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 A B S T R A C T

Solar-induced fluorescence (SIF) emitted by plants as a byproduct of photosynthesis provides critical insights 
into vegetation health and climate regulation. However, detecting the weak SIF signal from small telluric 
oxygen absorption features remains challenging. ESA’s upcoming Fluorescence Explorer (FLEX) mission will 
retrieve full-spectrum SIF data at 300 m spatial resolution. In the meantime, we propose an alternative 
approach to reconstruct full-spectrum SIF from 𝑂2𝐴 and 𝑂2𝐵 bands using Principal Component Analysis 
(PCA) and the Soil Canopy Observation, Photochemistry, and Energy fluxes (SCOPE) model. Based on 100,000 
SCOPE simulations (640–850 nm at 1 nm resolution), the SIF signals in the 𝑂2𝐴 (760 nm) and 𝑂2𝐵 (687 nm) 
bands showed high correlations with adjacent spectral regions and the full spectrum (𝑅2 > 0.89). From this 
data, we derived linear regression functions linking SIF at the 𝑂2𝐴 (760 nm) and 𝑂2𝐵 (687 nm) bands to 
the first two principal components (PCs), enabling inverse PCA transformation to reconstruct full-spectrum 
SIF with 𝑅2 > 0.98 and RMSE < 0.12 mW m−2 nm−1 sr−1. Applying the functions to HyPlant airborne SIF 
maps (1.7 m resolution) in northeastern Spain, and subsequent PC transformation, successfully reconstructed 
full-spectrum SIF including peaks and total emitted flux (𝑆𝐼𝐹𝑇 𝑜𝑡) with propagated uncertainties. To transfer 
this airborne full-spectrum SIF data to the satellite scale, we then trained an emulator with PRecursore 
IperSpectrale de la Missione Applicativa (PRISMA) Bottom of Atmosphere (BOA) reflectance spectra as input 
to produce spaceborne synthetic full-spectral SIF maps at 30 m resolution, and resampled to the nominal 
300 m FLEX resolution. Despite PRISMA’s lower spectral resolution for SIF retrieval, the emulator reliably 
produced full-spectrum SIF with 𝑅2 of 0.69 and 0.52 for 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 bands, enabling FLEX-like 
SIF products (e.g., peaks, 𝑆𝐼𝐹𝑇 𝑜𝑡). This reconstruction and upscaling approach demonstrates its utility for 
generating FLEX-compatible SIF datasets, supporting FLEX’ mission preparation and cal/val activities.
1. Introduction

Photosynthesis sustains life on Earth and plays a vital role in regulat-
ing the planet’s climate. As a byproduct of photosynthesis, the emission 
of solar-induced fluorescence (SIF) is a plant strategy developed to 
release excessive energy (Porcar-Castell et al., 2014; Mohammed et al., 
2019; Yang et al., 2021). SIF has become crucial for studying vegetation 
photosynthesis and its response to environmental stressors. It is an im-
portant indicator of vegetation photosynthesis and can provide insight 
into plant productivity and health (Celesti et al., 2018; Mohammed 
et al., 2019). Space-based quantification of the full-spectrum SIF emis-
sion signal at a high spatial resolution of 300 m as planned with the 
future FLuorescence EXplorer (FLEX) satellite mission thus provides a 
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direct linkage to the canopy’s photosynthetic activity, opening insights 
into terrestrial vegetation health and productivity (Drusch et al., 2017). 
However, the SIF emission signal is relatively weak compared to the 
reflected radiance of vegetation, making it challenging to detect and 
separate it from background noise (Sabater et al., 2018). For this 
reason, retrieving the SIF emission spectrum typically relies on methods 
that only allow retrieving the SIF signal in narrow spectral absorption 
features in which almost no light is reflected (Cogliati et al., 2015; 
Köhler et al., 2015; Liu et al., 2015; Cendrero-Mateo et al., 2019). The 
most widely used SIF retrieval methods are briefly outlined below.

The Fraunhofer Line Discriminator (FLD) method (Plascyk, 1975) 
uses Fraunhofer lines for SIF estimation, which include telluric oxygen 
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absorption lines among other spectral features present in the solar 
spectrum. In these absorption lines, SIF accounts for a relatively larger 
portion of the total upwelling radiance of the canopy (Theisen, 2002). 
The FLD method is based on the assumption that canopy reflectance 
and SIF remain constant within and outside the absorption line under 
consideration. Yet, this is an unrealistic assumption, which results in 
the retrieval of less accurate values of SIF. One of the most commonly 
applied approaches to retrieve SIF in the 𝑂2𝐴 and 𝑂2𝐵 absorption 
features is the Spectral Fitting Method (SFM) (Cogliati et al., 2015, 
2019). In contrast with FLD, SFM assumes that the canopy reflectance 
and SIF can be described by smooth mathematical functions around 
the absorption line (see a detailed description in Supplementary Ma-
terial). For instance, the SFM has been applied to airborne HyPlant 
imagery to study the SIF response of various vegetation types, including 
crops, forests, and grasslands, and can provide valuable insights into 
vegetation photosynthesis and stress (Meroni et al., 2009; Bandopad-
hyay et al., 2019; Rascher et al., 2022). Going beyond the standard 
SFM method, over the years several alternative spectral fitting meth-
ods have been proposed, and some of them provide the possibility 
to reconstruct the full SIF emission spectrum (640–850 nm) from 
top-of-canopy (TOC) reflected radiance measurements (Zhao et al., 
2018). These methods involve the Fluorescence Spectrum Reconstruc-
tion (FSR) method (Zhao et al., 2014), the Full-spectrum Spectral 
Fitting Method (F-SFM) (Liu et al., 2015), an advanced spectral fitting 
method called SpecFit (Cogliati et al., 2015), the advanced Fluores-
cence Spectrum Reconstruction (aFSR) method (Zhao et al., 2018) and 
the Fluorescence Inference (SIFFI) (Kukkurainen et al., 2025). Despite 
the merits and limitations of the above methods, most of them rely 
on TOC radiance data. While Zhao et al. (2024) demonstrated the 
potential for full-spectrum SIF reconstruction using satellite reflectance 
data, such as TROPOMI, challenges related to atmospheric correc-
tion and spectral resolution remain significant barriers to widespread 
application (Cendrero-Mateo et al., 2019). With the launch of the 
FLEX mission on the horizon in 2026, there is a pressing need for 
full-spectrum SIF reconstruction methods tailored to imaging spectrom-
eter satellite missions. FLEX will carry the high-resolution Fluores-
cence Imaging Spectrometer (FLORIS), which will acquire data in the 
500–780 nm spectral range. FLORIS will offer an ultrahigh spectral 
sampling of 0.1 nm in the oxygen absorption bands (759–−769 nm 
and 686–−697 nm), and 0.5—2.0 nm in the red edge, chlorophyll 
absorption, and Photochemical Reflectance Index (PRI) bands (Drusch 
et al., 2017). FLEX aims for precise and physically rigorous SIF retrieval 
within the oxygen absorption bands using spectral high-resolution data. 
In anticipation of its launch, alternative solutions are needed that 
can interpret coarser-resolution spectra as recorded from currently 
operational imaging spectrometer missions and translate them into 
full-spectrum SIF estimates. Accordingly, by developing a workflow 
that can generate surrogate FLEX-like full-spectrum SIF data, we can 
pave the way for prototyping and interpreting advanced satellite-based 
photosynthesis products. This preparatory work ensures that sound 
processing pipelines are ready for FLEX immediately post-launch.

A fleet of new-generation imaging spectroscopy missions with high 
spatial resolution (i.e., 30 m) has recently been designed and partly 
launched, possessing hundreds of spectral bands in the visible and near-
infrared (VNIR) regions of the electromagnetic spectrum that provide 
a vast amount of contiguous spectral data. These missions include the 
already launched PRecursore IperSpectrale de la Missione Applicativa 
(PRISMA) (Loizzo et al., 2019) and the Environmental Mapping and 
Analysis Program (EnMAP) (Guanter et al., 2015) missions, and the 
upcoming European Copernicus Hyperspectral Imaging Mission for the 
Environment (CHIME) (Celesti et al., 2022) and NASA’s Surface Biology 
and Geology (SBG) (National Academies of Sciences and Medicine, 
2018) mission. In addition, from low Earth orbit, the German Earth-
sensing imaging spectrometer DESIS (Krutz et al., 2019) and the EMIT 
imaging spectrometer developed by NASA-JPL (Green and Thomp-
son, 2020), both on board the International Space Station, deliver 
hyperspectral image data of the Earth’s surface.
2 
Launched in March 2019, the PRISMA mission paved the way for 
the rapid distribution and utilization of hyperspectral satellite imagery 
within the scientific community. PRISMA’s spectral range overlaps with 
FLEX’s target regions and covers the spectral region where SIF is emit-
ted (i.e., 640–850 nm), making it a potentially powerful data source for 
synthesizing FLEX-like SIF products at 30 m resolution. Thanks to its 
high spectral resolution, PRISMA has been successfully exploited for the 
retrieval of numerous vegetation traits (e.g., Veraverbeke et al., 2018; 
Verrelst et al., 2021). The question now arising is whether PRISMA data 
can be exploited as a basis for reproducing the full-spectrum SIF signal. 
Since PRISMA has not been designed to retrieve SIF, given the sensor’s 
relatively broad bandwidth (≤12 nm), it requires the development of 
alternative methods capable of approximating SIF signals that can han-
dle lower-resolution spectral image data. One possibility to tackle this 
problem and derive SIF from PRISMA is the combination of physically-
based vegetation radiative transfer models (RTMs) providing SIF as 
output with the flexibility of competitive machine learning algorithms. 
Moving along this line, earlier experimental studies suggested that 
strong and reliable links between two sources of spectral data can be 
established through statistical learning, i.e., emulation (Verrelst et al., 
2019; Morata et al., 2021).

