001043681 001__ 1043681
001043681 005__ 20250716202229.0
001043681 037__ $$aFZJ-2025-02979
001043681 1001_ $$aQi, J.$$b0
001043681 1112_ $$aThe International Conference on Neutron Scattering$$cBella Center in Copenhagen, Denmark, with the last day at the European Spallation Source (ESS) in nearby Lund, Sweden$$d2025-07-06 - 2025-07-10$$gICNS$$wDenmark
001043681 245__ $$aElucidating entropy contributions of barocaloric effect in spin crossover complex Fe(PM-BiA)2(NCS)2
001043681 260__ $$c2025
001043681 3367_ $$033$$2EndNote$$aConference Paper
001043681 3367_ $$2BibTeX$$aINPROCEEDINGS
001043681 3367_ $$2DRIVER$$aconferenceObject
001043681 3367_ $$2ORCID$$aCONFERENCE_POSTER
001043681 3367_ $$2DataCite$$aOutput Types/Conference Poster
001043681 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1752681240_22200$$xInvited
001043681 520__ $$aBackground: The barocaloric effect (BCE) is characterized as a thermal response in solid-state materials induced by external hydrostatic pressure. Cooling technologies based on the BCE have emerged as a promising alternative to conventional vapor-compression cooling. Recently, spin crossover (SCO) transitions, where the low spin and high spin states can be switched by hydrostatic pressure, were proposed as a potential mechanism to generate outstanding BCE. Fe(PM-BiA)2(NCS)2 (with PM = N-2’- pyridylmethylene and BiA = 4-aminobiphenyl) is a classic SCO complex that crystalizes in two different structures, orthorhombic with abrupt transition and monoclinic with gradual transition. In this work, we aim to unveil the entropy contributions of Fe(PM-BiA)2(NCS)2 for optimizing the BCE performance on SCO complexes. Methods: Spectroscopic methods including nuclear inelastic scattering (NIS, P01), inelastic neutron scattering (INS, PANTHER & PELICAN) and quasi elastic scattering (QENS, PANTHER & EMU) have been used for dynamic studies of Fe(PM-BiA)2(NCS)2. Results: The dynamic features of both polymorphs over a large energy range are highlighted by spectroscopic methods. The complete and Fe-related lattice dynamics have been accessed through INS and NIS, respectively. It indicates that the Fe-related entropy change across the spin transition is around 54.6% of the total entropy change. The single crystal X-ray diffraction evidences the potential dynamic disorder of phenyl groups. A two-site reorientation mode of the phenyl group at the ps time scale has been observed by QENS. This local mode also generates 12% of the total entropy change.Conclusion: In summary, we confirm that both the phonon excitations of Fe-N octahedron and the local motions of phenyl groups play crucial roles in contributing to the total entropy change in Fe(PM-BiA)2(NCS)2. Our study will enhance the understanding of the caloric effect in the SCO complex and promote the application of SCO complexes as BCE refrigerants.
001043681 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001043681 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001043681 7001_ $$0P:(DE-Juel1)194626$$aPrakash, P.$$b1$$ufzj
001043681 7001_ $$0P:(DE-Juel1)192155$$aSchwärzer, K.$$b2$$ufzj
001043681 7001_ $$0P:(DE-Juel1)185953$$aShahed, H.$$b3$$ufzj
001043681 7001_ $$0P:(DE-Juel1)130501$$aAllgaier, Jürgen$$b4$$ufzj
001043681 7001_ $$0P:(DE-Juel1)130884$$aPerßon, J.$$b5$$ufzj
001043681 7001_ $$aSergeev, I.$$b6
001043681 7001_ $$0P:(DE-HGF)0$$aGlazyrin, K.$$b7
001043681 7001_ $$aRols, S.$$b8
001043681 7001_ $$aDe Souza, N.$$b9
001043681 7001_ $$aYu, D.$$b10
001043681 7001_ $$0P:(DE-Juel1)194570$$aGrzechnik, A.$$b11$$ufzj
001043681 7001_ $$0P:(DE-Juel1)130504$$aAngst, M.$$b12$$ufzj
001043681 7001_ $$0P:(DE-Juel1)131018$$aVoigt, J.$$b13$$ufzj
001043681 7001_ $$0P:(DE-Juel1)145694$$aFriese, K.$$b14$$ufzj
001043681 7001_ $$0P:(DE-HGF)0$$aSohn, Y.$$b15
001043681 7001_ $$0P:(DE-HGF)0$$aPrajapat, D.$$b16
001043681 909CO $$ooai:juser.fz-juelich.de:1043681$$pVDB
001043681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194626$$aForschungszentrum Jülich$$b1$$kFZJ
001043681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192155$$aForschungszentrum Jülich$$b2$$kFZJ
001043681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185953$$aForschungszentrum Jülich$$b3$$kFZJ
001043681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130501$$aForschungszentrum Jülich$$b4$$kFZJ
001043681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130884$$aForschungszentrum Jülich$$b5$$kFZJ
001043681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194570$$aForschungszentrum Jülich$$b11$$kFZJ
001043681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130504$$aForschungszentrum Jülich$$b12$$kFZJ
001043681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131018$$aForschungszentrum Jülich$$b13$$kFZJ
001043681 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145694$$aForschungszentrum Jülich$$b14$$kFZJ
001043681 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001043681 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001043681 9141_ $$y2025
001043681 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001043681 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001043681 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x2
001043681 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
001043681 980__ $$aposter
001043681 980__ $$aVDB
001043681 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001043681 980__ $$aI:(DE-82)080009_20140620
001043681 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001043681 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001043681 980__ $$aUNRESTRICTED