
Pedotransfer functions and their impact on soil water dynamics simulation 
and yield prediction: A HERMES model case study

Pablo Rosso a,* , K.-Christian Kersebaum a,b,c , Jannis Groh d,e,f , Horst H. Gerke g ,  
Kurt Heil h, Robin Gebbers i

a Leibniz Centre for Agricultural Landscape Research (ZALF), Data Analysis and Simulation, Eberswalder Str. 84, Müncheberg 15374, Germany
b Global Change Research Institute, Academy of Sciences of the Czech Republic, Bělidla 986/4a, Brno 603 00, Czech Republic
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A B S T R A C T

Pedotransfer functions used to determine water retention parameters from more readily available soil attributes 
(texture, soil organic carbon) may have a big impact on soil water dynamics and yield simulations by crop 
models. In this study we used the model HERMES to quantify and understand the impact of seven pedotransfer 
functions and two pedotransfer function ensemble models on crop yield on sites with variable texture using water 
retention parameters (i.e. field capacity, wilting point and total pore space) derived from the pedotransfer 
functions. Additionally, a continuous synthetic soil database was created to assess the effect of gradual changes in 
soil texture on yield simulation. The accuracy of the soil water dynamics simulations with the different pedo-
transfer functions was determined using soil water measurements at the test sites. The impact of pedotransfer 
functions on yield simulations was assessed by quantifying the yield differences at the experimental sites and 
across the synthetic soil database. The choice of pedotransfer functions resulted in most cases in measurable 
differences in soil water content dynamics, often showing a direct relationship between field capacity and water 
content. Often, pedotransfer functions producing higher estimated field capacity also resulted in higher yield, 
indicating that model yield simulation is sensitive to soil water availability. Pedotransfer functions showed an 
increasing variability in water retention parameters estimation and yield simulation at specific points in the sand 
percent continuum of the synthetic soil database, indicating that these functions can be sensitive even to small 
changes in particle size distribution.

1. Introduction

The dynamics of water availability for plant growth is particularly 
important for understanding and simulating vegetation and crop 
development, especially during the growing season. In process-based 
crop models the simulation of soil water dynamics and soil water 
availability to plants constitutes a central aspect. Modeling of the water 

dynamics in soil requires the quantification of input fluxes, such as 
precipitation and irrigation, the redistribution of water in the soil, and 
the outputs, such as evapotranspiration and drainage. Critical for the 
prediction of crop growth and development is the accuracy of the 
simulation of soil moisture dynamics in space and time (El Sharif et al., 
2015; Lu et al., 2021).

Soil moisture dynamics to simulate crop growth can be estimated by 
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means of a physic-based approach or by a more empirical approach such 
as the soil capacity-based models (Jarvis et al., 2022). To the former type 
belong models based on the Richards equation (e.g. AGROSIM, Mirschel 
and Wenkel, 2007; and Expert-N, Stenger et al., 1999), which are built 
on two soil hydraulic functions describing the soil water retention and 
the unsaturated soil hydraulic conductivity, whose parameters are ob-
tained either by measurements or by estimations based on basic prop-
erties of the soil (Pachepsky and van Genuchten, 2011; Vereecken et al., 
2008). Some difficulties related to the building and parameterization of 
these functions have been recognized by some studies (Szabó et al., 
2021; Wagner et al., 2001; Herbrich and Gerke, 2017), and some solu-
tions based on inverse parameter estimation have also been proposed 
(Groh et al., 2018; Schübl et al., 2023; Vereecken et al., 2008).

Soil capacity-based models, sometimes referred to as tipping bucket 
models (Emerman, 1995), belong to the empirical type of approach, 
used to estimate water distribution and availability in soils (Weber et al., 
2024). These models assume that the vertical movement of water in the 
soil is mostly controlled by the intrinsic soil water retention capacities, 
determined mainly by field capacity (FC) and wilting point (WP). 
Despite Jarvis et al. (2022)’s argumentation in favor of physic-based 
models, soil capacity-based models are still more prevalent, and 
although it has been argued that these models need a relatively smaller 
number of input parameters than the Richard equations, FC and WP are 
still difficult to determine or estimate (Reynolds, 2018; Wiecheteck 
et al., 2020).

A number of empirical functions called pedotransfer functions (PTFs) 
have been developed to determine these parameters from basic, more 
readily available soil attributes (Vereecken et al., 2016; Wagner et al., 
2001), such as soil particle size distribution (texture), soil bulk density 
and soil organic carbon (SOC) content. According to Van Looy et al. 
(2017), two approaches of using PTFs can be distinguished: the para-
metric approach, which aims at estimating the parameters of a given soil 
water retention model, and the point PTF approach, which focuses on 
the specific points of the soil water retention curve, such as FC and WP, 
also known as soil water retention parameters (WRPs).

The crop model HERMES (Kersebaum, 2011, 2019), as a soil 
capacity-based model, calculates plant water availability at a given time 
by computing the extent to which the difference between FC and WP is 
filled with water, while the water exceeding FC is transferred to the layer 
underneath. Since plant growth and development in HERMES is deter-
mined by the soil water dynamics, an accurate estimation of WRPs, and 
hence, the choice of the most appropriate PTF, may have a big impact 
(Weihermüller et al., 2021).

PTFs are empirically developed and often specific to a geomorphic 
region or soil type (Sun et al., 2019), to specific scales, parent material 
and land use (Paschalis et al., 2022; Weber et al., 2024), and therefore its 
applicability and accuracy depend on the difference between the prop-
erties of the soils used in the development of a given PTF and the soils 
under study. This and other sources of uncertainty, such as the quality of 
input measurements and the appropriateness of relational algorithms 
(Sun et al., 2019), make the use of PTFs an ongoing issue in soil water 
modeling, which includes testing of available PTFs and developing new 
ones.

Testing of several PTFs (Givi et al., 2004; Wagner et al., 2001) or 
even tens of them (Szabó et al., 2021) against known parameter values 
appears as a valid way of determining their accuracy (Pachepsky and 
van Genuchten, 2011). However, reference parameter values are often 
not available. Another way to assess the appropriateness of a PTF is by 
means of a functional evaluation (Chirico et al., 2010; Nasta et al., 2021, 
Pachepsky and van Genuchten, 2011; Ramos et al., 2023). Functional 
evaluation entails testing the sensitivity of the different PTFs to model’s 
target simulation outcomes (evapotranspiration, vegetation responses, 
crop-mediated greenhouse gases emissions, etc.) and the relative impact 
of PTFs on environmental variables, often at soil or climate conditions 
relevant to the study area or specific scenarios. This type of assessment is 
typically mediated by a model whose outputs are the result of applying 

specific soil hydrological parameters. Notice that functional evaluation 
does not necessarily involve PTF accuracy testing of the model’s target 
outputs (Pachepsky and van Genuchten, 2011), such as yield. Since 
complex models often have more than one uncertain parameter, it is 
always possible that a combination of inaccurate parameters can pro-
duce apparently accurate model outputs, hence, in the words of Kirchner 
(2006), getting the right answers, but for the wrong reasons.

Functional evaluation focusing on uncertainty/sensitivity analyses of 
model outputs has been carried out on evapotranspiration, plant pri-
mary productivity, and leaf area index (Chirico et al., 2010; Paschalis 
et al., 2022), surface heat fluxes (Decharme et al., 2011), solute trans-
port in soils (Moeys et al., 2012; Van Looy et al., 2017), root water 
uptake and evaporation (Schaap et al., 2023), and leaf area index, 
biomass and yield (Kar et al., 2013). The diversity of soil/crop models 
and the considerable number and variety of PTFs, however, makes it 
difficult to extrapolate results from one study to another. In previous 
studies, the uncertainty brought by the choice of PTFs was highly vari-
able, sometimes the variability was a function of site characteristics 
(Decharme et al., 2011), sometimes as a function of soil depth and its 
relationship to evaporation from the soil surface or transpiration out of 
the soil root zone (Chirico et al., 2010). For this reason, and until a 
deeper understanding of the effects of PTFs on soil water balance in 
space and time, and on the target outputs of a certain model (or type of 
model) is achieved, functional evaluations are a necessary step.