The concept of emulation involves approximating input–output re-
lationships using a statistical learning model, also known as an emulator
or a surrogate model (Verrelst et al., 2019). An emulator is essen-
tially a trained machine learning regression algorithm (MLRA) that 
uses a dataset consisting of input–output pairs for model training. 
Once an accurate emulator is developed, it can approximate original 
models, such as advanced RTMs, at a much faster speed. Thus, the 
emulator can infer statistical relationships between pairs of spectral 
data and process them at a low computational cost. For example, the 
emulation technique can reconstruct a robust statistical relationship be-
tween PRISMA’s bottom-of-atmosphere (BOA) reflectance spectra and 
full-spectrum SIF data. This emulation approach converts PRISMA re-
flectance into full-spectrum SIF and can thus generate synthetic datasets 
that replicate FLEX’s anticipated spectral and spatial resolution. These 
surrogate products are critical for pre-launch algorithm validation and 
mission planning. However, the key challenge in emulating hyperspec-
tral data lies in simultaneously predicting a vast number of spectral 
bands. Fortunately, not all bands carry unique information; there is 
usually strong collinearity present in spectral data. Capitalizing on this 
redundancy, known as the Hughes phenomenon, allows us to condense 
the data into a lower-dimensional space using dimensionality reduction 
(DR) techniques (Hughes, 1968). Among the most straightforward DR 
methods is Principal Component Analysis (PCA) (Wold et al., 1987). As 
PCA applies linear transformations, it goes along with the advantage 
that the principal components (PCs) can be transposed again back-
ward into the original data. Consequently, applying PCA to spectral 
data followed by the transposition of its components back to the full 
spectrum has proven effective for reconstructing hyperspectral data. 
Combining this approach with a statistical model that predicts PCA 
components enables the rapid emulation of RTM-like spectral output 
data, as demonstrated in recent emulation studies (Vicent et al., 2018; 
Morata et al., 2021, 2023). Progressing along this line, a potentially 
interesting application of this PCA reconstruction technique lies in the 
fact that the SIF-spectrum signal is a spectrally smooth double-peaked 
curve with peaks around 685 nm and 740 nm. This means it can be 
easily compressed into a few PCA components without losing key infor-
mation. Consequently, PCA reduction and subsequent transformation 
can similarly serve as an attractive method to reconstruct the full-
spectrum SIF signal. This approach opens opportunities to develop a 
robust linkage between SIF retrieval and subsequent PCA components 
to enable the reconstruction of the full-spectrum SIF signal. To achieve 
this, SIF simulations generated by a vegetation RTM offer a potential 
data source.

Altogether, given this outlined framework, this study aims to de-
velop a PCA-based model for reconstructing the full spectral SIF re-
sponse from airborne-retrieved SIF data in the two oxygen absorption 
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Fig. 1. Graphical representation of the proposed full-SIF reconstruction and upscaling workflow.
bands that can be upscaled to the satellite level. To achieve this main 
goal, we divided the presented approach into four steps associated 
with specific objectives: (1) to evaluate the role of simulated SIF data 
to enable a full-spectrum SIF emission spectrum reconstruction from 
HyPlant airborne data through PCA transformation; (2) to propagate 
SIF uncertainty derived from the two HyPlant oxygen absorption bands 
through the full-spectrum SIF reconstruction procedure; (3) to validate 
the full-spectrum SIF signal reconstruction at the airborne scale against 
reference data measured on the ground; and, (4) to develop an emulator 
that enables the upscaling of the full-spectrum SIF model from the 
airborne to the satellite level to finally produce SIF data with associated 
uncertainties from PRISMA image data.

Tackling these four objectives will eventually lead to a novel and 
easily applicable workflow that enables the emulation of the full-
spectrum SIF signal from PRISMA space-borne data, which can serve 
to prototype SIF-related products derived from FLEX data.

2. Material & methods

The workflow, describing the reconstruction of the full SIF emis-
sion spectrum based on hyperspectral satellite data, is outlined in 
Fig.  1. A detailed description of the key steps of the workflow is 
provided in the following sections: (1) used simulated and experi-
mental data; (2) principle of PCA transformation to reconstruct the 
full-spectrum SIF emission; and (3) upscaling to satellite data by us-
ing the emulation technique. Additionally, an uncertainty propagation 
scheme is explained, that consists of two parts: (i) uncertainty prop-
agation through the PCA transformation, and (ii) uncertainty estima-
tion through the emulation process. Integrating all steps, this novel 
and largely automated workflow enables the generation of realistic 
FLEX-like full-spectrum SIF image data.

2.1. SCOPE simulations

To achieve the main objectives, we exploited a combination of 
data sources and techniques to realize satellite-based full-spectrum SIF 
emission reconstruction. The first step consists of the generation of 
a synthetic dataset of full-spectrum SIF using the RTM Soil Canopy 
Observation, Photochemistry, and Energy fluxes (SCOPE) (Van der Tol 
et al., 2014).
3 
SCOPE is a powerful RTM that simulates the radiative and non-
radiative energy fluxes in the soil-vegetation-atmosphere continuum. 
While the SCOPE sub-module RTMo describes the radiative transfer 
of solar radiation within the leaf and canopy, the sub-module RTMf 
simulates the SIF emission of vegetation at the photosystem, leaf, and 
canopy scale. Together with the Brightness–Shape–Moisture (BSM) soil 
reflectance model, SCOPE forms a modular framework of multiple 
RTMs that allows the simulation of optical and SIF data of vegeta-
tion (Van der Tol et al., 2009, 2014). A range of inputs are needed to 
run SCOPE, such as information about leaf properties, photochemistry, 
canopy structure, sun-observer illumination geometry, and soil prop-
erties, to simulate the radiative transfer within vegetation canopies. 
Within this study, the ability of SCOPE to provide the full double-peak 
SIF spectrum spanning from 640 to 850 nm (211 spectral bands) with 
a spectral resolution of 1 nm for each combination of input variables is 
of vital importance to derive the full-spectrum SIF emission curve from 
airborne and satellite data.

With the purpose of exploiting the correlation and thus the redun-
dancy in the double-peak SIF curve between all spectral bands, we used 
SCOPE to create a spectral database consisting of 100,000 simulated 
SIF spectral profiles. This was realized by varying the input variables 
within predefined ranges. These variables were carefully selected based 
on findings of a global sensitivity analysis (GSA) study in which SCOPE 
key variables were identified that drive the SIF emission spectrum at 
canopy scale (Verrelst et al., 2015). Based on the results of the GSA, 
16 input variables required to run the weather, leaf, biochemistry, soil, 
canopy, and geometry sub-models of SCOPE were identified and varied 
to generate the SIF spectral database. The specific boundaries of each 
variable are displayed in Table  1. The variables are used to have a 
wide representation of the vegetation properties. By introducing broad 
variability across these variables, it is assumed that a wide variety 
of real-world leaf and canopy representations are covered. We em-
ployed a Latin Hypercube Sampling (LHS) strategy to sample the input 
variable space within the specified variable boundaries. Using LHS 
offers distinct advantages over systematic gridded sampling because the 
LHS strategy allows for a comprehensive representation of the input 
parameter space, capturing its full variability (Mckay et al., 1979). 
Therefore, LHS sampling ensures the generation of a SCOPE-simulated 
SIF database that represents the full SIF variability, presumably as it is 
found in nature.
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Table 1
Range of SCOPE input variables.
 Type Biophysical parameter Min. Max. 
 Weather Incoming shortwave radiation (W/m2) 0 1000 
 Weather Air temperature (◦C) 0 40  
 Weather Atmospheric vapor pressure (hPa) 0 100  
 Weather 𝐶𝑂2 concentration in the air (ppm) 100 800  
 Leaf Chlorophyll (μg/cm2) 0 50  
 Leaf Dry matter (g/cm2) 0 0.05  
 Leaf Fraction of senescent material 0 0.3  
 Biochemistry Maximum carboxylation capacity (μmol m−1 s−1) 0 150  
 Biochemistry Ball-Berry stomatal conductance 5 15  
 Soil BSM model parameter for soil brightness 0 0.9  
 Canopy Leaf area index (m2/m2) 0 7  
 Canopy Vegetation height (m) 0.05 100  
 Canopy Leaf width (m) 0.01 2  
 Canopy Leaf inclination distribution factor a −1 1  
 Canopy Leaf inclination distribution factor b −1 1  
 Geometry Solar zenith angle (◦) 20 60  

Fig. 2. The first four principal components (PCs) are represented by their respective 
spectra. The PCs exhibit distinct spectral characteristics, including the overall SIF level 
(PC1), the difference between the peaks (PC2), and the depth of the valley between 
the peaks (PC3).

2.2. Principal component analysis (PCA)

This work builds upon PCA at two critical stages within the entire 
workflow (info on PCA principles in Supplementary Material). First, 
PCA is applied in the reconstruction procedure of the full-spectrum 
SIF emission. We used PCA to reduce the dimensionality of the full-
spectrum SIF and thus obtain a linear transformation between 𝑆𝐼𝐹760
and 𝑆𝐼𝐹687 with the first PCs. The four most significant eigenvector 
spectra are illustrated in Fig.  2. These vectors are particularly well-
suited for use as basis functions for the generation of SIF spectra, 
with the application of weights in a linear combination. The shape 
of these functions indicates that the first PC is similar to that of the 
SIF spectrum, thereby emphasizing total fluorescence. The second PC 
represents the differences between the two peaks, while the third PC 
represents the valley’s depth between the two peaks. These findings 
are in alignment with those previously reported by Zhao et al. (2014), 
Verhoef et al. (2018).

Through the employment of a limited number of PCs, we can 
reconstruct the 100,000 simulated SIF spectral profiles. Fig.  3 illustrates 
the residuals of the spectra obtained by only one to four PCs by plotting 
the percentiles ranging from 2 to 98% over the full spectral range. 
Specifically, in the case of 2 PCs, the percentiles 25% and 75% (red 
dashed lines) are < 0.03mW m−2nm−1sr−1 and the percentiles 2% and 
98% (colored areas) are < 0.2mW m−2nm−1sr−1 for the entire spectral 
range, which is below the expected FLEX SIF retrieval error of 0.2 
mW m−2 nm−1 sr−1. The maximum and minimum values (black dashed 
lines) are in line with those obtained by Verhoef et al. (2018).
4 
Second, PCA is also an essential step in the emulation procedure to 
transfer the full-spectrum SIF emission from the airborne to the satellite 
scale. After a description of the used data in Section 2.3, the role of 
PCA in the reconstruction of the full-spectrum SIF signal is detailed in 
Section 2.4 and the error propagation is described in Section 2.5, while 
the role of PCA in emulation is outlined in Section 2.6.

2.3. Image data

The SCOPE-simulated 640–850 nm SIF dataset formed the basis 
for reconstructing the full-spectrum SIF emission from experimental 
HyPlant SIF data derived from the 𝑂2𝐴 and 𝑂2𝐵 oxygen absorption 
regions located at the far-red 760 (𝑆𝐼𝐹760) and red 687 nm (𝑆𝐼𝐹687), 
respectively. HyPlant and corresponding PRISMA imagery were ac-
quired during an intensive field campaign in the frame of the LIAISE 
(Land surface Interactions with the Atmosphere over the Iberian Semi-
arid Environment) project in the northeastern part of Spain, covering 
the area around the city of Lleida on 17th July 2021. Additionally, we 
used calibration coefficients determined for 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 derived 
by comparing HyPlant and FloX data recorded over Selhausen area 
in western Germany for SIF validation purposes during the FLEXSense 
campaign on 26th and 27th June 2018. Then, we applied them to the 
HyPlant LIAISE SIF data recorded in Spain. The reason for applying the 
coefficients derived from the FLEXSense campaign data to the HyPlant 
data recorded in Spain was that the German HyPlant data set was 
validated on a wide variety of crops. The used datasets are briefly 
outlined below.

