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This review highlights cutting-edge techniques for modeling
peptide—protein interactions and advancing computer-aided
peptide—drug design. We examine significant progress in
generating peptide poses through docking and artificial intelli-
gence (Al), assessing peptide flexibility via enhanced molec-
ular dynamics simulations, and analyzing binding interactions
through free energy calculations. Additionally, we discuss how
these insights can inform the rational design of therapeutic
peptides by utilizing free energy metrics and strategic modifi-
cations to enhance their binding affinity and therapeutic po-
tential. Looking forward, further integrating Al will be crucial for
optimizing peptide design and enhancing drug development
efforts.
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Introduction

Peptides are estimated to be involved in 15—40 % of all
protein-related interactions [1]. These peptide—protein
interactions (pepPIs) play crucial roles in processes
such as signal transduction, immune regulation, and pro-
teolytic processing, making them attractive targets for
therapeutic intervention. Currently, more than 80
approved peptide drugs are available on the global market.
Although therapeutic peptides account for only 5 % of the
pharmaceutical industry, the market is expected to grow
with a projected compound annual growth rate of 10.8 %
from 2025 to 2030 [2,3]. Small molecules still dominate

the global pharmaceutical market with 75 % of the shares
as they offer several advantages, including low production
costs, oral bioavailability, and good membrane perme-
ability. However, their small size limits their ability to
inhibit interactions involving large surface areas, such as
protein—protein interactions (PPIs) [4]. Due to their
larger size and inherent flexibility, peptide drugs, in
contrast, have a greater potential to target and inhibit PPIs
that were previously considered ‘undruggable’ [5].

In the early days of peptide—drug discovery, scientists
were restricted to natural sources. For instance, the first
peptide—drug, insulin, was derived from animals, often
leading to allergic reactions. With the advent of recom-
binant technology in the 1980s, clean and selective
production of peptides and proteins in cell cultures
became feasible. Another major milestone was the in-
vention of a target-based search for novel peptide—drug
candidates; the phage display technique enabled the
screening of large peptide libraries (up to 1010) against a
target protein using bacteriophages [4,6].

With advances in computational power and knowledge,
computer-aided drug design (CADD) has become an
essential tool in drug discovery. CADD accelerates drug
development while reducing costs and resources by
enabling virtual screening of vast compound databases
and using a knowledge-driven approach to understand-
ing protein—ligand interactions [7]. Building on the
principles established in CADD, computer-aided
peptide—drug design focuses specifically on opti-
mizing peptide interactions with their targets. A rational
peptide design approach necessitates a comprehensive
understanding of the underlying pepPls; therefore,
reliable structural information about the involved
binding partners is essential. For targets, existing
structures can often be utilized as experimental high-
resolution methods such as X-ray crystallography and
nuclear magnetic resonance spectroscopy have deter-
mined over 200,000 protein structures available in the
Protein Data Bank (PDB) to date. However, these
techniques are complex, time-consuming, costly, and
may result in non-native conformations [8,9]. AlphaFold
developed by Google DeepMind revolutionized struc-
tural biology by leveraging artificial intelligence (Al) to
predict protein structures solely from the amino acid
sequence, now achieving results in minutes using the

AlphaFold server [10,11].

www.sciencedirect.com

Current Opinion in Structural Biology 2025, 93:103083


Delta:1_S
Delta:1_M
mailto:birgit.strodel@uni-duesseldorf.de
mailto:birgit.strodel@uni-duesseldorf.de
http://www.sciencedirect.com/science/journal/18796257/vol/issue
https://doi.org/10.1016/j.sbi.2025.103083
https://doi.org/10.1016/j.sbi.2025.103083
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sbi.2025.103083&domain=pdf
www.sciencedirect.com/science/journal/0959440X
www.sciencedirect.com/science/journal/0959440X

2 Biophysical Methods (2025)

While protein structures for most target proteins can
typically be found in databases, establishing the struc-
tures of peptides and their interactions with proteins
poses greater challenges. This difficulty applies to both
experimental and simulation approaches, largely due to
the inherent flexibility of peptides, which results in a
vast number of possible conformations. Moreover, while
small-molecule binding pockets are usually deeply
buried and well-defined, peptides rather bind to larger,
disordered binding sites on the surface of the protein
(Figure 1avs. b). These issues can lead to uncertainty in
predicting binding poses using docking techniques. To
address this, molecular dynamics (MD) simulations
enable the sampling of the dynamics of pepPls, facili-
tating a more holistic analysis of the conformational
landscape [7,12].