As the choice of an appropriate PTF can have an impact on the WRPs 
used to calculate plant water availability, the HERMES crop model has 
included several PTFs to choose in its simulations. The main objective of 
this study is to quantify and understand the impact of different PTFs on 
crop yield in a soil capacity-based model such as HERMES. To achieve 
this goal, the model was applied to four sites in Germany and the 
resulting simulations were compared with measured data to assess a) the 
accuracy of the soil water dynamics simulations resulting from the WRPs 
and b) the uncertainty (and possible reasons) of crop productivity pre-
dictions resulting from the use of PTFs.

2. Methods

2.1. Sites and field data

In Brandenburg, Germany:
The Boossen (Boo) site (Table 1) is a privately-owned, 70 ha-size 

field, with predominantly sandy soils and high soil variability (Fig. 1
and Table 2). The field was cultivated in 2020 and 2021 with corn and 
winter rye respectively. At both years the field was uniformly fertilized. 
15 sample points (simulation units; SUs) were located, distributed to 
cover most of the area. At each point, soil samples were taken three 
times each year at 0–30, 30–60, and 60–90 cm depths to determine 
mineral (CaCl2 extraction and spectrophotometry, ISO 14255:1998) and 
total nitrogen (dry combustion, DIN-ISO 13878:1998–03), SOC (dry 
combustion, DIN-ISO 10694:1996–08) and gravimetric water content. 
At the beginning of the experiment, soil samples were taken at the three 

Table 1 
Site characteristics.

Site Location 
(Lat., Lon.)

Altitude 
(m a.s.l.)

Mean 
precipitation 
(mm) / air 
temperature (◦C)

Number of 
simulation 
units

Boossen 
(Boo)

52.393979◦, 
14.462929◦

77 544/9.7 15

Dedelow 
(Ded)

53.379266◦, 
13.786676◦

55 486/8.4 5

Marquardt 
(Mar)

52.466987◦, 
12.956660◦

81 494 /10.9 9

Duernast 
(Due)

48.402430◦, 
11.694523◦

470 810 / 7.8 9
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mentioned depths to determine the soil particle size with the sieve- 
pipette method (DIN-ISO: 11277:2002). Yield was measured gravimet-
rically from a composite sample of three 1 m2-quadrats around each SU.

The Dedelow (Ded) site (Table 1) consists of five lysimeters (each 1 
m², SUs) belonging to the German wide lysimeter network TERENO- 
SOILCan (TERrestial ENvironmental Observatories, Pütz et al., 2016), 
and managed by the Leibniz-Center for Agriculture Landscape Research 
(ZALF in German). The soils of the lysimeters are predominantly 
coarse-textured and loamy (Fig. 1 and Table 2). Data from the growing 
seasons 2014–2018, corresponding to winter wheat (two years), winter 
rye (two years) and oats, were used for this study. Data used in this study 
are based on the soil profile approach (variable depths) and the corre-
sponding measurements of the soil were texture, total nitrogen (see 
method above), SOC (see method above) and bulk density from 0 to 
150 cm depth. Texture was determined with the sieving-pipette method 
(same methods as above). The bulk density data obtained from core 
samples extracted in soil profiles next to the lysimeter extraction sites 
(Pütz et al., 2016; Herbrich and Gerke, 2017). Soil water content was 
measured at three depths (10, 30, and 50 cm) every half hour using time 
domain reflectometry probes (CS610, Campbell Scientific North Logan, 
US); data was aggregated to daily values. Yield was gravimetrically 
measured after harvesting the entire lysimeter.

The Marquardt (Mar) site (Table 1) is an experimental field at the 
Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB in 
German) located near the town of Marquardt, with predominantly sandy 
soils (Fig. 1 and Table 2). The field is 0.3 ha (25 m*120 m) in size 
subdivided into 16 rectangular plots consisting of a design of four 
fertilization levels with four replications, cultivated during the years 
2019–2021 with winter wheat, corn and winter rye, respectively. At 
each plot, a central point was sampled three times each year to 

determine mineral (see method above) and total nitrogen (see method 
above), soil organic carbon (see method above) and gravimetric water 
content at 0–30, 30–60, and 60–90 cm soil depths. At the beginning of 
the experiment, soil samples were taken at the three mentioned depths 
to determine the soil particle size with the sieve-pipette method (DIN- 
ISO: 11277, 2002). Since not all the 16 plots had information for the 
three years, a group of nine plots (SUs) representing a high variability in 
soil types was used. Yield was measured gravimetrically from a 4 m2- 
quadrat located at the center of each SU.

In Bavaria, Germany:
The Duernast (Due) site (Table 1) is an experimental field managed 

by the Technical University of Munich (Heil et al., 2018), with pre-
dominantly silty soils (Fig. 1 and Table 2). Data from nine plots or SUs (4 
m*6 m each) covering a total area of about 500 m2 including three 
replications at three fertilization levels: 0, 120 and 180 kg/ha of nitro-
gen, were used for this study. The growing periods considered were 
2016–2020 during which corn, winter wheat, corn, winter wheat and 
spring wheat (in this latter case, no fertilizer was applied) were subse-
quently planted. At each plot, soil water content at 10 cm soil depth 
intervals down to 85 cm and from 85 to 105 cm depth was recorded 
daily over periods of several months using electrical capacitance sensors 
(EnviroSCAN, Sentek, Stepney, Australia). At the beginning of the 
experiment, texture at 0–30, 30–60, and 60–90 cm soil depths was 
determined with the sieve-pipette method (DIN-ISO: 11277, 2002). 
Additionally, mineral nitrogen (in NO3 and NH4, in kg/ha; see method 
above) and water (gravimetric water content) were measured at the 
beginning of each growing period. Due had a relatively less variable soil 
in terms of soil texture but showed large differences in nutrition levels 
due to the fertilization treatments. Yield was measured at each plot with 
a conventional plot combine harvester.

Yield and the developmental stages of the crops were recorded at all 
field sites for model calibration purposes.

2.2. The Model HERMES

HERMES (Kersebaum, 2011, 2019) is a process-based functional 
model designed to simulate crop growth, water, and nitrogen (N) dy-
namics in arable lands. The model calculates the plant water uptake by 
distributing the potential transpiration (as fraction of potential evapo-
transpiration computed from the current leaf area index) over a soil 
depth proportional to the root length density and the plant available 
water in each layer.

Reference grass evapotranspiration in HERMES can be calculated 
using different approaches. In this case the Turc-Wendling method 
(Wendling et al., 1991), a well-established method in Germany also used 

Fig. 1. Texture properties (German classification system; Eckelmann et al., 2005) of all soil layers (down to 90 or 150 cm depending on the site) and sampling units 
by site. Red: Marquard (Mar); blue: Boossen (Boo); yellow: Dedelow (Ded) and black: Duernast (Due).

Table 2 
Ranges of soil attributes of the experimental sites. Boo: Boossen, Ded: Dedelow, 
Mar: Marquardt and Due: Duernast sites. SOC: Soil organic carbon.