2.3.1. HyPlant. LIAISE campaign, Spain
The airborne and spaceborne hyperspectral imagery recorded dur-

ing the LIAISE campaign were exploited to develop the full-SIF re-
construction workflow. The nine HyPlant flight lines and the PRISMA 
scene were acquired with a time offset of 28 to 80 min for the first 
and last HyPlant flight lines, respectively. The airborne and spaceborne 
datasets are illustrated in Fig.  4. The HyPlant airborne sensor system 
consists of the two modules DUAL and FLUO (Siegmann et al., 2019). 
The FLUO module has been specially designed to measure SIF. It covers 
the spectral range from 669.5 to 781.9 nm with a spectral sampling 
interval (SSI) of 0.11 nm and an FWHM of 0.31 nm, resulting in 1024 
spectral bands (Alonso et al., 2015).

Nine adjacent flight lines covering an area of 81.79 km2 were 
recorded by HyPlant’s FLUO module. The single flight lines were ac-
quired from 1150 m above ground level on 17th July 2021 between 
13:27 and 14:19 local time (CEST). The airborne image data have a 
spatial resolution of 1.7 m, which were aggregated and resampled to 
30 m to match the size and position of corresponding PRISMA pixels. 
Each of the nine flight lines has an overlap of 20% with its neighboring 
flight lines, which allowed the generation of a mosaiced single image. 
A modified version of the SFM containing an atmospheric correction as 
an additional step was applied to the HyPlant FLUO at-sensor radiance 
data to derive TOC 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 along with corresponding uncer-
tainty intervals (Siegmann et al., 2019; Cogliati et al., 2019, 2015). It 
is important to note that while the SFM successfully retrieves SIF over 
vegetation, it can produce artifacts, including negative values, when 
applied to non-vegetated surfaces such as artificial structures, bare soil, 
or water bodies (Rascher et al., 2021, 2022).

2.3.2. PRISMA data
The PRISMA image provides hyperspectral information in 231 spec-

tral bands covering the range from 402 to 2497 nm. The image has 
a spatial resolution of 30 m. The used PRISMA image was acquired 
at 12:58 local time (CEST) on 17th July 2021. It covers the area 
around the city of Lleida in the northeastern part of Spain (Fig.  4). 
We tested both PRISMA top-of-atmosphere (TOA) radiance (L1) and 
BOA reflectance data to evaluate the capability of the emulator to 
obtain a relationship between PRISMA spectra and reconstructed SIF. 
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Fig. 3. The residuals resulting from approximating the original spectra with one to four principal components (PC). Note that the Y-axis SIF range shrinks as more PCs are added.
Fig. 4. Location of the study area (red marker) in the northeastern part of Spain (a). RGB composite (639.7/550.35/459.86 nm) of the HyPlant DUAL mosaic consisting of nine 
single flight lines (b). The HyPlant image was divided into a training (blue box) and a test subset (red box). PRISMA image of the same region overlaid with a red rectangle 
indicating the area covered by HyPlant (c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Although PRISMA’s spectral resolution is not ideal for retrieving SIF 
given bandwidths in the order of 10 nm, an emulator can establish 
a relationship between what is the most probable SIF spectrum for a 
given PRISMA reflectance spectrum (Pato et al., 2023).
5 
2.3.3. Calibration. FLEXSense campaign, Germany
HyPlant SIF retrieval can slightly deviate from field measurements; 

for this reason, field SIF recordings acquired by the fluorescence box 
(FloX) were used to calibrate the airborne SIF data (Rascher et al., 
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2021). The FloX is a field instrument specifically designed for continu-
ous in-situ monitoring of long and short-term fluctuations in SIF (Julitta 
et al., 2016). During the FLEXSense campaign in the Selhausen area 
(western Germany) that took place on June 26th and 27th 2018, SIF 
values derived from HyPlant data were validated against in-situ FLoX 
measurements. This SIF validation activity was employed on a variety 
of four different vegetation types: sugar beet, corn, lawn, and winter 
wheat. Strong relationships were obtained between the airborne and 
ground measurements for the 𝑆𝐼𝐹760 (𝑅2 = 0.777; 𝑦 = 1.24x - 0.37) 
and 𝑆𝐼𝐹687 bands (𝑅2 = 0.850; 𝑦 = 1.3x + 0.01), respectively. Details 
of the campaign results can be found in Rascher et al. (2022).

𝑆𝐼𝐹687 strongly correlates with wavelengths lower than 710 nm. 
However, its retrieval from airborne sensors can be challenging (Qi 
et al., 2023). This discrepancy can be mitigated through calibration 
of the original HyPlant SIF-SFM product to obtain SIF values that are 
more realistic and conducive to the application of the full-spectrum SIF 
PCA technique. By applying the necessary calibration procedures, we 
aimed to finetune the HyPlant SIF product, aligning it more closely 
to ground-truth measurements and thus increasing its fidelity. For this 
reason, we applied empirical equations for 𝑆𝐼𝐹760 (y = 1.24x - 0.37) 
and 𝑆𝐼𝐹687 bands (y = 1.3x + 0.01) that are based on in-situ FloX and 
corresponding HyPlant SIF data from a former campaign in Germany. 
This allowed us to calibrate the HyPlant data acquired during the 
LIAISE campaign. Considering that the calibration equations have the 
form 𝑥𝑐𝑎𝑙 = (𝑥 − 𝑛)∕𝑚, the propagated error can be encoded using 
the error propagation formula for independent variables (Eq.  (3)) as 
𝜀𝑐𝑎𝑙 = 𝜀∕𝑚.

2.4. Full-spectrum SIF reconstruction technique

First, we created a large SCOPE dataset consisting of 100,000 dis-
tinct SIF spectra covering the spectral range from 640 to 850 nm in 211 
bands (1 nm bands). We extracted the simulated SIF emission values 
at 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 from the full spectra. Additionally, owing to 
the high correlation between all the SIF spectral bands, we applied a 
PCA to reduce the simulated SIF spectra to 2 PCs that contain most of 
the original spectral information. Subsequently, we calculated a linear 
regression using 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 as independent variables and the 
PCs as the dependent variables and obtained a linear transformation 
for each PC. After determining the linear regression functions that 
convert the 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 emissions into PCs, we applied the 
same regression functions to the HyPlant 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 maps to 
transfer into the two PCs that contain most of the spectral variation. 
As the next step, an inverse PCA was conducted to reconstruct the 
full-spectrum SIF emission for each pixel from the PCs. Since PCA 
transformation represents a linear projection of the original data to 
other feature spaces and given that the entire process is a sequence 
of linear transformations, uncertainties can be analytically propagated 
throughout the process using the variance formula for uncertainty 
propagation for a multivariate function.

Executing the described approach, we can reconstruct the full-
spectrum SIF emission at the nominal 1 nm spectral resolution of 
SCOPE from the two SIF products derived at 760 and 687 nm re-
trieved from HyPlant airborne data, together with the corresponding 
uncertainties for each waveband of the full-spectrum SIF emission. 
Having reconstructed the full-spectrum SIF signal, subsequently, key 
SIF products can be extracted, such as: (1) the maximum SIF values 
at the peak positions of the SIF spectrum (685 and 740 nm), and (2) 
the valley dip between the two curves at 720 nm. Moreover, (3) the 
integral under the emission curve, i.e., the total SIF emission flux, can 
also be calculated. These metrics are critical and will become products 
of the future FLEX mission (Drusch et al., 2017). To calculate the total 
SIF flux (𝑆𝐼𝐹𝑇 𝑜𝑡), we considered the 1 nm bands as infinitesimal pieces 
and obtained the sum of SIF values. The uncertainty was obtained as the 
square root of the sum of squared uncertainties for all bands (see next 
section). An overview of the entire full-spectrum SIF reconstruction 
workflow is presented in Fig.  5.
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2.5. Uncertainty propagation of full-SIF reconstruction

Along with the workflow presented in the previous section, it is like-
wise possible to propagate pixel-wise the original 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687
uncertainty intervals to the full-spectrum SIF emission map. Uncertain-
ties provide vital information about the range of variation between 
the predicted and the real SIF value. The benefit of using linear trans-
formations is that they allow consistent error propagation throughout 
the entire process. Since PCA is a linear transformation applied to the 
spectral feature space of the data used in this study, we can analytically 
propagate the original uncertainties through the PCA reconstruction 
procedure and assign them to each waveband and pixel in the final 
SIF product (Morata et al., 2023).

To derive the full-spectrum SIF signal, a linear transformation is 
initially carried out using the functions obtained through the linear 
regression. The PCs are derived using a two-dimensional linear trans-
formation. Thus, the equation of the principal components adopts the 
structure presented in Eq.  (1). The reconstructed full-spectrum SIF is 
then obtained by using the PCA matrix for the inverse projection by 
applying Eq. (2) to the PCs. For a better understanding, we define the 
used variables with the following notation: 𝐴 ≡ 𝑆𝐼𝐹760, 𝐵 ≡ 𝑆𝐼𝐹687
and 𝐔−1 ≡ 𝑃𝐶𝐴−1. 
𝑃𝐶𝑖 = 𝑎𝑖𝐴 + 𝑏𝑖𝐵 + 𝑐𝑖 (1)

𝑆𝐼𝐹𝑗 =
𝑁𝑃𝐶
∑

𝑖=1
𝑃𝐶𝑖𝐔−1

𝑖𝑗 + 𝜇𝑗 (2)

where 𝑃𝐶𝑖 represents the 𝑖th Principal Component, 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 rep-
resent the linear transformation coefficients for each 𝑃𝐶𝑖 obtained by 
the multi-variable linear regression. 𝑆𝐼𝐹𝑗 is the 𝑗th band of the recon-
structed SIF signal in the hyperspectral domain, 𝑁𝑃𝐶 is the maximum 
number of PCs used for the reconstruction, 𝐔−1

𝑖𝑗  is the inverse matrix of 
the PCA projection, and 𝜇𝑗 is the mean of the 𝑗th SIF value obtained 
by SCOPE.