This review aims to highlight some of the latest and
most innovative methods for modeling pepPlIs and
computer-aided peptide drug design. While compre-
hensive reviews have previously covered individual
aspects of these topics [12,13], we focus on the
most recent advancements in the field, including
peptide pose generation, evaluation of peptide flexi-
bility and interactions at the binding site, and the
rational design of new peptide drugs. These various
approaches can be combined into a workflow as shown
in Figure 2.

Generation of peptide—protein binding
poses

A classic structure-based drug design journey typically
starts with the identification of a therapeutic target. If a
high-resolution structure of the target protein is not yet
available in the PDB, computational methods such as
homology modeling—though this approach is becoming
increasingly less relevant—and Al approaches like
AlphaFold can be employed, to predict its three-

Figure 1

dimensional conformation [9]. With the protein struc-
ture by hand, the next step is to determine the area
where the ligand can bind.

Pocket detection

If no potential binding site is known, there are several
open source algorithms for locating and evaluating sur-
face pockets and cavities. Two prominent tools are the
web server CASTp 3.0 [14] and Fpocket [15], which
utilize a geometry-based method that relies on spheres
to detect grooves on the protein surface. In peptide drug
discovery, the large, relatively flat interface of pepPls
contrasts sharply with the well-defined and often deeply
buried binding pockets commonly found for small mol-
ecules. Standard algorithms could therefore be
misleading in predicting binding sites for peptides. To
address this problem, methods for the identification of
pepPl sites were developed. The well-established web
server PepSite utilizes a scoring method based on res-
idue binding preferences derived from known
peptide—protein structures to predict potential peptide
binding sites on protein surfaces [16]. The recently
introduced SiteFerret is a novel method for automatic
pocket detection that effectively identifies both small-
molecule binding pockets and peptide binding sites,
utilizing an algorithm that combines hierarchical clus-
tering of virtual probe spheres with the Isolation Forest
method to rank putative pockets [17].

Global docking

A fast-forward method for determining the structures of
peptide—protein complexes—skipping the step of
binding pocket detection—is to employ global docking.
To this end, the user can choose from a vast range of
docking programs that can be classified into
protein—protein, peptide—protein, and small-molecule-
—protein docking. Agrawal et al. compared a diverse set
of docking methods for peptide—protein docking using
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Representative examples of different protein binding sites occupied by (a) a small-molecule inhibitor (PDB code 3ERT), (b) an extended linear peptide
(PDB code 7T70), (c) a cyclic peptide (PDB code 6XIB), and (d) a stapled helical peptide (PDB code 3MK8). The proteins are shown as gray surface and
the ligands as sticks, with green for the small molecule, blue for the peptides, purple for peptide modifications, and a blue cartoon for the helix. PDB,

Protein Data Bank.
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Workflow of a typical peptide—drug design study. The process begins with
identifying the peptide binding site on the protein surface if local docking is
applied in the next step. Global docking involves the concurrent identifi-
cation of both the binding site and binding pose. In a consensus docking
approach, local or global docking is combined with Al-based pepPI pre-
diction. The peptide pose is then validated and evaluated through stan-
dard or enhanced MD simulations, which also quantify peptide flexibility at
the binding site and allow for the calculation of binding free energies.
Ultimately, the insights gained from pepPI| modeling inform peptide design,
enhancing the affinity, structural stability, and pharmacological activity of
the peptide—drug candidate. Al, artificial intelligence; MD, molecular dy-
namics; pepPls, peptide—protein interactions.

133 peptide—protein complexes, focusing on peptides
that are 9—15 residues long [18]. They found that
FRODOCK [19], a fast global protein—protein docking
web server, performed best in blind docking. In the work
of Weng et al. a similar, but more comprehensive
approach was followed, where they compared 14 docking
programs—three for small-molecule—protein docking,
three for protein—protein docking, and eight for
peptide—protein  docking—on a set of 185
peptide—protein complexes, comprising peptides of
5—20 residues [20]. In contrast to Agrawal et al. they
found that peptide—protein docking algorithms generally
performed better than protein—protein or small-mole-
cule docking algorithms. Notably, in global docking, the
web server HPEPDOCK [21], which employs rapid
peptide conformation sampling and ensemble docking
techniques, produced the best predictions for the entire
data set.

Local docking

When the binding site is known, local docking is the
preferred and more efficient method. In this category,
AutoDock CrankPep (ADCP) [22] has demonstrated
the best overall results [20]. The high number of
rotatable bonds in peptides contributes to their
conformational versatility, which distinguishes them not
only from the more rigid small molecules but also from
folded proteins. This enormous flexibility is a big chal-
lenge for standard docking programs [12]. The peptide
docking program ADCP combines the peptide backbone
conformation sampling method of CRANKITE [23]
with the grid-based receptor representation of Auto-
Dock [24]. The extensive conformational space is effi-
ciently navigated by ADCP using a Metropolis Monte
Carlo search strategy, sampling peptide positions and
orientations within the receptor’s binding site, thereby
producing docking poses [22]. Moreover, ADCP is also
capable of docking cyclic peptides that are either linked
through their backbone or side chain disulfide bonds
[25]. Besides peptide flexibility, some docking
programs—such as HADDOCK [26], CABS-Dock [27],
and FlexPepDock [28]—also account for receptor flex-
ibility by allowing movement of selected side chains and
in some cases also refinement of the backbone.