Site Soil type SOC (%) 
(0–90 cm 
depth)

Bulk 
density 
(g/cm3)

Boossen (Boo) Sandy clay loam, sandy loam, 
loamy sand and sand

0.09–2.59 Not 
measured

Dedelow 
(Ded)

Clay loam, sandy clay loam, 
sandy loam, loamy sand and sand

0.15–1.08 1.40–1.89

Marquardt 
(Mar)

Sandy clay loam, sandy loam, 
loamy sand and sand

0.10–1.04 Not 
measured

Duernast 
(Due)

silt, silt loam and silty clay loam 0.47–1.13 1.60–1.72
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by the German Weather Service, was chosen (Kersebaum, 2007). The 
formula is a nationally adapted modification of the TURC formula, 
which is ranked as number two for humid climates (Jensen et al., 1990; 
Smith et al., 1998) and requires the diurnal average temperature and 
global radiation sum. The model uses crop coefficients (kc) describing 
the relation between crop and reference grass evapotranspiration to 
calculate potential evapotranspiration specific to the crop growth stage 
and soil coverage. Depending on the plant available water fraction (i.e., 
the difference between FC and WP), a root efficiency factor is calculated, 
which declines with decreasing available water fraction. If the calcu-
lated uptake exceeds the available water, the deficit is distributed in the 
same way to deeper layers until the rooting depth is reached. Root water 
uptake ends at the root depth or at the first groundwater layer (which-
ever comes first).

Besides kc, crop variety parameters in HERMES include other 
properties such as CO2 assimilation and maintenance rates, initial ni-
trogen content in organs, and more than 12 additional parameters for 
each of the six development stages, including specific leaf area, drought 
stress threshold and temperature sum. The temperature sum determines 
the time of transition from a crop development stage to the next. When 
not available, this parameter is set using field-based reference pheno-
logical information.

A capacity approach is used to describe soil water dynamics. HER-
MES calculates plant available soil water on a daily basis by computing 
at each soil layer the extent to which the plant available soil water 
storage capacity (i.e., the difference between FC and WP) is filled. Cal-
culations are made by discretizing the soil profile into 20 layers of 10 cm 
each. The amount of water exceeding FC in a layer is transferred to the 
layer underneath. HERMES also estimates capillary rise from shallow 
groundwater by calculating a steady upward water flux into the bottom 
soil layer, limited by a critical water content of 70 % of available water. 
The daily flux is estimated depending on soil texture and the distance 
between the layer and the groundwater table, based on tabulated values 
(Eckelmann et al., 2005).

To calculate the plant water availability, three WRPs need to be 
provided: FC, WP, and total pore space (PS). HERMES has five different 
options for calculating the WRPs directly from measured soil properties. 
The four methods used in this study are shown in Table 3.

The daily net dry matter production by photosynthesis and respira-
tion is simulated in HERMES from global radiation and temperature. Dry 
matter production is partitioned to crop organs depending on crop 
development stage. Crop yield is estimated at harvest as a defined 
fraction of the weight of the defined harvested organs. Water stress is 
calculated from the fraction of actual to potential transpiration. Water 
deficiency may also induce limitation of nitrogen supply due to low 
water uptake and low nitrogen diffusion to root surfaces leading to 
additional nitrogen stress.

Weather data used to feed the simulations must include at least daily 
maximum and minimum air temperature, daily precipitation, daily 
global radiation, and daily wind speed.

2.3. PTFs and WRP calculation

The first WRP estimation option in the KA5 mode in HERMES is 
based on a look-up table that relates the soil type class to average values 
of PS, FC and WP. In this case, soil input information for the modeling is 
provided in the form of soil category classes (i.e., “class type” of PTFs) 
and bulk density classes.

The other three methods, EU PTF v.1 (EU1), Batjes FC@2.5 pF (B25) 
and Batjes FC@1.7 pF (B17) use PTFs as described in the literature 
(Table 3 and Annex A). In the case of EU1, from the over 20 equations 
developed in the study, we used PTF 5 for PS, PTF 9 for FC, and PTF 12 
for WP (see Annex A), because these are the only continuous functions to 
estimate these parameters. In all PTFs, the input soil information 
included percentages of sand, silt, clay, and soil organic carbon (SOC) 
content. EU1 also requires bulk density for calculating PS. The adoption 

of these three methods (i.e., “continuous” PTFs) was made under the 
rationale that PTFs using continuous functions may reproduce better the 
transition between classes and, therefore, be more appropriate for 
higher spatial resolution simulations for precision agriculture applica-
tions (Wallor et al., 2019).

Two additional PTFs, EU PTF v.2 (EU2) and Rosetta (ROS) (Table 3) 
not included in HERMES, but widely used (Weihermüller et al., 2021; 
Montzka et al., 2017; Krevh et al., 2023), were tested in the simulations. 
The PTF EU2-based soil WRPs were calculated outside Hermes using an 
online calculator or, for large sample sizes, a Python script developed 
and provided by Szabó et al. (2021). A list of soil entries containing 
depth, soil texture, SOC content and bulk density is provided as input 
and the algorithm produces PS, FC and WP values. The EU2 PTF has 
more than 30 algorithms that can be chosen depending on the input 
variables to be included. Based on the best performances obtained in 
Szabó et al. (2021), PTF03 was used for PS and FC (@1.8 pF), and PTF02 
for WP.

WRPs corresponding to the ROS PTF were calculated by means of an 
R script based on the tutorial “Rosetta Model API” (Beaudette et al., 
2024). Unlike the previous PTFs, which calculate WRPs directly from 
soil parameters, ROS builds first a water retention curve from which 
WRPs are derived. Also, in contrast to the other methods, ROS does not 
use SOC content.

Since parameters derived from multi-model predictions (or model 
ensembles) have proven to be an effective alternative for addressing 
individual model uncertainties (Guber et al., 2009) and combine the 
strengths of different models (Chen et al., 2024), two PTF combinations 
were created. In the first combination, WRPs (FC, WP and PS) from all 
PTFs were averaged, and in the second, the median of the WRPs was 
selected to combine all PTFs. These two combinations, called MEA and 
MED, respectively, were then used to run the HERMES model at all sites. 

Table 3 
Pedotransfer functions (PTF) tested, and the reference water retention param-
eter (WRP) used.

PTF Tested Acronym Model type 
Inputs

Region Reference

Bodenkundliche 
Kartieranleitung. 
KA5 
(In HERMES)

KA5 Class-based/ 
LUT. 
Soil category 
classes, bulk 
density classes

Germany Eckelmann 
et al. (2005)

EU PTF v.1 
(In HERMES)

EU1 Regression/ 
continuous. 
Texture, soil 
organic 
carbon, bulk 
density

Europe Tóth et al. 
(2015), (see 
also Appendix 
A)

Batjes FC@2.5 pF 
(In HERMES)

B25 Regression/ 
continuous. 
Texture, soil 
organic 
carbon

World Batjes, 
(1996), (see 
also Appendix 
A)

Batjes FC@1.7 pF 
(In HERMES)

B17 Regression/ 
continuous. 
Texture, soil 
organic 
carbon

World Batjes, 
(1996), (see 
also Appendix 
A)

EU PTF v.2 EU2 Machine 
learning/ 
continuous. 
Texture, soil 
organic 
carbon, bulk 
density

Europe Szabó et al. 
(2021)

Rosetta PTF (v.3) ROS Artificial 
neural 
network/ 
continuous. 
Texture, bulk 
density

North 
America 
and 
Europe

Zhang and 
Schaap, 
(2017)
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These model combinations, or PTF ensembles, are to be differentiated 
from a more typical model ensemble, in which means and other statis-
tical parameters are obtained from the model outputs, such as yield. 
Since ensembles constitute an efficient way of minimizing extreme 
behavior of individual models, model ensembles are particularly useful 
when diverse models are included. In the case of this study, where only 
one model was used, the emphasis was placed on minimizing potential 
biases and inaccuracies of the PTFs tested. Therefore, PTF ensembles 
were preferred.