To ensure consistent propagation of uncertainties throughout the 
SIF spectral range, we have applied the variance formula for uncer-
tainty propagation for a multivariate function 𝑌 (𝑋𝑘) (3): 

𝜀𝑌 =

√

√

√

√

𝑁
∑

𝑘=1

(

𝜕𝑌
𝜕𝑋𝑘

)2
𝜀2𝑋𝑘

(3)

where 𝜀𝑌  represents the uncertainty of the function 𝑌 (𝑋𝑘), 𝑋𝑘 are 
the input variables, 𝜀𝑋𝑘

 represents the uncertainty of 𝑘th input variable 
𝑋𝑘 and 𝑁 is the number of variables.

Applying the error propagation (3) in the linear transformation 
of the PCs (1) and in the PCA model inversion (2), we deduced the 
uncertainty relations (4) and (5), respectively: 

𝜀𝑃𝐶𝑖
=
√

(𝐴𝜀𝑎𝑖 )
2 + (𝑎𝑖𝜀𝐴)2 + (𝐵𝜀𝑏𝑖 )

2 + (𝑏𝑖𝜀𝐵)2 + 𝜀2𝑐𝑖 (4)

𝜀𝑆𝐼𝐹𝑗 =

√

√

√

√

𝑁𝑃𝐶
∑

𝑖=1

(

𝐔−1
𝑖𝑗 𝜀𝑃𝐶𝑖

)2
(5)

where 𝜀𝑃𝐶𝑖
 represents the uncertainty of the PCs used to reconstruct 

the full-SIF spectrum, 𝜀𝐴 and 𝜀𝐵 are the uncertainties determined for 
the retrieved SIF values 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687, obtained by the SFM 
process succeeding the HyPlant campaign (Rascher et al., 2022), and 
𝜀𝑎𝑖 , 𝜀𝑏𝑖  and 𝜀𝑐𝑖  are the uncertainties of the linear transformation coeffi-
cients obtained from the linear regression models. 𝜀𝑆𝐼𝐹𝑗  represents the 
uncertainty of the SIF values in the reconstructed spectral domain.

2.6. Upscaling full-spectrum SIF from hyplant to PRISMA through emula-
tion

Emulation is a statistical learning technique to approximate com-
plex systems (e.g., costly RTMs) using a trained machine learning 
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Fig. 5. Workflow showing the procedure of full-SIF reconstruction using PCA.
model for efficient output predictions (e.g., Verrelst et al., 2017, 2019; 
Morata et al., 2021). This is valuable for computationally expensive 
simulations, allowing faster analysis with approximate responses. Here, 
we explore this technique to model nonlinear relationships between 
multi-dimensional input spectral data (e.g., reflectance) and desired 
multi-dimensional output spectral data (e.g., SIF). Specifically, we im-
plemented an emulator to upscale full-spectrum SIF data from airborne 
to spaceborne imagery. To this end, various emulators were trained 
and evaluated using experimental data derived from subsets of two 
simultaneously recorded image datasets. While spectra derived from 
the spaceborne PRISMA hyperspectral image served as input to build 
the emulator, the output consisted of reconstructed full-spectrum SIF 
emission signals obtained from the airborne-based HyPlant SIF maps. 
However, emulating hyperspectral data poses significant challenges in 
dealing with the high dimensionality and redundancy of hyperspectral 
data. To address this, we employed PCA on both input (PRISMA TOA 
radiance and BOA reflectance) and output (reconstructed full-SIF emis-
sion spectra from HyPlant) to create a lower-dimensional feature space 
that allows for more efficient training of machine learning regression 
algorithms (MLRAs). To evaluate the role of the MLRAs in reconstruct-
ing the full spectral SIF range, we selected three competitive MLRAs: 
Kernel Ridge Regression (KRR), Neural Networks (NN) and Gaussian 
Processes Regression (GPR). See a detailed description in Supplemen-
tary Material. Briefly, both input and output data were compressed 
by PCA, followed by MLRA training to capture nonlinear relationships 
between both input and output components. The predicted PCs were 
then transformed back to the full hyperspectral feature space using 
an inverse PCA. This statistical learning method enables the effective 
transformation of one type of hyperspectral data into another one in 
a nonlinear and computationally efficient way (see details in Morata 
et al., 2021). Using this approach, we can emulate full-SIF emission 
spectra from PRISMA radiance and reflectance data with high compu-
tational efficiency. A subsequent validation against the test subset data 
was conducted to assess the accuracy of the generated spectral output.

Practically, to spatially match the reconstructed full-spectrum SIF 
image derived from HyPlant with the PRISMA subset covering the same 
area, the HyPlant image was aggregated and resampled to 30 m spatial 
resolution. Then, random samples were collected from corresponding 
locations from subsets of the PRISMA radiance and reflectance and the 
reconstructed HyPlant full-spectrum SIF images and used to train the 
emulator (see Fig.  4). The datasets were used to evaluate different as-
pects of the emulation strategy systematically: (1) number of PCs in the 
DR-PCA, (2) comparative analysis of PRISMA radiance and reflectance 
spectra used as input and (3) performance comparison of competitive 
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MLRAs and size of the training dataset. The dataset consisting of 
corresponding PRISMA input and HyPlant output spectra was divided 
into five equally sized subsets that were used for cross-validation.

We gradually increased the size of the randomly sampled dataset 
used for MLRA training from 250 to 30,000 samples to analyze the 
impact of the sample size on MLRA emulation performance. Five-fold 
cross-validation was applied to determine model accuracy, and the 
times required for model training and testing were recorded. Finally, 
the best-performing emulator was applied to a PRISMA test subset 
and cross-compared to the corresponding 30 m resampled HyPlant test 
subset to validate per-wavelength the full-SIF emission signal image 
derived from PRISMA data (see Fig.  4).

All processing and evaluation steps were executed on a personal 
computer (Windows 10 Enterprise v.19041.572 64-bit OS, Intel i7-
9700K CPI 3.60 GHz, 32 GB RAM) within the in-house developed 
ARTMO (Automated Radiative Transfer Models Operator) software 
framework (Verrelst et al., 2012). ARTMO is a scientific modular pack-
age developed in Matlab that provides tools and toolboxes for running 
a suite of leaf, canopy, and atmosphere RTMs, and for post-processing 
applications such as the emulator toolbox (Rivera et al., 2015). As 
part of the ARTMO software package, the emulator toolbox allows 
the evaluation of MLRAs for their ability to approximate (e.g., RTM) 
spectral outputs as a function of input variables or spectra (Rivera et al., 
2015; Verrelst et al., 2016). Furthermore, we implemented the new SIF 
reconstruction technique as a new ARTMO tool, named ‘‘SIF reconstruc-
tion’’. This tool facilitates the user’s ability to reconstruct full-spectrum 
SIF emission from retrieved SIF values in the 𝑂2𝐴 and 𝑂2𝐵 regions. 
The tool can generate full-spectrum SIF signals from corresponding 𝑂2𝐴
and 𝑂2𝐵 products. It also gives access to the configuration of the SIF-
reconstruction parameters, i.e., the linear transformation equations or 
the SIF-LUT used to generate the PCA matrix. The ARTMO toolboxes 
are freely downloadable at www.artmotoolbox.com.

3. Results

3.1. Full-spectrum SIF reconstruction with SCOPE simulations

Using the SCOPE database of 100,000 simulated spectra (Sec-
tion 2.1), correlations between all SIF spectral bands were first ex-
plored. To assess the strength of these correlations, i.e., the similarity 
between two bands, we computed the 𝑅2 correlation matrix encompass-
ing all the wavelengths associated with the SIF emissions (Fig.  6). The 
correlation matrix revealed the following noteworthy findings: Firstly, 
if we look at the correlation of all bands with 𝑆𝐼𝐹  and 𝑆𝐼𝐹 , 
687 760

http://www.artmotoolbox.com
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Fig. 6. Correlation matrix (𝑅2) for all SIF spectral bands from the SCOPE dataset. The 
black lines represent the 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 bands, with a red circle at the intersection 
between these two bands. The two bottom correlation bars represent the correlation of 
the two 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 bands across the spectral bands (a). Graph of the maximum 
correlation between 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687, the dashed lines correspond to the bands 687 
and 760 nm (b).

we observed a strong correlation between the 𝑆𝐼𝐹687 band with the 
SIF bands contained in the range from 640 to 710 nm (which refers 
to the first peak), with an 𝑅2 higher than 0.9. Similarly, the 𝑆𝐼𝐹760
band provided an 𝑅2 value higher than 0.9 with the bands in the 
spectral region spanning from 715 to 850 nm, which refers to the 
second peak. This highlights the potential of the 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687
bands to capture most of the information contained within the full 
SIF spectrum. Inspecting the correlation matrix of Fig.  6, the presence 
of a distinct region that exhibits a remarkably low correlation is of 
interest. Specifically, in the correlation zone between the wavelength 
686 nm with the range 739–850 nm, the 𝑅2 decreases until the lowest 
correlation is reached at 713 nm with a 𝑅2 value of 0.598. Notably, the 
wavelength 686 nm maintains a considerably high 𝑅2 of 0.999 with the 
𝑆𝐼𝐹687 band. Thanks to its proximity to 𝑆𝐼𝐹687, we can leverage the in-
formation captured by the 𝑆𝐼𝐹687 band to extract the values within this 
seemingly uncorrelated region effectively. It highlights the importance 
of accurate SIF retrievals from the 𝑂2𝐵 absorption feature. The results 
also demonstrate that 𝑆𝐼𝐹687 and 𝑆𝐼𝐹760 are linearly independent, 
while each captures the majority of the information from the respective 
left and right peaks. Note in Fig.  6(b) that the region with the lowest 
correlation with the 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 bands is around 713 nm, which 
exhibits a comparatively lower 𝑅2 of 0.89. This divergence indicates 
that this particular wavelength region possesses distinct characteristics 
and may contribute unique information beyond what is captured by 
the 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 bands. Yet, the fact that the 𝑅2 in the full 
spectrum is higher than 0.95, with the lowest correlation at 713 nm 
with 0.89, indicates that 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 are highly correlated across 
the bands, containing most of the full-spectrum information.

By exploiting this correlation, we can effectively reduce the dimen-
sionality of the dataset thanks to applying PCA with minimal loss of 
information. Upon examining Fig.  6, it becomes evident that the SIF 
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Fig. 7. Explained variance of PCs (blue bars) and cumulative explained variance of 
the PCs (orange line). The cumulative explained variance by the number of PCs is 
97.3870% for 1PC, 99.8385% for 2PCs, 99.9789% for 3PCs, 99.9977% for 4PCs and 
99.9995% for 5PCs.

response exhibits strong linear correlations among its bands. To mea-
sure the impact of dimensionality reduction through PCA, we evaluated 
the cumulative explained variance and showed it in Fig.  7. The first PC 
already accounts for 97.39% of the total variance. With solely two PCs, 
we achieve an exceptional cumulative explained variance of 99.84%. 
This signifies that we can significantly reduce the dimensionality of the 
dataset with only two PCs without losing key information.

