigure 6, show a drop in resistivity around the critical
temperaturesTc determined fromZero-field coolingmagnetizationmeasurements.Tc values of 87.2 K± 0.6 K
forHS-YS and 57.8K± 0.9 K forHS-SYwere obtained by taking the first derivative of ρ(H= 0,T). As the
transport properties of superconducting cuprates are related to hole-doping concentration [69], HS-YS is
optimally doped (given the linear relation between resistivity and temperature aboveTc)whileHS-SY is
underdoped (given the non-monotonic relation of ρ(T) aboveTc).Tc values inHS-YS andHS-SY are reduced
compared to our single YBCO thin films (91.1K).

It is known that the interface quality and/or the direct contact of a SC layerwith a normalmetal (N)/FM
layer can reduceTc and change thewidth of the superconducting transition [70, 71]. Therefore, a reduction inTc

of a fewKelvins is expected forHS-YS andHS-SY, andmay be due to a proximity effect, considering the presence
of the FM layer in both heterostructures. This proximity effect is short-ranged, given the small coherence length
values of type-II superconductors, such as YBCO. The reduction of≈ 35K inTc forHS-SY in comparison to a
purely YBCOfilm is not solely due to the proximity effect, but also to the sample configuration. This large
reduction is explained considering that the YBCO layer is not optimally hole-doped (the oxygen transport
through the SRO is hindered during the post-annealing process and therefore the YBCO layer cannot be
properly oxygenated). This sample configuration prevents a rapid oxygen diffusion to the YBCO layer, thereby
resulting in a YBCOfilm that is not optimally doped, but underdoped, andwith lowerTc, as confirmed by the
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ρ(T)dependence shown infigure 6. Therefore, during the deposition of the SRO layer inHS-SY, the YBCO
oxygen content changes causing the reduction inTc, which is not recovered even after a second post-annealing
process. For these reasons, HS-SY degrades faster thanHS-YS, preventing a complete investigation.

3.3.Magnetotransport
Features inmagnetotransportmeasurements of SC/FMheterostructures ρ(H,T) can be robust indicators of
proximity effects [10, 11, 15]. ρ(H,T)wasmeasured at selected temperatures aroundTc, as shown by the colored
squares in the Zero-field ρ(T) curves infigure 7(a) for theHS-YS heterostructure. Themeasurements shown in
the subsequentfigures were carried out by sweeping the appliedmagnetic fieldHext from5T to -5 T (black
curves) and then from -5T to 5T (colored curves). The colors correspond to the color of the squares in the
figures 7(a), and thus the temperature at which the sweepwas performed.Hext was applied parallel (in-plane,
Hext,∥),figure 7(b), and perpendicular (out-of-plane,Hext,⊥),figure 7(c), to the heterostructure surface. The in-
plane and out-of-plane ρ(H,T)measurements were performedwith current density J∥Hext and J⊥Hext,
respectively.MRdata forHS-SY are not presented in the current study due to technical reasons.

For temperatures aboveT= 93K, no special features are observed in the ρ(H,T) curves shown in
figures 7(b)–(c) forHS-YS, and themagnetoresistance (MR) curves resembles that ofYBCO thinfilmat these
temperatures ([51],figure S5). ForT< 88K, theYBCO layer increasingly enters a completely SC state, as evidenced
by the zero resistivity.However, a very intriguing behavior is observed at the SConset (93K>T> 90K)while
sweeping down (black curves) andup (colored curves)Hext: a crossover fromadip to a peak forHext,∥ and froma
peak to a dip forHext,⊥ centered at 0T. The crossover corresponds to a change in theMRsignal and appears at the
same temperature forHext applied in-plane andout-of-plane.

To gainmore insight into theMR lowfield region, the ρ(H,T) curves shown infigures 7(b)–(c) are plotted
from -2 T to 2T as a function of temperature infigures 7(d)–(f) forHext,∥ andfigures 7(g)–(i) forHext,⊥. For
better comparison, the plotted values ofMR are normalized using the expressionMR (%)= ( ) [ ( ) ( )]

( )
H100 % 0

0

r r
r

´ - .