2.4. Model simulations

A total of 38 (Boo 15, Ded 5, Mar 9, Due 9) HERMES model runs were 
carried out with each of the seven WRP estimating methods, and the two 
PTF ensembles. HERMES calculates soil dynamics using discrete soil 
layers of 10 cm each (to 2 m of depth). Based on the soil information 
available for each site, soil texture, SOC, carbon-N ratio and bulk density 
were input in three groups of layers (0–30, 30–60 and 60–90 cm) at Boo, 
Mar and Due, and in variable groups of layers at Ded based on the 
characteristics of each SU soil profile. To complete the soil information 
down to 2 m, values from the deepest layer with available information 
were used, except for SOC which was assumed to be zero.

For Ded, a time series of distances to groundwater table depth, 
derived from matric potential measurement using tensiometer (TS1 
tensiometer, UMS, Munich, Germany) at 1.4 m soil depth, ground water 
measurements were used as lower boundary condition. Based on field 
manager’s experience and records from close-by stations a constant 
ground water table depth of 2 m was chosen for Mar and Due. For Boo, 
the ground water table was assumed to be deep enough to not influence 
the soil water balance (a value of 9.9 m in HERMES) was used. Bulk 
density in HERMES is entered in the form of classes. At Boo and Mar, 
where no measurements were available, a default class 2 (1.4–1.6 g/ 
cm3) was assigned to the 0–30 cm layer and a class 3 (1.6–1.8 g/cm3) to 
the rest of the layers. After a first run, the available phenology infor-
mation from the field was used to calibrate the model adjusting the 
temperature sum requirements of each development stage. Weather data 
was obtained from nearby weather stations.

2.5. Testing of PTF performance

Except for the site Ded, there were no independent estimates of FC 
and WP available. Therefore, testing of the simulated WRPs was done by 
comparing the soil water dynamics simulations with observed soil water 
content time series at each site. This led to an assessment of both the 
relative accuracy and the sensitivity of the simulations with respect to 
each WRP. At Boo, Mar and Due measurements and simulation results 
were grouped in three soil layer depths: 0–30, 30–60 and 60–90 cm. The 
average water content of each layer group was used to compare with 
equally averaged measured.

At Ded, 10 cm (a HERMES simulation soil layer) above and below the 
10 and 50 cm water measuring depths (0–20 and 40–60 cm, respec-
tively) were averaged. Since at around 30 cm of depth there was a 
change in horizon in all soils, soil water simulations at the layer 
20–30 cm were used to compare with the 30 cm reflectometry mea-
surements. Independent estimates of WRPs at Ded were done on soil 
core samples with the HYPROP soil moisture release device.

Accuracy of the PTF-generated soil water content dynamics was 
assessed by comparing soil water content measurements against simu-
lated values date by date. At sites Ded and Due, dense time series of 
measured soil water content (150–300 measurements per year) were 
available, whereas at Boo and Mar soil water content was available three 
times per year.

Forty-five metrics from the “metrica” R package (Correndo, 2024) 
were calculated to compare measured with predicted water content. 
Most of these performance metrics can be separated into methods that 
measure accuracy (concordance between simulations and 

measurements) such as the Pearson’s correlation coefficient or the 
concordance correlation coefficient; and methods that measure error 
(departure of simulations from measurements), such as the mean abso-
lute error, the relative absolute error or the relative squared error. 
Among the error metrics, the mean absolute scaled error (MASE; Eq. 1) 
is particularly suited for time series (Correndo, 2024), because it scales 
the error using the residuals of the two consecutive measured values 
(random walk method, Hyndman and Koehler, 2006). 

MASE = 1

/

n

⎛

⎜
⎜
⎜
⎜
⎝

|Mi − Pi|

1
T− 1

∑T

t=2
|Mt − Mt− 1|

⎞

⎟
⎟
⎟
⎟
⎠

(1) 

where M is measured, P is predicted, and T is time.
The widely used mean absolute error (MAE) is also absolute, but not 

scaled, and therefore, lacks the denominator of Eq. (1).
Signed measurements of error such as the percentage bias error (PBE, 

Eq. (2)) are particularly useful to indicate prediction bias (systematic 
error) to distinguish over- from underestimation of predictions. 

PBE = 100
(∑

(Mi − Pi)
∑

Mi

)

(2) 

where M is measured, and P is predicted.
The fact that PBE is calculated as percent of the measured value, it 

was assumed to be well suited for comparison among sites in this study.
Metrics obtained at all depths and SUs were pooled together to 

obtain a single statistics per site.

2.6. PTFs and yield simulation

Results of the model simulations with all the PTFs were used to study 
the relative impact of the WRP estimates on yield prediction. The most 
important criterion to assess the significance of the PTF effects was to 
determine how the resulting yields differ with respect to crop, year, crop 
field management (treatments) and soil properties. To this end, a) yield 
averages of each PTF for all the plots per year and b) averaged co-
efficients of variation (CV) of all PTF-based yields per site year were 
calculated. CV was calculated as the standard deviation of the PTF-based 
yields at each SU (plot), standardized by the mean PTF yields of that SU. 
Then CVs were averaged per year. A one-way ANOVA was calculated for 
each year at each site to test the statistical significance of simulated yield 
differences among PTFs.

2.7. Soil texture and PTFs

To explore the possibility that differences in PTF performance might 
have to do with differences in soil texture, a synthetic soil texture 
database was used to simulate yield with the different PTFs. A total of 25 
soils with increasing sand proportion from 50 % to 98 % (2 % increment 
steps) and decreasing clay percent from 25 % to 1 % was created. Silt 
proportion was set to add up to 100 % keeping its percent as fixed as 
possible at 25, 20, 15, 10 and 5 to 1 % as sand content increased (Fig. 2). 
These texture values were assigned equally to all soil layers. This 
particular texture configuration of medium to high sand and medium to 
low clay was chosen to account for the conditions of the soils of the three 
sites in Brandenburg, from where most of the data originated. Soil 
organic carbon default values of 1.0, 0.5, 0.2 and 0.0 (%) at the layers 
0–30, 30–60, 60–90 and 90–200 cm respectively were assigned to all 
soils. WRPs were estimated for each of the 25 soils using the different 
PTFs. Crop varieties and weather from Boo were used to simulate yield 
with HERMES for each PTF.
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3. Results

3.1. Soil water retention parameters

PTFs produced variable WRPs at Boo (Fig. 3), Mar (Fig. 4) and Ded 
(Fig. 5), but relatively uniform at Due (Fig. 6), which is also reflected in 
the texture variability of the sites (Fig. 1). PTFs at all sites showed a 

consistent pattern in which KA5, EU1 and EU2 tended to be among the 
highest FC values (around 20 % soil volume or higher at Boo and Mar), 
and B25, B17 and ROS among the lowest (around 10 % soil volume at 
Boo and Mar). The degree of variability in FC appeared to be higher than 
in WP, therefore differences in FC also are expected to strongly influence 
the levels of soil available water capacity (AWC). A comparison between 
some of the simulated WRPs from Fig. 5 and the HYPROP-estimated 

Fig. 2. Sand, silt and clay content used at all soil depths of the synthetic soil database.

Fig. 3. Boo site average of field capacity (FC, total bar height) and wilting point (WP, white bars) at different soil depths predicted by each PTF (KA5, EU1, B25, B17, 
EU2 and ROS) and the PTF ensembles (MEA and MED). Color bars indicate soil available water capacity (AWC). (Colors were chosen only to enhance visualization).

P. Rosso et al.                                                                                                                                                                                                                                   European Journal of Agronomy 170 (2025) 127753 

6 



WRPs at Ded (Fig. 7), showed a tendency of HYPROP to assign relatively 
high PTFs but lower WP, resulting in a relatively higher AWC than the 
other PTFs.

3.2. Testing of soil water content

All error metrics in this study showed a similar behavior at all sites. 
This means that the ranking of PTF performance and their relative ac-
curacy was stable across metrics, as can be exemplified by the Ded re-
sults (Fig. 8), where each PTF performed similarly with respect to the 
other PTFs according to MASE, MAE and PBE metrics.

