001     1043690
005     20250804115206.0
024 7 _ |a 10.1016/j.ejps.2025.107148
|2 doi
024 7 _ |a 0928-0987
|2 ISSN
024 7 _ |a 1879-0720
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02988
|2 datacite_doi
024 7 _ |a 40449672
|2 pmid
024 7 _ |a WOS:001504428300002
|2 WOS
037 _ _ |a FZJ-2025-02988
082 _ _ |a 610
100 1 _ |a Cukkemane, Abhishek
|0 P:(DE-Juel1)180407
|b 0
|e Corresponding author
245 _ _ |a A peptide mimetic therapeutic strategy targeting dysfunction of the scaffold protein DISC-1 in psychiatric disorders
260 _ _ |a New York, NY [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1751878867_15861
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Disrupted in schizophrenia 1 (DISC1) is a scaffold protein that regulates several physiological processes ranging from cellular division to neurodevelopment, and its dysfunction contributes to various neurological disorders including schizophrenia, bipolar and mood disorders, and autism. Thus, deciphering its native functions and pathophysiological roles is crucial. In this report, three disease-associated mutants of the C-region of DISC1, i.e., S713E, S704C, and L807-frameshift, were examined to further elucidate the role of DISC1 in cell division. We demonstrate that the mutations do not render the variants functionally inactive; instead, the interaction sites are presumably lost during the aggregation of the DISC1 C-region into amyloid-type fibrils. The minimal fibrillizing element in the C-region is the intrinsically disordered β-core (716‒761) that houses a segment absent in the splice variant DISC1Δ22aa, which cannot bind proteins of the mitotic spindle complex and thus hampers cellular proliferation. Based on these structure-function relationships, we present a rational drug development strategy using phage display technology and highlight the role of peptide mimetics in curtailing the agglomeration of fibrils.
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Dingley, Andrew J.
|0 P:(DE-Juel1)145681
|b 1
|u fzj
700 1 _ |a Mohrlüder, Jeannine
|0 P:(DE-Juel1)132012
|b 2
|u fzj
700 1 _ |a Santiago-Schübel, Beatrix
|0 P:(DE-Juel1)133853
|b 3
|u fzj
700 1 _ |a Weiergräber, Oliver H.
|0 P:(DE-Juel1)131988
|b 4
|e Corresponding author
|u fzj
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.ejps.2025.107148
|g Vol. 211, p. 107148 -
|0 PERI:(DE-600)1483522-8
|p 107148 -
|t European journal of pharmaceutical sciences
|v 211
|y 2025
|x 0928-0987
856 4 _ |u https://juser.fz-juelich.de/record/1043690/files/1-s2.0-S0928098725001472-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1043690
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180407
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145681
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132012
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)133853
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131988
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-16T14:28:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-16T14:28:48Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-13
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-13
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J PHARM SCI : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21