The dip (peak) observed at 91K transforms into a peak (dip) at 89K forHext,∥ (Hext,⊥). Additionally, the features
observed at 90K and 89K appear broader forHext,∥ than forHext,⊥, indicating a damping effect in the parallel
field configuration. Although sharp peaks near zerofield are not observed for 90K and 89K forHext,∥, the change
in theMR signal is present for bothfield directions. The switchingfield, thefield at which themagnetoresistance
begins to change, is larger for ρ(H,T) acquiredwithHext,∥ (± 1 T) thanHext,⊥ (± 0.4 T).

Note that the observedMR features appear at switching fields that do not correspond to the coercive field of
the SRO thinfilm. The electrical resistivity values shown infigures 7(a)–(c) are significantly lower than that of a
single SRO thin film (see figure 4). Assuming the electrical resistivity of the SRO layers inHS-YS is comparable in
magnitude to that of standalone SRO thinfilms, it can be hypothesized that themagnetoresistance observed in
this heterostructure is predominantly influenced by the YBCO layer.

4.Discussion

Heterostructures of YBCO/SRO (HS-YS) and SRO/YBCO (HS-SY) have been prepared by high oxygen
pressure sputtering. In both samples, the YBCO thin film exhibits local epitaxial growth ofmixed a and c

Figure 6.Zero-field ρ(T)measurements ofHS-YS andHS-SY heterostructures. Thefirst derivative of ρ(T) for both heterostructures is
plotted in the inset.
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crystallographic domains, as shown infigures 1(e), (h) and (f), (i). In addition, the formation of CuO, BaCuO2,
Y2BaCuO5 andYBa3Cu4Ox nanoparticles is observed during the YBCOgrowth and post-annealing stages, as
identified byXRD and observed byAFMas small nanoscale features in the YBCO surface ofHS-YS sample
shown infigures 1(e), (h). These nanoparticlesmay have been partially dissolvedwithin the SROfilmduring the
growth of theHS-SYheterostructure, reflecting in its high roughness. On the other hand, prepared SRO thin
films have a Ru deficiency that can reach values of 25% ([51],figure S4). As a result, the SRO thinfilms have
reduced saturationmagnetization and semiconducting behavior, seen infigure 4. This deficiency can be even
more pronounced for the heterostructures, once the YBCO is prepared at a higherTdep than the SRO.
Nevertheless, SRO ismagnetic with aTCurie of 154.7 K± 0.5K and exhibits perpendicularmagnetic anisotropy
(PMA) in both heterostructures as concluded frommagneticmeasurements shown infigure 5.

SuperconductingTc of 87K± 0.5 K and 57K± 0.5 K are observed in Zero-field cooledmagnetization and
electrical transportmeasurements forHS-YS andHS-SY, respectively, as presented infigures 5 and 6. Both
heterostructures show coexistence of SC and FMbelowTc, with the easymagnetization axis lying along the out-
of-plane direction.Magnetoresistance (MR)measurements were carried out around the superconductingTc of
HS-YS.We observed an anomalousMRbehavior as a function of temperature and appliedmagnetic field
direction near the onset of SC. Such a feature is not observed in pure YBCO and SRO thinfilms ([51], see figure
S5). TheMRof pure YBCO thin films is always positive and becomes infinite belowTc. SRO thin films exhibit a
strong negativemagnetoresistance in highfields and show the typical butterfly loop of FMmaterials, however,
small positiveMR can be found atHext�Hc at low temperatures and particularly whenHext∥J. It is known that
MRof SRO thinfilms can be anisotropic with respect to the crystalline directions rather than to the direction of
the current. The anisotropicmagnetoresistance can be related to an anisotropic spin-orbit interaction,
therefore, suggesting the presence of weak anti-localization in SRO thin films [72–76].