Boo and Mar had relatively sparse measured values (three per year) 
and as a consequence, the scaling factor in MASE based on consecutive 
measurements was not representative of the rate of change in soil water 
content. Therefore, and since MASE and MAE produced almost identical 
results, MAE was chosen to be the error metric shown in the results.

No single PTF performed best across all sites (Table 4). B25, B17, 
MEA and MED were the only methods that ranked among the best three 
on more than one site. At Due all PTFs performed similarly and with 
higher errors than at the other sites. Considering sites individually, at 
Boo, the methods with lower error (MAE values of 4.09–4.43 % soil 
volume; versus highest MAE of 8.15 %) corresponded to PTFs with in-
termediate FCs (Fig. 3) and relatively lower AWC. At Mar, the best 
performing PTFs (MAE values of 2.33–2.47 % soil volume; versus 
highest MAE of 5.09 %) were the methods with the lowest FC and 
reduced AWC (Fig. 4). At Ded, similarly to Boo, the best methods (MAE 

values of 4.09–4.43 % soil volume; versus highest MAE of 8.65 %) 
showed intermediate WRPs (Fig. 5); and at Due, the best performing 
methods (MAE values of 6.76–7.70 % soil volume; versus highest MAE 
of 9.11 %) were among the PTFS with the higher FC and AWC (Fig. 6).

In cases where PTFs with the lowest MAE did not match those with 
the PBE closest to zero (as in ROS vs. MEA at Boo and EU2 vs. MEA at 
Ded), it can be inferred that there was a larger component of random 
error (that is cancelled by the sign of the error) than of bias.

When observing the soil water dynamics (e.g., Fig. 9), all PTFs 
appear to follow a similar pattern of high and low water content while 
showing the highest differences between PTFs during the winter months, 
which are characterized by higher water contents. At this time, when 
there is little water use by plants and temperatures are low, soils tend to 
stay at maximum water capacity, and HERMES tends to set these water 
content values close to FC. Therefore, soil water maxima for the different 
PTFs resemble the FC averages presented above (e.g., compare Figs. 3
with 9).

In the case of Boo (Fig. 9), although only a few measuring points 
were available, measured water content seemed to be well represented 
by the simulated increases and decreases in water content, with the 
absolute values of measurements being closer to the PTFs that showed 
better overall accuracies (MEA, MED, B17 and ROS, Table 4). At deeper 
layers (Fig. 10), all PTFs showed similar high and low water content 
patterns except at the late summer period (July-October 2020) when 
soils are being rewetted. In the case of PTFs producing higher FC values, 
soils tended to be rewetted later in the season than for PTFs with low FC.

Fig. 4. Mar site average of field capacity (total bar height) and wilting point (white bars) at different soil depths predicted by each PTF (KA5, EU1, B25, B17, EU2 
and ROS) and the PTF ensembles (MEA and MED). Color bars indicate soil available water capacity (AWC). (Colors were chosen only to enhance visualization).
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At Ded, one of the sites with continuous time series of measured soil 
water content, regardless of the PTF used, HERMES simulations fol-
lowed the seasonal patterns in soil water content (Figs. 11 and 12). The 
simulation shown corresponds to Plot 15, a soil profile with relatively 
low sand content (around 50 % at the upper 65 cm) and medium (16 % 
at 0–30 cm deep) to high (26 %, at 30–65 cm) clay. Some differences 
between modeled and measured soil water dynamics can also be 
observed: during the fall-winter months, when soils tend to reach higher 
values of soil water content, measurements oscillate around this water 
content value, whereas simulations, because of the way HERMES is 
programmed, does not exceed FC, giving the appearance of a straight 
line. This static behavior of the soil water content in the model during 
winter, influences the redistribution of water across the soil profile and 
consequently on groundwater recharge.

As observed at Boo, during the periods with high water content the 
measured values oscillate around simulated water contents from PTFs 
and PTF ensembles that estimated intermediate values of FC, such as 
MEA and MED. The sharp drop in the water content measured during the 
winter months of 2015–2016 can be related to a freezing event.

The relatively high errors of the simulations at site Due (MAE, 
Table 4) are evident when comparing the simulated with the measured 
dynamic soil water content (Fig. 13 and 14), where no single PTF closely 
matches the measured water content. Most simulated water content 
values are too high at 0–30 cm (Fig. 13) or too low at 30–60 cm (Fig. 14) 
respect to the measured water content. At 0–30 cm the measured soil 
water content abruptly decreased in January 2017, in clear contrast to 

the simulations. This strong drying out during the season can be due to 
lateral water drainage. As seen in previous cases, PTF-generated water 
content maxima seem consistent with their estimated FC values (KA5 
and EU2 high FC, and ROS the lowest FC, Fig. 6).

3.3. Pedotransfer functions and yield simulation

The overall effect of PTFs on yield simulation did not show a definite 
trend across sites and years (Table 5). This means that no single PTF 
consistently showed low or high yield values in all cases. Nevertheless, 
KA5 produced often the highest yield value, and B25, the lowest. This 
suggests that there might be a direct impact of estimated AWC (and/or 
FC) and simulated yield, although not so clear for other PTFs that pro-
duced intermediate WRP values.

The highest mean CVs were observed at Boo (0.32 and 0.26, Table 6), 
indicating that the natural soil variability at the site might have an 
impact on the diversity of PTFs as WRPs estimators, and consequently, 
on the simulated yield. A one way ANOVA analysis, however, resulted in 
statistically significant yield differences only in 2021 (F [8, 126] =
15.91, p = 4.8E-16; Table 7) indicating that the high CV in 2020 is the 
result of a variability that had no clear pattern across PTFs, meaning that 
a given PTF did not have a consistent relationship respect to other PTFs 
across plots (compare the relationship between KA5 and other PTFs, for 
example, in 2020 and 2021 in Fig. 15). In 2021, when there was a sig-
nificant effect of PTF choice on yield, the rank of simulated yield 
quantities (Table 5) closely follows the rank of WRPs (Fig. 3) that is, 

Fig. 5. Ded site average of field capacity (total bar height) and wilting point (white bars) at different soil depths predicted by each PTF (KA5, EU1, B25, B17, EU2 and 
ROS) and the PTF ensembles (MEA and MED). Color bars indicate soil available water capacity (AWC). (Colors were chosen only to enhance visualization).
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higher estimated FC corresponded to higher simulated yield.
At Ded, only OA 2018 showed a relatively high CV (0.26), one year of 

intermediate values (0.13), and two years with very low CV (0.01 and 
0.05; Table 6). Despite the high CV values, however, in no case the 
ANOVA analyses indicated statistically significant differences (Table 7), 
although OA in 2018 (an extremely dry year), was almost significant (F 
[8, 36] = 1.94, p = 0.08; Table 7). In this case, as it was for the site Boo, 
simulated yield averages (Table 5, and some cases in Fig. 16) showed a 
ranking similar to the ranking of WRPs (Fig. 3). That is, KA5 high, the 
two EUs intermediate and B25, the lowest.

At Mar, in accordance with the relatively low CV values (0.06–0.09), 
none of the years showed a significant effect of the PTF choice (Table 7). 
The closest result to significant differences between yield simulation was 
CO 2020 with F [8, 72] = 0.68, and p = 0.71 (Table 7). Beyond these 
results, in 2020 and 2021 the ranking of yield from the PTFs (Table 5) 
corresponded to the ranking of the WRPs, suggesting, as in previous 
sites, that the estimated FC can have direct effect on simulated yield. It is 
also interesting to note that at plots where the simulated yield was 
relatively low (plots 1, 3, 6, 7 and 9, starting from the left on Fig. 17), the 
yield and FC varied together. However, this was not the case in plots 
with high simulated yield where PTFs such as B25 and B17 also pro-
duced high yields.