Defining the appropriate size of the binding site can be a
challenge in local docking, as, in particular, long peptides
can vary dramatically in their full size depending on how
expanded or compact they are. Weng et al. studied the
impact of the binding site size on the performance of
AutoDock or Vina-based Docking programs, like ADCP,
by comparing docking boxes generated based on the co-
crystallized ligand (ligBS) with those generated based
on the peptide length (pepBS) [20]. Compared to the
ligBS, the success rates for pepBS were considerably
lower for most docking programs, especially in the case
of ADCP, and dropped even more with increasing pep-
tide length. Therefore, when using AutoDock or Vina-
based docking programs, it is advisable to define the
binding site more precisely — preferably by using the co-
crystallized ligand as template if available or restricting
the docking box to the relevant binding site residues.

Al-based docking

In recent years, Al-based methods for protein structure
prediction have emerged, with AlphaFold [10] consis-
tently leading this field and often serving as the
benchmark for state-of-the-art comparisons. The release
of AlphaFold-Multimer (AFZmulti) [29], an update to
AlphaFold 2, enabled the prediction of protein—protein
complexes, including homomeric and heteromeric pro-
tein complexes. While AF2multi was primarily designed
for protein—protein complexes, it has also been shown
to be effective for peptide—protein docking problems
[30,31]. Shanker and Sanner compared AF2multi with
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two other deep learning models, Omegalold and
AlphaFold 2 Monomer, as well as their peptide-docking
software ADCP [31]. The dataset used in this study
contains 99 nonredundant peptide—protein complexes,
with the vast majority of peptides having a length of
5—25 amino acids and containing different secondary
structures (48 % coil, 34 % helix, and 18 % strand).
AF2multi outperformed all other methods with a suc-
cess rate of 53 %, whereas ADCP achieved only 23 % for
the top-ranked solutions. However, when considering all
generated solutions beyond the top-ranked poses,
ADCP’s success rate rises to 62 %, indicating that there
is room for improvement in the scoring function. The
authors also noted that AF2multi and ADCP performed
complementarily, each succeeding on different
peptide—protein complexes. AF2multi is suitable for
docking long, linear peptides composed of standard
amino acids, accounting for both peptide and receptor
flexibility. In contrast, ADCP allows peptide flexibility
while docking into rigid receptors [22], supporting
peptides up to 30 residues, including cyclic structures
and noncanonical amino acids. For peptides compatible
with both methods, a consensus docking strategy
combining ADCP and AF2multi, along with an effective
selection mechanism, achieved a 60 % success rate for
top-ranking poses and 66 % within the top five [31].

With the release of the AlphaFold Server powered by
AlphaFold 3 (AF3), predicting peptide—protein com-
plexes has become easily and rapidly accessible to
everyone [11]. Nevertheless, in the case of
peptide—protein docking, latest benchmark studies
have found that AF2multi performs slightly better than
AF3 [32]. The deep learning model ESMFold is a pro-
tein structure prediction tool, that, unlike AlphaFold,
does not rely on external databases, template searches,
or multiple sequence alignments. ESMFold predicts
protein structures directly from amino acid sequences,
while being up to 60 times faster than AlphaFold [33].
In recent studies, ESMFold’s performance in
peptide—protein docking was evaluated and compared
with the latest AlphaFold versions. Despite generally
lower accuracy, ESMFold occasionally outperformed
AF3. Given its computational efficiency, ESMFold can
be an alternative or a beneficial complement to other
methods in pepPI studies [34].

Limitations of docking

A limitation of docking approaches and Al-based
methods for predicting peptide—protein complexes is
that they provide only static snapshots of the peptides
and proteins, excluding their dynamic nature and, in
particular, the flexibility of peptides and thus pepPlIs,
which can be addressed through MD simula-
tions (Figure 2).