As the next step, we split the simulated SIF spectral dataset into two 
subsets, 70% for model training and 30% for model testing. Further-
more, we extracted the 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 values from all simulated 
spectra, in addition to the PCs obtained through PCA applied to the full 
SIF spectra (Fig.  5). We then established linear relationships between 
the oxygen bands and the PCs by applying linear regression techniques. 
In multiple linear regression, the predictors must be independent, 
i.e., are poorly correlated. Here, the 𝑅2 for 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 has a 
moderate value of 0.64, one of the lowest values in the determined 
correlation matrix.

To support the argument that 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 are effectively in-
dependent variables, we constructed the same correlation matrix using 
the same LUT created before, but this time fixing the weather, soil, 
and geometry variables (Incoming shortwave radiation: 600 W∕m2, 
Air temperature: 20 ◦C, Atmospheric vapor pressure: 15 hPa, CO2
concentration: 380 ppm, BSM model parameter: 0.5 and Solar zenith 
angle: 30◦), ranging only the vegetation variables. In this way, we 
obtained a reduced 𝑅2 for 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 with a distinctly lower 
value of 0.41 (not shown), indicating that non-vegetated factors add the 
same variability to 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 and thus affect the full spectrum 
homogeneously. In contrast, vegetation-related variables have a more 
localized impact on specific parts of the spectrum. Therefore, the two 
bands 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 are influenced differently by vegetation pa-
rameters, confirming that they can be treated as independent variables. 
We also analyzed the independence of the predictors by evaluating 
the correlation between 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 from the HyPlant-retrieved 
product. In this case, the 𝑅2 is reduced to 0.28, considering the HyPlant 
SFM retrieval for the entire mosaic as a good starting point for applying 
linear transformations.

This low correlation supports the assumption of independent pre-
dictors to achieve robust linear regression functions for the SIF values 
and the PCs. By applying linear regression, we can then derive linear 
equations that underline the connection between the SIF values in the 
oxygen bands and the PCs for all spectra in our dataset. The linear 
regression functions obtained for the first four components are shown in 
Fig.  8. The figure shows that the first two components behave linearly 
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Fig. 8. Scatterplots of the multiple linear regression functions for the first four PCs with 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687, and the corresponding regression equations.
Table 2
Statistics for the scatterplots from the four PCs evaluated.
 PCs RMSE 𝑅2 NRMSE (%) 
 PC1 0.47 0.998 0.78  
 PC2 0.27 0.969 1.43  
 PC3 0.37 0.031 6.00  
 PC4 0.14 0.002 4.89  

Table 3
Least-squares adjustment coefficient values for each regression with the associated 
uncertainty. In parentheses is the relative error of each coefficient.
 PCs SlopeA ± 𝜀𝑎𝑏𝑠(𝜀𝑟 (%)) SlopeB ± 𝜀𝑎𝑏𝑠(𝜀𝑟 (%)) Intercept ± 𝜀𝑎𝑏𝑠(𝜀𝑟 (%))  
 PC1 8.221 ± 0.006 (0.07) 3.583 ± 0.012 (0.33) −12.441 ± 0.006 (0.05) 
 PC2 −2.188 ± 0.003 (0.15) 5.037 ± 0.007 (0.13) −0.982 ± 0.004 (0.36)  
 PC3 −0.075 ± 0.005 (6.01) 0.215 ± 0.009 (4.21) −0.064 ± 0.005 (7.45)  
 PC4 −0.009 ± 0.002 (17.81) 0.021 ± 0.003 (16.26) −0.004 ± 0.002 (50.55) 

with minimal dispersion outside the plane, while components 3 and 4 
exhibit clear nonlinear behaviors. Consequently, two linear regression 
functions can be constructed with PC1 and PC2, for which uncertainties 
can be propagated linearly.

We also calculated the linear regression statistics between the SIF 
values (𝑆𝐼𝐹760 and 𝑆𝐼𝐹687) and the first four PCs. Table  2 shows 
the 𝑅2 and the NRMSE of the linear regression functions for each PC 
to evaluate their prediction performance. In addition, in Table  3 we 
report the slope and intercept values together with the uncertainty 
estimated for each component. The slope and intercept values were 
used to transform 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 to the PCs.

As shown in Table  2, the first two components provide 𝑅2 values of 
0.998 and 0.969, respectively. Nevertheless, the individual regression 
functions for the PCs beyond the second one led to distinctly lower 𝑅2

values of 0.031 and lower. Thus, the feasibility of estimating values 
through multiple linear regressions using PCs higher than the second 
one is limited. Furthermore, the results depicted in Table  3 show 
the regression coefficients and the associated absolute and relative 
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uncertainties (in parentheses). While the relative errors determined for 
the first two components were below 0.4%, the same errors of PCs 3 
and 4 were higher than 4%. For this reason, we decided to reconstruct 
the full-spectrum SIF signal only using the first two components in the 
linear transformation.

To evaluate the reconstruction accuracy, we applied the PCA-based 
method to the test subset of the SCOPE simulations using 𝑆𝐼𝐹760 and 
𝑆𝐼𝐹687 as inputs. The resulting PC1 and PC2 scores were converted 
back to the original spectral domain via inverse PCA and compared 
to the original spectra. The reconstruction results are shown in Fig.  9. 
As expected, the bands with higher 𝑅2 and lower RMSE values were 
found at 687 and 760 nm. This is because the reconstruction method is 
based on a projection to the original feature space, so the SIF values at 
687 and 760 nm will remain mainly unaltered. The remainder of the 
full spectrum distribution is obtained as the most frequent shape of the 
spectrum based on the PCA projection. It led to an 𝑅2 near to 1 and 
an RMSE near to 0 in the left (640–690 nm) and right (735–850 nm) 
parts of the spectral range, and a slightly lower correlation is found 
around 707 nm with a 𝑅2 superior to 0.98 and an NRMSE below 
0.12 mW m−2 nm−1 sr−1. Those results are consistent with the 0.2 
mW m−2 nm−1 sr−1 for the expected SIF retrieval error for FLEX. We 
can therefore consider that the reconstruction method is robust and 
allows for the reconstruction of the full-spectrum SIF emission with 
high accuracy.

3.2. Generation of full SIF emission spectrum HyPlant data cube

Having successfully developed a full-spectrum SIF reconstruction 
technique, the next step is to apply the developed technique to produce 
a HyPlant-like SIF data cube. To this end, we used the HyPlant SIF 
product from the LIAISE campaign that provides retrieved SIF and asso-
ciated uncertainties at 760 and 687 nm. Following the calibration and 
uncertainty propagation outlined in Section 2.3.3, the calibrated Hy-
Plant 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 values align more closely with those generated 
by SCOPE (see the supporting figure in supplementary Material). As 
the next step, we applied the full-spectrum SIF reconstruction process 
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Fig. 9. Statistics of the spectral reconstruction validation. The 𝑅2 is displayed with the 
blue line (left y-axis) and the RMSE is represented by the orange line (right y-axis). The 
dashed black lines correspond to the wavelengths 687 and 760 nm. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

and analytically propagated the original HyPlant 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687
uncertainties through all the processing steps. As such, we produced a 
hyperspectral SIF data cube with 1.7 m spatial resolution covering the 
full SIF emission range together with associated uncertainty intervals 
for each of the 211 SIF bands. From this SIF data cube, which has 
a spectral sampling interval of 1 nm, we subsequently extracted the 
maximum SIF values at the peak positions of the SIF spectrum (685 
and 740 nm) and calculated the total full-spectrum SIF emission flux, 
i.e., spectrally integrated over 640–850 nm: 𝑆𝐼𝐹𝑇 𝑜𝑡. Fig.  10 shows 
the 𝑆𝐼𝐹760, 𝑆𝐼𝐹740 and 𝑆𝐼𝐹𝑇 𝑜𝑡 results with three pixels selected to 
show the variability in SIF. We also show the uncertainty maps for the 
740 nm (peak A) and the 685 nm band (peak B). The full-spectrum SIF 
dataset opens up new opportunities to study specific wavelengths of in-
terest, such as the SIF spectrum peak positions and absolute values, and 
the full integrated SIF signal (𝑆𝐼𝐹𝑇 𝑜𝑡). Note that the original 𝑆𝐼𝐹760
and 𝑆𝐼𝐹687 depicted in black circles in Fig.  10 perfectly match the 
reconstructed values. This is because we used the first two components, 
capturing 99.84% of the full spectra variability, to reconstruct the full 
spectrum. Consequently, we can assume that the precision obtained for 
𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 can be extrapolated to all wavelengths.

3.3. Full-spectrum SIF PRISMA emulation

Given the successful HyPlant full-spectrum SIF reconstruction, the 
next step is to build an emulator to upscale the airborne SIF spectra 
to the satellite scale. To this end, the HyPlant reconstructed full-SIF 
image was first coarsened to 30 m spatial resolution and divided into 
two parts, a training and a test subset, as shown in Fig.  4. Similarly, 
the PRISMA tile was also split into the same two sections to enable the 
comparison of the images. We evaluated key emulation parameters that 
can affect the performance: (1) dimensionality reduction using PCA; 
(2) comparative use of top-of-atmosphere (TOA) radiance and BOA 
reflectance from PRISMA as input; (3) the used MLRA and the dataset 
size.

3.3.1. Dimensionality reduction by PCA
The first analysis was conducted to evaluate the PCA dimensionality 

reduction of the PRISMA input data to create the full-SIF emulator. 
To accomplish this, we first extracted 1000 spectra from the BOA re-
flectance PRISMA, then performed a dimensionality reduction analysis, 
and finally determined the cumulative variance of the PCs. The 99.0% 
of the variance of the PRISMA reflectance data is kept in the first 
10 
27 PCs. Consequently, we decided to use the first 30 PCs to train 
the emulator. Regarding the output SIF spectrum used to train the 
emulator, it comprises the full-SIF reconstructed map, which has a 
total of 211 bands. Since these SIF profiles are reconstructed using 
only two PCs, 100% of the variability of these reconstructed spectra 
will be found in the first two PCs, and the remaining PCs will not 
contain any variability. For this reason, the emulator is trained with 
only two components as output, which are then transformed back into 
the full-spectrum SIF.