At Due, the site with the lowest overall CVs (0.03–0.08, Table 6), no 
significant effect of PTF choice on simulated yield was found. Addi-
tionally, and unlike the previous sites, the ranking of simulated yield at 
each plot (Fig. 18) seemed to follow an inverse order respect to FC, that 

is, PTFs with higher yield simulations (e.g. B25 and B27), had lower 
estimated FC values (Fig. 6). Although in 2020 no fertilizer was applied, 
plots 15, 16, 29, 30, 43 and 44, which had been fertilized in previous 
years showed a noticeable higher simulated yield than the control plots 
(numbers 23, 37 and 51). This also holds for the measured yield. Since 
control plots were spatially intercalated respect to the fertilized plots (no 
block effect possible), it can be presumed that in both the simulated and 
the measured yields, there could be a residual effect of previous years’ 
fertilization.

Most of the variability in yield prediction from the PTFs occurred at 
sites with higher sand contents, raising the question of whether soil 
texture might have to do with differences in simulated yield. Since dif-
ferences in yield often seemed to be a consequence of differences in 
WRPs, the deviation in FC estimates between contrasting PTFs (high vs. 
low FC-estimating PTFs) with respect to the soil sand contents provided 
some insights on the trends (Fig. 19). The pairs KA5-B25 and EU2-B17 
were chosen to be displayed because KA5 and EU2 had the highest FC 
estimates, and B25 and B17, the lowest.

FC differences between KA5 and B25 seemed to have a relatively 
high value at around 50–60 % of sand (Fig. 19 A), whereas FC differ-
ences between EU2 and B17 had its maximum absolute value at around 
80 % soil sand content (Fig. 19 B). To this respect, was the synthetic soil 
analysis particularly illustrative.

Fig. 6. Due site average of field capacity (total bar height) and wilting point (white bars) at different soil depths predicted by each PTF (KA5, EU1, B25, B17, EU2 and 
ROS) and the PTF ensembles (MEA and MED). Color bars indicate soil available water capacity (AWC). (Colors were chosen only to enhance visualization).
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3.4. Synthetic soil texture and PTFs

PTFs showed different WRP trends across the texture gradients of the 
synthetic soil database (Fig. 20). KA5 and EU2, for example, showed 
clear discontinuities in FC at around 75 % sand content (Fig. 20), which 
coincides with discontinuities in clay and silt percentages in the syn-
thetic soil series (Fig. 2). Other discontinuities in KA5 are obviously 
related to the fact that KA5 is categorical by nature (Table 3). PTFs B25 
and B17 did not present discontinuities, but changes in trend direction at 
75 % and at about 90 % sand. Most of the vertical dispersion (small 
differences in FC values) of points belonging to the same PTF correspond 
to estimates at different depths in each soil profile.

As observed in some simulations of the experimental sites (Fig. 15, 
below; Fig. 16; and Fig. 17), in the synthetic soil simulations yields 
tended to be higher for simulations using PTFs that estimate higher FC or 
AWC. The higher yield obtained from the high FC estimating PTFs (KA5 
and EU2) was consistently high (around 4000–3000 kg/ha) across most 
of the entire sand content gradient (Fig. 21, above). In 2021, KA5 and 
EU2 were also higher than the other two PTFs but to a variable degree 
across the sand content gradient (Fig. 21, below).

Within each PTF, yield tended to decrease with increasing soil sand 
content (Fig. 21). In the case of B25 and B17, the decrease was more 
gradual and across the entire sand scale, whereas for KA5 and EU2 the 
decrease happened mostly at higher sand contents. This suggests that 

PTFs that estimate less water availability in soils tend to be more sen-
sitive to smaller decreases in soil retention capacity (increasing sand) 
when estimating plant productivity.

Higher yield differences between PTFs seemed to occur at around 60 
and 90 % sand content in 2020 (Fig. 21, above) and around 70 % in 
2021 (Fig. 21, below). These three critical percent values seem to 
coincide with discontinuities (in the case of KA5 and EU2) or changes in 
direction (in the case of B25 and B17) in the FC-sand content relation-
ships (Fig. 20). This implies that the impact of the choice of PTF on yield 
is a function of how close the soil texture values are to these points at 
which FC discontinuities occur. This might explain the fact that the 
highest variation in yield between PTFs (Table 6) occurred at Boo and 
Ded: soils from both sites included two or three of the sand percent 
critical values (Fig. 20, upper bars).

4. Discussion

One of the main problems when trying to find the most accurate PTF 
is the availability of reference values, that is, direct measurements of soil 
water retention parameters. On the one hand, these measurements are 
difficult or impractical to perform (Bagnall et al., 2022), and on the 
other hand, one of the main parameters, FC, is defined differently in 
different regions (Batjes, 1996). Even the definition of what constitutes 
sand, silt or clay in terms of particle size can vary between countries 
(Burt, 1996; Eckelmann et al., 2005; Pachepsky and van Genuchten, 
2011).

Bulk density requires special attention. With the increasing need in 
estimating long term soil carbon (Xu et al., 2016; Walter et al., 2016) 
and in maintaining soil health (Panagos et al., 2024; Chen et al., 2024) 
this soil parameter has gained significance (Ramcharan et al., 2017). 
The frequent lack of information on bulk density is related to the fact 
that direct methods of measuring it are expensive and labor intensive 
(Al-Shammary et al., 2018; Panagos, 2024; Walter et al., 2016), espe-
cially at deeper layers (Xu et al., 2016). Therefore, it is not coincidence 
that the two sites at which bulk density measurements were available 
were part of long-term studies. Probably a reflection of the difficulties in 
determining bulk density is the fact that not all PTFs tested in this study 
require bulk density for their calculation. In the case of EU1 and EU2, 
which have several algorithms to choose from, less than half of these 
options include bulk density in their formulations. Given the relation-
ship between bulk density and soil depth (Panagos et al., 2024) the 
absence of the former in the algorithms might be compensated by the 
inclusion of soil depth or position in the soil profile (top- or subsoil) in all 
EU2 and most EU1 formulations.

4.1. PTFs and soil water

Beyond the exact determination of the FC value for a given soil, FC is 
by convention the amount of water that remains after the water satu-
rated soil profile has drained by gravity; a process that may take be-
tween some hours and a day (Evett et al., 2019). In colder or temperate 
climates during the months of low temperature and plant activity, soil 
water contents exceeding FC quickly drains and soil water contents tend 
to remain around FC levels, until the beginning of the growing season, 
when water starts to be utilized by plants or to evaporate due to the 
increasing temperatures. The resulting pattern of higher values in 
fall/winter and lower in spring/summer can be seen in the measured 
values of Figs. 11 and 12.

The strong influence of FC in water simulations is also present in 
HERMES, because this model does not allow water saturation to persist 
more than one day. This explains the tendency to form high plateaus 
close to FC in the simulations as seen on Figs. 9–13 during the fall and 
winter months. As a consequence of this dynamics, substantial differ-
ences in FC estimates from the different PTFs, would produce also large 
differences in overall available soil water predictions, in a fairly direct 
relationship, i.e., higher FC values corresponding to more available 

Fig. 7. Ded site average of field capacity (total bar height) and wilting point 
(white bars) at different soil depths predicted by some selected PTF (KA5, B25) 
and the PTF ensembles (MEA and MED) to compare with HYPROP estimates. 
Color bars indicate soil available water capacity (AWC). (colors were chosen 
only to enhance visualization).
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water (provided that differences in simulated WP are less significant, as 
seen in Fig. 3, for example).