Figure 7. (a)Zero-field ρ(T) curve illustrating the temperatures where ρ(H,T) curves were performedwith an in-plane (b) and out-of-
plane (c)magnetic fieldmeasured onHS-YS heterostructure. Normalizedmagnetoresistance acquiredwithmagnetic field applied in-
plane for (d) 91K, (e) 90K and (f) 89K.Normalizedmagnetoresistance acquiredwithmagneticfield applied out-of-plane for (g) 91K,
(h) 90K and (i) 89K.
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We suggest that the reduction inTc and the anomalousMRbehavior observed in the YBCO/SRO
heterostructure is driven by the proximity of the SC and FM layers in the heterostructures. The nature of
competition between the two layers appears to bemodulated by the anisotropic coherence length ξ of YBCO,
which is larger along the ab crystallographic plane, and the uniaxialmagnetocrystalline anisotropy of SRO,
which has its easy axis along the [001]pc direction. This leads to two cases: (i) for amagnetic field applied along
[100]pc direction, SROmagnetization lies on its hardmagnetization axis and the largermagnitude of ξab of
YBCO requires a largemagnetic field to showprominent features near its critical temperatureTc, thus the
anomalous behavior in theMR is not strong and the peaks appear broader (as seen at 91K) and damped/not
visible (as at 90K and 89K), since YBCO ξab dominates theweak hard-axismagnetization of SRO; (ii) for a
magnetic field applied out-of-plane, SROmagnetization lies on its easymagnetization axis and therefore shows a
highermagneticmoment in comparison to the in-plane direction. In this case, the relatively smaller ξc of YBCO
in this direction ismore sensitive tomagnetic fluctuations, as observed by the sharp peaks around zerofield in
theMR lowfield region.Our experimental results point to an as yet fully unexplained and possibly novel
proximity effect. Furthermore, the fact that our YBCOfilms showonly positivemagnetoresistance while the
SROfilms present negativemagnetoresistance corroborate with the occurrence of a proximity effect.

OurMRmeasurements showneither the separatedminima nor the sharpmaxima that are indications of
domain superconductivity and the generation of long-range spin-triplet components. This is evident when
considering that the SC coherence length ξ of YBCO is not compatible with the characteristic length scales of the
SROmagnetic domain pattern, nor does the criticalfieldBc2match the stray fields of SRO. Considering the
reducedmagnetization and the semiconductor properties of the SRO layer, one can argue that the YBCO/SRO
interface can be semiconducting or insulating aswell asmagnetically dead/depleted. Indeed there is an
intriguing similarity between the shape of ρ(H,T) as a function of the appliedmagnetic field direction at
temperatures around the SC onset and the shape of the quantum corrections to conductivity,more precisely
weak localization andweak anti-localization, commonly observed in semiconductor and insulating systems
[1, 77]. However, quantum corrections to conductivity are a true low temperature phenomena and are unlikely
to explain our results. The formation of amagnetic dead layer should be further investigatedwith stoichiometric
thinner samples, whichwould increase the sensitivity to the interface properties. The observed complex
behavior aroundTc could also be correlatedwith the interplay between the presence of defects, orbital
reconstruction due to strain in the interfaces, strong spin–orbit coupling and potential charge transfer between
the layers. The coupling between these factors should be further elucidated by carrying out experimental
investigations supported by first principle calculations.

5. Conclusion

Epitaxial samples based on the high-Tc SC and FMwith PMAwere preparedwith the aim to characterize
proximity effects at the interface between high-Tc SC and FM layers and to understand the nature of such
proximity effects. Due to compatible crystal structures and the presence of PMA, heterostructures of SRO and
YBCOprepared on STO substrates were selected and prepared in good quality byHOPS.Due to incompatible
characteristic length scales between the SROmagnetic domain periodicity and the YBCOcoherence length ξ on
the one hand, and the incompatible sizes of themagnetic stray field of the SROdomain structure and the critical
fieldBc2 of YBCOon the other hand, the proximity effects observed in heterostructures of FMand conventional
SC, such as domain superconductivity and the generation of long-range spin-triplet components do not occur in
the investigated heterostructures.We propose, as alternative, a proximity effect that ismodulated by the
competition between the anisotropic coherence length in YBCOand the uniaxialmagnetocrystalline anisotropy
of SRO. Thefindings inspire further theoretical and experimental explorations in fundamental science and
technological applications, especially in the field of quantummaterials.
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