3.3.2. TOA radiance vs. BOA reflectance
The second analysis evaluates the applicability of TOA radiance and 

BOA reflectance spectra from PRISMA as input to generate the full-
SIF emulation. A dataset of 10,000 samples was created by applying 
random sampling to the Train subset created from PRISMA and the full-
SIF HyPlant data cube. 10-fold cross-validation was applied with 30 PCs 
as input and 2 PCs as output to train a KRR-based emulator. KRR was 
chosen for its fast performance, but in the following Section 3.3.3, we 
also evaluate alternative MLRAs to identify the most accurate emulator. 
In Fig.  11, the accuracy of the KRR emulator is represented by the 
mean R2, NRMSE and RMSE, together with the corresponding standard 
deviations across the spectral range.

As illustrated in the figure, TOA radiance and BOA reflectance of 
wavelengths beyond 750 nm provide 𝑅2 values higher than 0.7 and 
0.78, and NRMSE values lower than 9.23% and 8.18%, respectively. For 
wavelengths smaller than 700 nm the 𝑅2 values decrease to 0.44 and 
0.49, while NRMSE increases to 12.59% and 11.18% for TOA radiance 
and BOA reflectance, respectively. The RMSE is similar for TOA and 
BOA with a maximum error of 0.57 and 0.5 mW m−2 nm−1 sr−1
respectively. Both emulators effectively relate PRISMA input spectra to 
the 𝑂2𝐴 region of SIF spectra but struggle with the 𝑂2𝐵 region. Using 
PRISMA BOA reflectance for SIF emulation led to slightly superior and 
more consistent results, justifying its selection as input for the final 
emulator.

3.3.3. MLRA and dataset size
To evaluate the role of the MLRAs in reconstructing the full spectral 

SIF range, we selected three algorithms (KRR, NN, GPR) and trained 
each with 500 random samples. The statistics for the mean of the five-
fold cross-validation, along with its standard deviation, are presented in 
Fig.  12(a) and (b). As expected, the statistics follow the same pattern as 
in Fig.  11. All the MLRAs achieved better reconstruction performances 
for the right side of the SIF spectrum compared to the left side. KRR 
outperformed GPR and NN across the entire spectral range.

Next, we evaluated the number of samples used for GPR, KRR, and 
NN model training (see Fig.  12(c)) and recorded the runtime for model 
training and testing (for 4×104 pixels) (Fig.  12(d)). As the figure reveals, 
models built with kernel-based MLRAs (GPR and KRR) emulate SIF 
spectra more accurately and quickly when trained with only up to a 
few thousand samples. Instead, when more samples are included in 
model training, kernel-based MLRAs become computationally costly as 
the number of samples scales cubically with the processing time owing 
to matrix inversion of the training and validation datasets. Yet, in this 
case, where we used a maximum of 30,000 training samples, KRR 
remains the best-performing model at an acceptable computational 
cost. Based on these findings, we developed a final emulator based on 
KRR using 30,000 random samples with 30 input PCs and 2 output PCs.

3.3.4. Application to test subset
This KRR emulator was applied to the PRISMA test subset, and the 

emulation result was subsequently evaluated. Subsequently, to compare 
the emulated SIF product based on PRISMA data with the original 
calibrated HyPlant Test image coarsened at PRISMA resolution (30 m), 
we produced two scatterplots for 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687, respectively, 
which are shown in Fig.  13. In contrast to 𝑆𝐼𝐹 , the 𝑆𝐼𝐹  appears 
687 760
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Fig. 10. HyPlant maps with masked negative values (white) extracted from the full-spectrum reconstructed SIF data cube and propagated uncertainty image from uncertainty data 
cube (𝜀). 𝑆𝐼𝐹760 map (mW m−2 nm−1 sr−1) (𝑂2𝐴) (a). 𝑆𝐼𝐹740 map (mW m−2 nm−1 sr−1) (peak A) (b). 𝜀740 map (peak A) (mW m−2 nm−1 sr−1) (c). 𝑆𝐼𝐹687 map (mW m−2 nm−1 sr−1) 
(𝑂2𝐵) (d). 𝑆𝐼𝐹685 map (mW m−2 nm−1 sr−1) (peak B) (e). 𝜀685 map (peak B) (mW m−2 nm−1 sr−1) (f). SIF spectra of three pixels covering distinct vegetation types (LAI: blue = 
3.69, red = 1.92, green = 1.49) with shaded areas representing the corresponding uncertainties and black circles indicating the original HyPlant SIF values at 760 and 687 nm 
(g). Total integrated SIF flux (𝑆𝐼𝐹𝑇 𝑜𝑡, in mW m−2sr−1) (h). 𝜀𝑇 𝑜𝑡 map (mW m−2sr−1) (i).
Fig. 11. Comparison of mean 𝑅2 (left), NRMSE (center) and RMSE (right) with corresponding standard deviations (shaded areas) of TOA radiance (blue) and BOA reflectance 
(red) across the spectral range (650–850 nm) using 10-fold cross-validation. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
to be reasonably well emulated at satellite scale despite the introduced 
limitations inherent to PRISMA and the coarsening of the HyPlant data.

We then evaluated the quality of the emulated full-spectrum SIF 
dataset using the Test subset of the HyPlant dataset, enabling per-
formance assessment across the entire spectral range. The PRISMA-
emulated SIF spectra were cross-correlated with the coarsened Hyplant-
reconstructed SIF spectra map (Fig.  14). Overall, the figure shows 
an 𝑅2 ranging between 0.4 and 0.65 and a RMSE lower than 0.8 
mW m−2 nm−1 sr−1 across the observed spectral range. The goodness-
of-fit metrics are in agreement with the above comparison against the 
original Hyplant SIF data (see Fig.  13). The KRR emulator exhibits 
11 
consistent 𝑅2 values across both the left and right regions of the SIF 
spectrum, likely due to the high correlation along these regions (see 
also Fig.  6). Similar to what was already observed in the airborne data, 
we achieved superior results for the right (𝑂2𝐴) compared to the left 
part of the spectrum(𝑂2𝐵).

3.3.5. Application to PRISMA imagery
As a final mapping application, the KRR emulator was executed on 

the full PRISMA BOA reflectance tile to produce a 30 m resolution full-
spectrum SIF reconstructed image (Fig.  15(a)). Three representative SIF 
profiles illustrate spectral responses across vegetation density gradients 
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Fig. 12. Comparison of mean 𝑅2 (a) and NRMSE (b) with corresponding standard deviations (shaded areas) using three MLRAs for model training based on 500 samples using 
five-fold cross-validation. NRMSE and associated standard deviations (shaded areas) were determined for the three MLRA emulators built with an increasing number of training 
samples using five-fold cross-validation (c). The processing time required for emulator training (solid line) and testing (4×104 validation pixels, dashed line) considering increasing 
training sample sizes (d).
Fig. 13. Density scatterplot of original HyPlant coarsened at PRISMA resolution (30 m) and emulated PRISMA 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687. The black dashed line represents the 1:1-line, 
the red dashed line represents the linear regression and the colorbar the points density. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)
(Fig.  15b), showing slightly reduced values compared to HyPlant due to 
spatial coarsening. Processing an entire PRISMA tile consisting of more 
than 106 pixels took less than 3 min with a velocity of 1.59 sec/10000 
pixels in the case of processing without uncertainty estimation. When 
including the uncertainty determination, the processing took around 
2 h, with a 75 sec/10000 pixels velocity. Lastly, the same KRR emulator 
was applied to the PRISMA image resampled by aggregation at the 
FLEX spatial resolution (300 m) to assess the impact of heterogeneity 
on the full-spectrum SIF product (Fig.  15(c)). Same location spectral 
profiles are presented in Fig.  15(d), highlighting resolution-dependent 
SIF suppression. This reduction was caused by pixel heterogeneity in 
our study area, small agricultural plots (< 300 m) mixed with bare
12 
soil, causing reduced yet realistic full-spectrum SIF values in composite 
pixels. Critically, this emulation scheme delivers scalable, FLEX-like 
datasets to validate retrieval algorithms prelaunch while quantifying 
resolution-induced biases. For both full-spectrum SIF products, model-
based uncertainties were determined through bootstrapping. Since the 
emulator was trained with a large number of samples, the uncertainty 
interval is negligible and difficult to visualize together with the SIF 
profiles in Fig.  15 (right). Moreover, the reconstruction allows calcu-
lating the total emitted SIF flux, i.e., 𝑆𝐼𝐹𝑇 𝑜𝑡, displayed in Fig.  15 (left). 
With the upcoming launch of the FLEX mission, the presented workflow 
can produce FLEX-like SIF images at a similar resolution to support 
pre-launch activities, such as algorithm development and validation.
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Fig. 14. Performance of the PRISMA SIF emulation when compared to the full-SIF 
reconstructed HyPlant dataset coarsened at PRISMA resolution (30 m). 𝑅2 values are 
shown on the left axis, while RMSE values are displayed on the right axis. The vertical 
dashed lines correspond to the wavelengths 687 and 760 nm.

4. Discussion

4.1. PCA-based full-spectrum SIF reconstruction

The quantification of the subtle canopy-leaving full-spectrum SIF 
radiant flux from space is an emerging field of research (e.g., Cendrero-
Mateo et al., 2019; Mohammed et al., 2019). Given the critical role 
of accurately capturing full-spectrum SIF in establishing direct links to 
the plant’s actual photosynthetic activity, recent research addressed the 
challenge of full-spectrum SIF reconstruction (Scodellaro et al., 2022; 
Oehl and Damm, 2023; Zhao et al., 2024). However, so far no initiatives 
have been presented that achieve full-spectrum SIF reconstruction from 
satellite data at a high spatial resolution, e.g., as will be targeted by the 
upcoming FLEX mission (300 m). Although Zhao et al. (2024) proposed 
a reconstruction method using TROPOMI at 5.5 km spatial resolution, 
instead, here, by using PRISMA images at 30 m resolution, our method 
allows us to explore how SIF heterogeneity across scales can affect 
sensor recordings with a coarser spatial resolution (e.g., FLEX sensor). 
We explored an analytical technique of full-spectrum SIF reconstruc-
tion through PCA transformation alongside uncertainty propagation. 
Exploiting PCA transformation for capturing the complete SIF spectral 
variability, followed by the implementation of two linear regression 
functions, has shown remarkable accuracy in reconstructing simulated 
SIF spectra. Using only the first two PCs enables simple and fast 
processing while preserving the two most informative components 
and reducing the increasing uncertainties and low correlations that 
come with higher PCs (Tables  2 and 3). The first two PCs display a 
linear correlation with 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687, and form the basis of an 
effective reconstruction model. This choice not only streamlines the 
reconstruction method but also corresponds with the overarching ob-
jective of balancing accuracy and computational efficiency (e.g., Wold 
et al., 1987; Liu et al., 2006; Jollife and Cadima, 2016). Although the 
reconstruction validation is limited to SIF derived from the two oxygen 
absorption bands, the strong representation of spectral information by 
the two selected PCs gives confidence in the reliability of the associated 
uncertainty estimates across the entire spectrum.