We did not have any evidence that the plateaus observed in 
measured water contents corresponded to the “real” or effective FC of 
that soil; however, at Ded (Fig. 11, 9 and 12) the measured soil water 
content maxima formed a jagged, horizontal line at around the same 
value in all seasons, suggesting that this could correspond to the FC 
parameter. At Due (Figs. 13 and 14) a maximum line was not so clearly 
present, and high peak fluctuations varied in values of around 5–10 % 
from season to season, making it difficult to draw any conclusion about 
the most likely soil parameter values. The reasons for these fluctuations 
are not clear. Freezing events in winter and cracking of drying soil in 
summer, and tillage practices (Liebhard et al., 2022) are possible rea-
sons. Additionally, inaccuracies in the measurements themselves cannot 
be ruled out.

If, nevertheless, we accept the observations at Ded as a valid crite-
rium for determining the magnitude of FC, then the water content at FC 
is accurately predicted if the maximum values of simulated water con-
tents match with those of the observed ones.

At Ded, PTFs that estimated intermediate FC values, like RAW and 
EU1, and the PTF ensemble MEA (Fig. 5) produced the most accurate 
simulations (Table 4), indicating that the actual FC of the site must be at 
around 25 %. At Boo, also the intermediate FC estimates (PTFs RAW, 
MEA and MED) showed less error (Table 4), but in this case a mean FC of 

15–17 % would be the most likely value. In the case of Mar, in contrast 
to the previous sites, the most accurate PTFs were the ones estimating 
the lowest FC values, B25, B17 and ROS. However, these estimates 
correspond to FC averages ranging from 8 % to 14 %, placing Mar close 
to Boo in terms of soil parameters magnitudes. Therefore, it follows that 
two PTFs could work differently at two sites even though both sites have 
similar WRP values.

Alternatively, it could be that in the concrete case of Boo versus Mar, 
the slight differences in the estimated (most likely) FC values (in the 
order of 1–7 %) are enough to increase the chances of one PTF with 
respect to the other. In this case, the sensitivity of PTFs to slight changes 
in texture shown in Fig. 20 becomes particularly relevant.

In summary, at Boo, Ded and Mar sites, KA5 and EU2 (and also 
HYPROP at Ded, Fig. 7) clearly overestimated FC values and the amount 
of water. MEA and MED PTF ensembles produced accurate results in 
sites like Boo or Due (Table 4), where soil water content was more 
closely simulated by FC of intermediate magnitude (Figs. 3 and 5) such 
as ROS, due to the fact that with the mean and the median the extremes 
tend to cancel each other. In these cases, an advantage of the PTF en-
sembles is that analysts do not need to make elaborate decisions on 
which PTF to use in each case.

Fig. 8. Mean absolute scaled error (MASE), mean absolute error (MAE), and percentage bias error (PBE) of the simulated soil water dynamics compared to measured 
values at Ded). (Colors were chosen only to enhance visualization).
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4.2. PTFs and yield

Regarding the question of whether PTFs can have a big impact on 
yield simulation, the results of the synthetic soil model runs indicate that 
impacts can manifest themselves in two ways:

a) in a constant manner across most of the soil sand content as 
observed in 2020 (compare KA5 with B17 in Fig. 21, above), and b) in a 
variable way around specific soil sand percent contents (KA5 and EU2 in 
Fig. 21, below), most likely related to points at which PTFs present 
discontinuities in the WRPs estimates as a result of transition zones in 
the texture continuum.

In the first case, it is possible that at specific growth conditions 
related to crop properties, for example, drought tolerance, and the 
season’s weather, for instance, enough precipitation, makes the amount 
of AWC becoming particularly relevant. Then, PTFs that tend to estimate 
higher FC values simulate higher yields independently of the texture 
value (that is, within the range of the synthetic texture in this study). It 
might be tempting to try to verify this presumption with the results of 
the yield simulations of the 2020 experiments at the site of Boo (same 
year, same crop and a wide range of soil sand content). However, in this 
case, in most of the plots B25 and B17 PTFs produced higher yields than 
KA5 and EU2 (Fig. 15, above). This is because real soils do not have 

Table 4 
Mean absolute error (MAE in % vol) and percent bias error (PBE in % of measured values) of simulated versus measured soil water content values by sites. KA5, EU1, 
B25, B17, EU2 and ROS: pedotransfer functions used for the simulations (see Table 3). Blue background shows the three best performers (lowest MAE) at each site.

Fig. 9. Soil water content simulations at the Boo site (0–30 cm depth) using all pedotransfer functions (PTFs, Table 3) compared with measured data.
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uniform texture values across the soil profile, whereas profile uniformity 
was a premise in the generation of the synthetic soil database.

The second type of impact may be related, at least in part, to the 
difficulty of establishing a completely gradual synthetic database. Even 
when sand content followed a smooth scale of 2 % steps, non-gradual 
changes in silt and/or sand may produce discontinuities in the result-
ing WRPs. For example, at the 90 % sand content, where both the trends 
of FC and yield appeared to show a clear discontinuity (Figs. 20 and 21, 

respectively), it coincided with a relatively abrupt increase in clay and a 
decrease in silt in the synthetic soil set (Fig. 2). These changes, although 
of few percentual points, seemed to have been high enough to affect the 
graduality of the FC estimates. Similarly, at 75 % sand content, where 
another FC and yield jump appeared (Fig. 19 and Fig. 20, respectively) 
there was another inflexion point in both clay and silt percentages 
(Fig. 2). The reasons for the relative impact of texture on the yield at 
varying conditions could be better understood with a sensitivity 

Fig. 10. Soil water content simulations at the Boo site (30–60 cm depth) using all pedotransfer functions (PTFs, Table 3) compared with measured data.

Fig. 11. Soil water content simulations at the Ded site (20–30 cm depth) using all pedotransfer functions (PTFs, Table 3) compared with measured data.
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analysis.
Non-linearity in the texture-WRP relationship can be also related to 

the definition of what constitutes sand, silt and clay. The German pub-
lication Soil Survey Guide (Eckelmann et al., 2005) on which the KA5 
method is based, considers that the “sand” soil type (abbreviated “ss”) 
should be actually separated in three subtypes according to the pro-
portions of fine, medium and coarse sand, when it comes to characterize 

in more detail the WRPs. According to this guide, FC values can vary up 
to 6 % between soils with predominantly coarse sand and soils with 
predominantly fine sand. Besides the fact that there could be particle 
size subtypes at any other soil type, these subtypes could potentially 
create complex interactions in different combinations of clay, sand and 
silt. PTFs then may differ in the way they capture these complex 
interactions.

Fig. 12. Soil water content simulations at the Ded site (40–60 cm depth) using all pedotransfer functions (PTFs, Table 3) compared with measured data.

Fig. 13. Soil water content simulations at the Due site (0–30 cm depth) using all pedotransfer functions (PTFs, Table 3) compared with measured data. Vertical lines 
indicate discontinuities in the records.
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Fig. 14. Soil water content simulations at the Due site (30–60 cm depth) using all pedotransfer functions (PTFs, Table 3) compared with measured data. Vertical lines 
indicate discontinuities in the records.

Table 5 
Simulated and measured yield (t/ha) with all the pedotransfer functions (PTF). In parentheses: number of SUs (plots). Yr: year. CO: corn, WR: winter rye, WW: winter 
wheat, OA: oat, SW: spring wheat. KA5, EU1, B25, B17, EU2, ROS, MEA and MED: pedotransfer functions used in the simulations (see Table 3). Avg: average. SD: 
standard deviation. Blue and red cells: highest and lowest average at each row, respectively.
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Beyond the magnitude of the impact of PTFs on yield, we observed 
some trends in the relationship between simulated yield and PTFs. As it 
was for soil water simulations, yield simulations with the different PTFs 
often showed a correlation with their estimated FCs. This means that, 
according to the model’s dynamic principles, high estimated FC values 

often corresponded to higher water contents and higher yields.
In the field, more water may have a direct effect on yield because of 

the higher water availability, and indirectly, it could be related to lower 
losses of nitrogen by leaching. In the case of Due, although there was 
some consistency in the FC-soil water correlation, no correspondence 
between FC and simulated yield was evident. This might have to do with 
the fact that in soils with less sand content soil water is a less important 
limiting factor, given the differences in critical soil water thresholds 
between fine and coarse soils (Wankmüller et al., 2024).

