001043688 001__ 1043688
001043688 005__ 20251113202117.0
001043688 0247_ $$2doi$$a10.1152/ajpregu.00236.2024
001043688 0247_ $$2ISSN$$a0363-6119
001043688 0247_ $$2ISSN$$a1522-1490
001043688 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02986
001043688 037__ $$aFZJ-2025-02986
001043688 041__ $$aEnglish
001043688 082__ $$a610
001043688 1001_ $$00000-0003-2874-6632$$aArtmann, Gerhard M.$$b0$$eCorresponding author
001043688 245__ $$aThe molecular origin of body temperature in homeothermic species
001043688 260__ $$aBethesda, Md.$$bAmerican Physiological Society$$c2025
001043688 3367_ $$2DRIVER$$aarticle
001043688 3367_ $$2DataCite$$aOutput Types/Journal article
001043688 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1763039385_26406
001043688 3367_ $$2BibTeX$$aARTICLE
001043688 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043688 3367_ $$00$$2EndNote$$aJournal Article
001043688 520__ $$aWe propose the Interfacial Water Quantum-transition model (IWQ model) as a novel paradigm explaining temperature-dependent structural and functional transitions (discontinuities) observed in proteins. The central postulate states that experimentally measured critical temperatures, TC, are related to physical reference temperatures, TW, defined by rotational quantum transitions of temporarily free water molecules in the protein-water interface. Applicability of this concept is demonstrated using transitions observed in two disparate model systems, viz., hemoglobin and thermosensitive TRP channels. We propose that the same mechanism underlies the definition of basal body temperatures in homeotherms, the reference temperature for humans being TW=36.32°C. Specifically, we demonstrate that the body temperatures of both human and chicken (representing the two classes of homeothermic vertebrates) not only coincide with quantum-transition reference temperatures but are also related to pronounced transitions in hemoglobin oxygen saturation. This suggests that the evolution of body temperatures in different homeothermic species might involve an interplay between critical parameters of oxygen supply on the one hand and quantum-physical rotational transition temperatures of water on the other. Casting the IWQ-model concept into a concise formula: Proteins sense and water sets critical physiological temperatures.
001043688 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001043688 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043688 7001_ $$0P:(DE-Juel1)131988$$aWeiergräber, Oliver H.$$b1
001043688 7001_ $$00000-0002-6747-0408$$aDamiati, Samar$$b2
001043688 7001_ $$00000-0001-5073-3315$$aFirat, Ipek Seda$$b3
001043688 7001_ $$0P:(DE-HGF)0$$aArtmann, Aysegül Temiz$$b4$$eCorresponding author
001043688 773__ $$0PERI:(DE-600)1477297-8$$a10.1152/ajpregu.00236.2024$$gp. ajpregu.00236.2024$$n4$$pR509-R597$$tAmerican journal of physiology / Regulatory, integrative and comparative physiology$$v329$$x0363-6119$$y2025
001043688 8564_ $$uhttps://juser.fz-juelich.de/record/1043688/files/artmann-et-al-2025-the-molecular-origin-of-body-temperature-in-homeothermic-species.pdf$$yOpenAccess
001043688 909CO $$ooai:juser.fz-juelich.de:1043688$$pdnbdelivery$$pdriver$$popenaire$$popen_access$$pVDB
001043688 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131988$$aForschungszentrum Jülich$$b1$$kFZJ
001043688 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001043688 9141_ $$y2025
001043688 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
001043688 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
001043688 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-06
001043688 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-06
001043688 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-06
001043688 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-06
001043688 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAM J PHYSIOL-REG I : 2022$$d2025-01-06
001043688 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-06
001043688 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
001043688 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
001043688 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-06
001043688 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043688 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-06
001043688 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
001043688 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-06$$wger
001043688 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
001043688 920__ $$lyes
001043688 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001043688 980__ $$ajournal
001043688 980__ $$aVDB
001043688 980__ $$aUNRESTRICTED
001043688 980__ $$aI:(DE-Juel1)IBI-7-20200312
001043688 9801_ $$aFullTexts