As an additional advantage as opposed to data-driven, statistical 
reconstruction approaches (e.g., as proposed by Zhao et al., 2024), the 
presented full-spectrum SIF reconstruction method offers a fully ana-
lytical solution. Previous studies likewise relied on SCOPE-generated 
spectral databases and presented analytical solutions (e.g., Zhao et al., 
2018; Cogliati et al., 2015; Liu et al., 2015; Zhao et al., 2014). Yet, a 
key distinction of our method is its demonstrated applicability to real 
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airborne data, and the workflow has already been built into a user-
friendly tool as part of the ARTMO software framework. This practical 
deployment ensures broader applicability to 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 imag-
ing products without dependency on training data or the associated 
risks of overfitting often found in machine learning-based approaches 
(see reviews in Verrelst et al., 2019; Chen et al., 2023).

The reconstruction method uses only 2 PCs, which implies that the 
reconstructed full-SIF emission spectrum is a second-order spectrum 
and only derives two linearly independent spectral features. Never-
theless, Fig.  6 illustrates that the spectral bands are not independent 
and contain spectral redundancy. In the case of the valley dip, this 
region is more independent than other spectral regions. However, as 
demonstrated in Fig.  6(b), the independence with 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687
is minimal. This is evidenced by the 𝑅2 of 0.98 and NRMSE of 2% 
obtained when comparing the reconstructed SIF spectra with the orig-
inal SCOPE spectra in Fig.  9. The figure indicates that the method is 
capable of estimating SIF values in the valley dip with high accuracy. 
Even so, the complexity of the valley region necessitates the inclusion 
of additional PCs for more precise retrieval.

4.2. Uncertainty propagation of PCA-based full-spectrum SIF reconstruction

Uncertainty propagation through PCA for spectral reconstruction 
approaches presents an opportunity to enhance the fidelity of the recon-
struction method. In case uncertainties are present and this noise has 
been captured in the original HyPlant 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 uncertainty 
products, this was reflected in the propagation of the errors to the 
full-spectrum SIF. As demonstrated throughout this work, analytical un-
certainty propagation through PCA transformations acts as an elegant 
solution for dealing with high-output dimensionality. This approach 
enables us to trace uncertainties in multi-output models at a marginal 
computational cost (Morata et al., 2023). For instance, the propagated 
uncertainty ranges of 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 values from the reconstructed 
full-spectrum SIF overlap with the original SIF Hyplant uncertainty 
ranges (histograms not shown), which means that the procedure and 
the achieved results are reliable.

The pursued uncertainty propagation implies that the reconstruction 
approach enables a more nuanced understanding of the fidelity associ-
ated with the models’ SIF predictions. Nonetheless, while uncertainty 
propagation through PCA transformation is presented as an effective 
strategy, it is essential to acknowledge that its validity relies on certain 
assumptions. For instance, it is assumed that the original features are 
highly correlated. As the PCA transformation is based on the first two 
PCs, the remaining information from the removed PCs may be lost, 
particularly if the correlation between the original features is low.

4.3. Limitations and further developments of PCA-based SIF full-spectrum 
reconstruction

The exploration of full-spectrum SIF reconstruction through PCA 
and subsequent emulation upscaling has uncovered promising avenues 
for upcoming research and development. In principle, it only requires 
the HyPlant 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 products and additional hyperspectral 
satellite imagery to upscale SIF to the satellite scale. Moving ahead, we 
concentrate now on the following key aspects to further improve and 
extend the applicability of the proposed workflow.

As this work demonstrated, full-spectrum SIF can be reconstructed 
using only two SIF bands, i.e., 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687. However, this 
methodology is highly susceptible to the quality of these two measure-
ments, so we highlight the necessity of accurate retrievals with low 
uncertainties. Of particular significance is the area around 713 nm, 
where the correlation with 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 decreases to an 𝑅2

of 0.89. This region is subject to significant influence from water 
vapor, which presents a considerable challenge to the retrieval of 
SIF from aerial or satellite sensors, resulting in inherently imprecise 
measurements.
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Fig. 15. PRISMA-emulated (30 m) (a) and FLEX-like (300 m) (c) SIF data cubes containing information about the full SIF emission spectrum in each pixel (𝑆𝐼𝐹𝑇 𝑜𝑡 in mW m−2sr−1). 
Extracted SIF spectra of three pixels from the PRISMA (b) and FLEX-like (d) SIF data cubes representing 𝑆𝐼𝐹𝑇 𝑜𝑡 of three distinct vegetation types with associated uncertainties 
(LAI: blue = 3.83, red = 2.7, green = 0.33). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Unlike other reconstruction methods, such as FSR (Zhao et al., 2014, 
2024), which employs five values for full-spectrum SIF retrieval, our 
reconstruction method is constrained by atmospheric conditions, which 
can be challenging. For instance, the Fraunhofer Line for water vapor 
(719 nm) presents a considerable challenge when applying the retrieval 
to aircraft or satellite data. This is attributable to the atmospheric 
heterogeneity and variability of water vapor, introducing additional 
noise, which in turn complicates the retrieval in this spectral region 
and affects the subsequent reconstruction. Moreover, the SIF value in 
the hydrogen Fraunhofer Line (656 nm) is extremely low, resulting in 
high uncertainties in the data for this spectral band. For this reason, 
we focused on spectral regions that provide more stability and are less 
affected by atmospheric conditions. Our approach stands out for its 
practicality, targeting feasibility and reliability in airborne applications. 
Unlike other methods that may be theoretically similar (Zhao et al., 
2014, 2018), we prioritize addressing these specific challenges in a 
real-world context.

While PCA-based dimensionality reduction offers significant ad-
vantages in simplifying high-dimensional datasets, it also introduces 
limitations. The rank-2 approximation, while effective for capturing the 
primary spectral features, may overlook subtler variations present in 
the full-spectrum data, particularly under conditions affected by atmo-
spheric interference, sensor noise, or anisotropy in SIF and reflectance. 
Furthermore, although PCA efficiently compresses the spectral informa-
tion, it assumes linear relationships between the PCs and the original 
bands, which may not fully represent complex nonlinear phenomena 
inherent in the data. Consequently, users of full-spectrum SIF recon-
structed data should be aware that this approximation is best suited 
for cases where the dominant spectral variance is sufficient for their 
analyses.

This SIF reconstruction technique combines PCs and linear regres-
sion to achieve full-spectrum SIF retrieval with robust uncertainty 
propagation. The use of linear regression ensures a mathematically 
consistent propagation of uncertainties from the retrieved values to all 
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reconstructed SIF bands, assuming uncertainty in both the model and 
the inputs (see Eq. (4)). However, while our uncertainty propagation 
captures sensor errors and the PCA transformation, it does not account 
for systematic biases in the empirical calibration or limitations of the 
SCOPE model.

As shown in Fig.  8 and Tables  2 and 3, the first two PCs exhibit 
a strong linear correlation with 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687, enabling accu-
rate reconstruction of the full SIF spectrum using linear regression. 
While PCA is inherently a linear transformation, higher-order princi-
pal components primarily capture residual variance and noise, which 
do not maintain a direct or interpretable relationship with 𝑆𝐼𝐹760
and 𝑆𝐼𝐹687. Although including these components could increase the 
explained variance from 99.84% (with 2 PCs) to 99.9995% (with 4 
PCs, see Fig.  7), enhancing the representativeness of the reconstructed 
SIF spectrum, they tend to exhibit more complex relationships with 
the SIF bands, ultimately reducing interpretability and complicating 
uncertainty quantification. Conventional multivariate linear regression 
allows for straightforward uncertainty propagation via partial deriva-
tives, assuming uncorrelated errors between 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687. In 
principle, nonlinear adjustments could be exploited to assess the re-
lationships of higher-order PCs greater than 3 with the independent 
variables 𝑆𝐼𝐹760 and 𝑆𝐼𝐹687. Yet, incorporating nonlinear models lacks 
physical interpretability, complicates error estimation, and introduces 
bias without meaningful gains. Although advanced nonlinear MLRAs 
such as GPR can estimate model-based uncertainties within a Bayesian 
framework, most MLRAs lack built-in uncertainty quantification. They 
would require computationally intensive alternatives like bootstrap-
ping (García-Soria et al., 2024). Given these considerations, our method 
favors a simpler, transparent linear approach applicable to the first 
two PCs, ensuring traceable error estimates across all reconstructed SIF 
bands.
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4.4. Emulation airborne-to-spaceborne full-spectrum SIF

As a secondary objective, the work demonstrated the effective-
ness of emulation in upscaling reconstructed full-spectrum SIF imagery 
based on satellite imaging spectroscopy reflectance data. Given the 
corresponding airborne full-spectrum SIF and PRISMA reflectance data, 
we evaluated the best-performing MLRA and optimized the training 
data settings. The KRR emulator adequately reconstructed the right 
side (𝑅2: 0.65) and moderately well the left side of the SIF spectrum 
(𝑅2: 0.42) (Fig.  14). The rationale behind this is that the emulator 
predicts the two output PCs and afterwards reconstructs the original full 
SIF spectrum. We expect that the accuracy achieved when predicting 
𝑆𝐼𝐹760 and 𝑆𝐼𝐹687 can be extrapolated to the other spectral bands 
forming the right and left parts of the full SIF spectrum, respectively. 
The higher correlation for the 𝑂2𝐴 peak suggests that this part of 
the SIF spectrum is strongly correlated with vegetation reflectance. 
At the same time, the poorer correlation of the 𝑂2𝐵 peak suggests 
more complex, irregular behaviors that are not fully captured by the 
vegetation reflectance spectrum, which can be explained as follows. 
On the one hand, SIF in 𝑂2𝐵 is related to photosynthetic activity 
while at the same time being susceptible to reabsorption within the 
canopy (Qi et al., 2023), meaning that the canopy-leaving 𝑂2𝐵 flux 
reaching a sensor primarily originates from the top-of-canopy, making 
it less sensitive to variations in canopy structural variability. Thus, the 
𝑂2𝐵 flux tends to be more independent of reflectance variability but the 
canopy-leaving signal is smaller (Bandopadhyay et al., 2020; Verrelst 
et al., 2015). On the other hand, while the canopy-leaving 𝑂2𝐴 flux 
is also related to photosynthetic activity, at 760 nm this flux is less 
reabsorbed but more prone to scattering dynamics. This translates to 
the 𝑂2𝐴 flux being more influenced by canopy structure, similar to 
reflectance. Consequently, the variability in the 𝑂2𝐴 region exhibits a 
stronger correlation with reflectance variability compared to the 𝑂2𝐵
region (Verrelst et al., 2015). Altogether, the 𝑂2𝐵 flux is influenced 
by more complex processes than the 𝑂2𝐴 flux, leading to greater 
challenges in accurately retrieving SIF from vegetation reflectance. 
This suggests the need for a hyperspectral sensor with an enhanced 
signal-to-noise ratio and narrower bandwidth compared to PRISMA.