The ranking of simulated yield at Due did not resemble the ranking of 
FC or soil water content. However, the yield ranking at Due shares some 
features with the simulated yield ranking in the productive plots (plots 
2, 4, 5 and 8, starting from the left on Fig. 17) at Mar. Boo also showed 
such an inversion in yield with respect to FC for most plots in 2020 
(corn), but not in 2021 (winter rye) (Fig. 15). Corn was also grown at 
Mar in 2020. We could speculate that at certain conditions, for example 

Table 6 
Coefficient of variation (CV) of the PTF-based yield (t/ha) averaged by site and 
year. n: number of plots (Sus). CO: corn, WR: winter rye, WW: winter wheat, OA: 
oat, SW: spring wheat.

Site Crop Year CV

Boo 
(n = 15)

CO 2020 0.32
WR 2021 0.26

Ded 
(n = 5)

WW 2015 0.13
WW 2016 0.05
WR 2017 0.01
OA 2018 0.26

Mar 
(n = 9)

WR 2019 0.06
CO 2020 0.09
WR 2021 0.09

Due 
(n = 9)

CO 2016 0.04
WW 2017 0.04
CO 2018 0.05
WW 2019 0.03
SW 2020 0.08

Table 7 
ANOVA results for sites and years relatively closer to significance. df btw and df 
wthn: degrees of freedom between and within groups respectively; F: F-statistic; 
P-value: significance level; and F-crit: critical F value.

Site Year df btw df wthn F P-value F crit

Boo 2020 8 126 1.39 0.21 2.01
Boo 2021 8 126 15.91 4.8 e− 16 2.01
Ded 2015 8 36 0.15 1.00 2.21
Ded 2018 8 36 1.94 0.08 2.21
Mar 2020 8 72 0.68 0.71 2.07

Fig. 15. Predicted yield for each PTF and measured yield at Boo in 2020 and 2021. Each block of bars represents one plot. X axis: first row is crop (Table 6); second, 
year; and numbers 2–46 are plot numbers.

Fig. 16. Predicted yield for each PTF and measured yield at Ded in 2018. Each 
block of bars represents one plot. X axis: first row is crop (Table 6); second, 
year; and numbers 11–26 are plot numbers.
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when water availability is not a limiting factor, or when specific crops (e. 
g. with different root distribution patterns) are grown, PTFs that pro-
duce low FC estimates and lower soil water contents, could nevertheless 
result in high yield simulations. Groh et al. (2020) showed that models 
based on relatively simple representations of soil structure can fail to 
appropriately account for natural soil variability and its consequent ef-
fects on crop processes and outputs.

Another reason for the apparent inverse relationship between FC and 
simulated yield could be that PTFs like KA5 and EU2 that estimated 
relatively high FC values, end up in relatively small values of air capacity 
as the difference between FC and the total available soil pore space (PS) 
can be too small. In this study, the differences between PS (data not 
shown) and FC could attain values of less than 5 % at Due, which might 
be too low to allow for an optimal plant growth when soil moisture is at 
full FC due to critical soil air content. In HERMES the critical threshold 
for air content triggering oxygen stress is mostly at 8 % of soil volume.

Finally, it should be underlined that even though the findings of this 
study are restricted to the application of a single simulation model, in 
light of the significant departures in estimating WRPs from the different 
PTFs, analogous effects could be expected for other models using soil 
water capacity-based (tip-bucket type) approaches.

5. Conclusions

In conclusion, the choice of pedotransfer functions (PTF) resulted in 
most cases in measurable differences in soil water content dynamics, 
often showing a direct relationship between field capacity (FC) and 

water content magnitudes, indicating that, for models that use a ca-
pacity approach, the accurate estimate of the soil water content at FC is 
crucial in the choice of PTF.

Differences in soil water content generated by the PTFs were more 
evident at periods of full FC or soil water saturation. This might be the 
reason for the relatively tight relationship between the estimated FC and 
water dynamics simulations.

The PTF ensembles produced relatively accurate soil water dynamics 
results in cases where some of the PTFs chosen produced too low and 
others too high WRP simulation values. In these cases, results suggest 
that ensembles simplify the analyst’s decision on which PTF to use in 
each case

The KA5, a traditional method to estimate WRPs, seems to have a 
tendency to overestimate FC, and consequently, soil water content in 
sandy soils. With this method, a similar trend could be observed in 
clayey soils at Due, but this overestimation seemed less significant.

Under certain conditions, PTFs producing higher estimated FCs also 
resulted in higher yield, suggesting that the HERMES model yield 
simulation can be sensitive to soil water availability. Also, the PTFs 
tested in this study showed an increasing variability in WRP estimation 
and yield simulation at specific points in the sand percent continuum of 
the synthetic soil database, where non-gradual, but relatively small 
changes in silt and/or sand content occurred. This means that different 
PTFs have different degrees of sensitivity even at small changes in par-
ticle size distribution.

And finally, the importance of the soil water retention properties for 
simulating and predicting crop yield suggests the need for extending and 

Fig. 17. Predicted yield for each PTF and measured yield at Mar in 2020. Each block of bars represents one plot. X axis: first row is crop (Table 6); second, year; and 
numbers 0–160 are fertilization amounts in kg N/ha.

Fig. 18. Predicted yield for each PTF and measured yield at Due in 2020. Each block of bars represents one plot. X axis: first row is crop (Table 6); second, year; and 
numbers 15–51 are plot numbers.
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improving the soil databases.
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Appendix A. Pedotransfer functions formulas

EU PTF v.1 

θPS = 0.6819 − 0.06480 • (1
/
(OC+1)) − 0.11900 ∗ BD2 + 0.001489 ∗ Cl+ 0.0008031 ∗ Si+ 0.02321

∗ (1
/
(OC+1)) ∗ BD2 − 0.00002315 ∗ Si ∗ Cl − 0.0001197 ∗ Si ∗ BD2 − 0.0001068 ∗ Cl ∗ BD2 (A.1) 

FC = 0.2449 − 0.1887 ∗ (1/(OC+ 1)) + 0.004527 ∗ Cl+ 0.001535 ∗ Si+ 0.001442 ∗ Si

∗ (1/(OC+1)) − 0.00005110 ∗ Si ∗ Cl+ 0.0008676 ∗ Cl ∗ (1/(OC+ 1)) (A.2) 

θWP = 0.09878 + 0.002127 ∗ Cl − 0.0008366 ∗ Si − 0.07670 ∗ (1/(OC+1))+ 0.00003853 ∗ Si ∗ Cl+ 0.002330 ∗ Cl

∗ (1/(OC+1)) + 0.0009498 ∗ Si ∗ (1/(OC+1)) (A.3) 

Batjes FC@2.5 pF: 

θPS = 0.6903 • Cl+ 0.5482 • Si+4.2844 • OC (A.4) 

θFC = 0.46 • Cl+0.3045 • Si+2.0703 • OC (A.5) 

θWP = 0.3624 • Cl+ 0.117 • Si+1.6054 • OC (A.6) 

Batjes FC@1.7pF: 

θPS = 0.6903 • Cl+ 0.5482 • Si+4.2844 • OC (A.7) 

θFC = 0.6681 • Cl+0.2614 • Si+2.215 • OC (A.8) 

θWP = 0.3624 • Cl+ 0.117 • Si+1.6054 • OC (A.9) 

Where:
θPS: water content at saturation or pore space (fraction of 1); θFC: water content at field capacity (fraction of 1); θWP: water content at wilting 

point (fraction of 1); Cl: clay content (%); OC: organic carbon content (%); Si: silt content (%); BD: bulk density (g cm− 3).
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Data will be made available on request.
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