Additionally, emulation from BOA reflectance achieved superior 
reconstruction accuracy compared to TOA radiance. This improvement 
arises because TOA radiance inherently includes atmospheric effects, 
forcing the emulator to simultaneously account for both vegetation-
driven SIF signals and atmospheric perturbations. In contrast, BOA re-
flectance (i.e., after atmospheric correction) isolates vegetation-related 
radiative processes, reducing the emulator’s burden to model complex 
interactions between surface and atmosphere. He et al. (2021), Patadia 
et al. (2018).

Apart from SIF prediction accuracy, one crucial new development 
in emulation strategies is the ability to generate emulation-based un-
certainty maps. The application of uncertainty propagation by PCA 
reconstruction and a bootstrapping technique, which in principle can 
be applied to any trained multi-output model, e.g., an emulator, enables 
the development of emulators that provide predicted full-spectrum SIF 
along with confidence intervals. KRR with bootstrapping uncertainty 
was selected as the optimal option, with the drawback that bootstrap-
ping can potentially increase the processing time from 1.59 sec/10000 
pix to 75 sec/10000 pix. Therefore, in cases where computation time is 
more critical than performance and a large training dataset is available, 
instead a NN together with the dropout method can be used to de-
termine uncertainties with lower computation time requirements (Fig. 
12) (Morata et al., 2023; Gal and Ghahramani, 2016).

Finally, the emulator’s effectiveness is demonstrated by upscaling 
the airborne full SIF emission signal to spaceborne PRISMA BOA re-
flectance data. The emulated SIF maps demonstrate the versatility of 
our method, which is in principle applicable to images from any ter-
restrial imaging spectroscopy mission. Although trained with HyPlant 
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data, the emulation method is flexible and can be adapted to high-
resolution hyperspectral image data such as DLR Earth Sensing Imaging 
Spectrometer (DESIS) with retraining. The finer spectral resolution of 
this sensor (3.5 nm) and the SNR of about 200 mounted on the Inter-
national Space Station (ISS) could be beneficial to improve spaceborne 
SIF emulation (as also demonstrated by Alonso et al. (2019), Pato 
et al. (2023)). This work lays the foundation for scaling landscape 
full-spectrum SIF retrieval, bridging the gap between high-resolution 
airborne and coarser satellite SIF data. At the same time, we know 
that the canopy-leaving SIF signal is the result of multiple highly 
complex processes involving numerous internal interactions within the 
leaf/canopy and atmosphere (Verrelst et al., 2015). Although emulation 
paves the way for the approximation of the full SIF emission spectrum 
from hyperspectral reflectance data, it is important to be aware of 
its limitations. While emulators can effectively relate nonlinear rela-
tionships between spectral features using statistical methods, they are 
limited in their ability to fully capture the underlying photochemical 
and biophysical mechanisms (e.g. diurnal cycles driven by solar irradi-
ance) and the inherent complexities governing SIF emission. After all, 
the emulated SIF maps are statistical predictions that vary as a function 
of the BOA reflectance. Therefore, the emulator is not designed to cap-
ture changes in SIF that occur before detectable changes in reflectance, 
nor to simulate diurnal variations driven by solar irradiance.

4.5. Opportunities and limitations of emulated full-spectrum SIF signal in 
support of FLEX

Since the workflow emulates realistic full-spectrum SIF imagery 
with FLEX-like characteristics at a high spatial resolution, it can serve 
as a preparatory tool to generate surrogate full-spectrum SIF data in an-
ticipation of real-world FLEX data. The FLEX mission concept is unique 
in targeting global, full-spectrum SIF retrieval at a spatial resolution of 
300 meters (Drusch et al., 2017). With the expected launch in 2026, the 
mission is currently under development, and among other preparatory 
activities, a FLEX End-to-End simulator (FLEX-E) was developed (Vicent 
et al., 2016). Yet, simulated scenes cannot fully reproduce the complex-
ities of terrestrial surfaces, highlighting the need for real-world data 
in algorithm development and evaluation. Although space agencies 
already offer global single-band SIF data at coarse spatial resolutions (in 
the order of kms, e.g., see Frankenberg et al., 2014; Köhler et al., 2018), 
the here presented advancements can expedite the familiarization of 
the broader community with high-resolution, full-spectrum SIF data 
streams.

Apart from FLEX, it is worth remarking that some coarse-resolution 
atmospheric satellites also provide two or more SIF bands (e.g., Sentinel-
5P TROPOMI). Yet, those data are mainly restricted to the far-red 
region, meaning that the PCA-based reconstruction method would be 
limited, as the first two PCs are strongly correlated to the 𝑂2𝐵 and 
𝑂2𝐴 absorption bands. Retrieving red SIF is more challenging than far-
red SIF, mainly because the signal is smaller and the red region of the 
spectrum is more affected by Rayleigh scattering, which is stronger at 
shorter wavelengths (Guanter et al., 2013). This scattering adds a high 
complexity to separating the SIF signal from the atmospheric noise. 
This fact was demonstrated by anomalies observed in the global maps 
of red SIF datasets in the studies by Köhler et al. (2020), Zhao et al. 
(2022). For these data, it is worth analyzing to what extent the PCA 
transformation method can reconstruct the full-spectrum SIF signal. It 
is however important to note that the accuracy of the reconstructed SIF 
is inherently linked to the accuracy of the input SIF retrievals, with red 
SIF being a limiting factor. At the same time, these coarse-resolution 
pixels cover heterogeneous surfaces, likely including non-vegetated 
areas within a pixel. SCOPE simulations represent homogeneously 
covered, vegetated areas, which suggests a potential mismatch because 
the heterogeneity in land cover of real-world surfaces cannot be taken 
into account (Jantol et al., 2023).
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As a closing remark, exploiting the full-spectrum SIF signal as a 
direct measurable reporter of the photosynthetic machinery in plants 
requires considering multiple factors such as chlorophyll content, veg-
etation structure, and non-photosynthetic quenching (NPQ) (De Grave 
et al., 2020; Van Wittenberghe et al., 2021). FLEX is planned to orbit in 
tandem with Copernicus’ Sentinel-3 satellite (S3). As such, the tandem 
FLEX-Sentinel-3 mission concept is dedicated to quantifying these key 
factors, enabling a more comprehensive interpretation of SIF data and 
photosynthesis mechanisms that lead to carbon fixation (Drusch et al., 
2017; Van Wittenberghe et al., 2021). The scientific framework and 
algorithms for processing FLEX-S3 data stream into reliable real-world 
vegetation productivity estimates are actively being developed (Van 
Wittenberghe et al., 2024; Reyes-Muñoz et al., 2024).

5. Conclusions and outlook

This study explored an analytical reconstruction method to produce 
full SIF emission spectra given the availability of SIF data retrieved 
from the 𝑂2𝐴 and 𝑂2𝐵 absorption regions. By employing PCA to 
SCOPE-simulated SIF data, we found that most of the variability of the 
full SIF spectrum is captured with only two principal components. By 
using these two PCs, more than 99.84% of the cumulative variance of 
the original data is preserved. This dimensionality reduction allowed us 
to establish two linear relationships between the two PCs and readily 
available airborne HyPlant SIF data derived from the 𝑂2𝐴 and 𝑂2𝐵 ab-
sorption features, followed by the inverse PCA back to the full-spectrum 
SIF domain. Cross-comparing the generated full-spectrum SIF against 
the original values revealed an almost perfect reconstruction of SIF at 
the position of the 𝑂2𝐴 and 𝑂2𝐵 bands. Linear functions also allowed 
for the analytical propagation of uncertainties along the full-spectrum 
SIF signal, which enabled the generation of full-spectrum SIF maps with 
associated uncertainties of an entire landscape. The overall precision of 
the reconstructed full-wavelength SIF spectrum, yet, ultimately depends 
on the accuracy of the SIF measurements obtained by HyPlant in the 
𝑂2𝐴 and 𝑂2𝐵 bands.

We subsequently presented an upscaling technique to transfer the 
airborne full-spectrum SIF signal to the satellite scale to accommo-
date the generation of satellite-based, high-resolution, full-spectrum SIF 
maps and related products (e.g., integrated total full-spectrum SIF flux: 
𝑆𝐼𝐹𝑇 𝑜𝑡). To this end, we developed an airborne-to-spaceborne emulator 
trained based on the produced HyPlant full-spectrum SIF data and 
corresponding PRISMA hyperspectral BOA reflectance. The emulator 
adequately reconstructed the full SIF spectrum at the satellite scale 
with associated uncertainties by applying bootstrapping combined with 
KRR. Coarsening the PRISMA full SIF signal data from 30 to 300 m 
spatial resolution paves the way for generating FLEX-like full-spectrum 
SIF imagery.

In a broader context, the analytical full-spectrum SIF reconstruction 
combined with the emulation upscaling technique holds promising 
implications for a better understanding of the terrestrial SIF radiant flux 
as derived from satellite imaging spectrometers. Firstly, the workflow 
generates simulated SIF products at a resolution similar to that of 
the FLEX mission, thus providing a valuable resource for preparatory 
and optimization activities in advance of the FLEX mission. Secondly, 
the ability to emulate full-spectrum SIF spectra from readily avail-
able satellite hyperspectral reflectance data opens doors for producing 
meaningful, high-resolution full-spectrum SIF imagery over any terres-
trial surface. Altogether, the presented workflow can provide surrogate 
datasets for developing improved full-spectrum SIF retrieval methods 
and downstream models for tracking the plant’s photosynthetic activ-
ity from space, thereby accounting for the role of other drivers that 
govern the canopy-leaving SIF radiant flux, as is foreseen with the 
tandem FLEX-Sentinel-3 mission concept. Eventually, this path pro-
gresses towards global real-time monitoring of the vegetation’s actual 
productivity dynamics.
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