Evaluation of poses, interactions, and
peptide flexibility

Standard MD

Molecular dynamics simulations have long been a
cornerstone in understanding the dynamic nature of
biological macromolecules, providing atomistic insights
into conformational flexibility and interaction mecha-
nisms that often elude static structural determination
methods. Given the limitations of scoring functions in
docking methods, evaluating multiple top-ranked poses
(e.g. the top 3 or 5; see Figure 3a for a presentation of
different docking poses) is advisable rather than relying
solely on the highest-ranked pose. Furthermore, when
combining physics-based and Al-based methods in a
consensus approach, it is crucial to identify which
predicted structures are more reliable [31]. MD simu-
lations serve as valuable tools for assessing these docking
predictions as they allow for the exploration of the sta-
bility and conformational dynamics of peptide—protein
complexes over time (see Figure 3b for the peptide
flexibility sampled by MD). This dynamic perspective is
essential for understanding the interaction mode and
affinity of pepPlIs, forming the basis for subsequent drug
design studies [7]. Recent examples of combining
docking and MD simulations for the development of
therapeutic peptides include designing peptides to
target multiple over-expressed receptors in tumor cells
[35], creating peptide inhibitors for the interaction be-
tween the Omicron SARS-CoV-2 spike protein and its
receptor ACEZ [36], and optimizing a potent macrocy-
clic peptide that interferes with the protein—protein
interaction between the Programmed Cell Death Pro-
tein 1 and its Ligand 1 (PD-1/PD-L1) through rational
design [37].

Enhanced MD

However, traditional MD simulations can be compu-
tationally intensive and struggle to efficiently sample
rare events, such as transitions between the confor-
mational states of peptides in peptide—protein com-
plexes, where pepPIs may raise energy barriers. To
address these limitations, enhanced MD sampling
techniques, such as replica exchange MD, accelerated
MD, or Gaussian accelerated MD (GaMD), have been
refined or developed to improve the sampling effi-
ciency of MD simulations of PPIs or pepPIs [38,39].
With peptide Gaussian accelerated molecular dynamics
(Pep-GaMD), Wang et al. introduced a GaMD tech-
nique that is specifically tailored for modeling the high
flexibility of peptides [40]. Its dual-boost algorithm
applies two distinct boost potentials: one specifically
targeting the peptide’s essential potential energy and
another for the remaining potential energy of the entire
system. The same group has published a PepBinding

Current Opinion in Structural Biology 2025, 93:103083
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Figure 3
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The flexibility of pepPIs exemplified by docking and MD simulations of the
SARS-CoV-2 main protease (PDB code 7T70) with its substrate. (a) The
top 10 ranked structures after peptide docking with ADCP. (b) The 10 most
frequently sampled peptide conformations during a 100 ns MD simulation.
(c) Per-residue AGping decomposition of the peptide, from the highest
(green) to the lowest (white) contribution to the affinity (measured as
negative energies, see color scale in the bottom right corner). Subsites S1
and S2 are occupied by key residues, while S1’ has potential for peptide
modifications. AGping, binding free energy; ADCP, AutoDock CrankPep;
Al, artificial intelligence; MD, molecular dynamics; PDB, Protein Data
Bank; pepPls, peptide—protein interactions.

workflow for predicting peptide—protein structures
combining peptide docking, enhanced sampling
using Pep-GaMD, and structural clustering [41].
They demonstrated their workflow on seven
peptide—protein models generated via docking with
HPEPDOCK, initially classified as inaccurate to
medium-quality based on the Critical Assessment of

PRediction of Interactions criteria. Each model un-
derwent a 200 ns Pep-GaMD simulation, successfully
refining them into five medium-quality and two
acceptable-quality structures.

Free energy calculations

While docking methods use fast empirical or force field-
based scoring functions to estimate the affinity between
protein and peptide, free energy calculations combined
with MD simulations can achieve a more accurate esti-
mation of binding affinity [42]. To this end, the most
commonly used free energy calculation methods are
molecular mechanics/Poisson—Boltzmann surface area
(MM/PBSA) or molecular mechanics/generalized Born
surface area (MM/GBSA), free energy perturbation
(FEP), and thermodynamic integration (TT). While
end-point methods, like MM/PBSA and MM/GBSA, are
more computationally efficient, requiring only a single
trajectory, FEP and TT are both pathway-based methods
that are considered more accurate but involve much
higher computational costs. Therefore, MM/PB(GB)SA
has become a popular technique to calculate the binding
free energy (AGping) between a protein and ligand [43].
Weng et al. suggested that the choice between MM/
PBSA and MM/GBSA may depend on peptide length
and other system-specific factors. Their study showed
that MM/PBSA vyielded higher accuracy for short pep-
tides (5—12 residues), while MM/GBSA performed
better for medium-length peptides (20—25 residues)
[44]. Furthermore, both methods are sensitive to pa-
rameters such as the solute dielectric constant and the
choice of force field, and are challenged by the high
computational cost and limited accuracy of entropy
calculations, typically failing to (correctly) capture
conformational entropy [45].

Among the available tools for MM/PB(GB)SA calcula-
tions, Amber includes the widely used MMPBSA.py
script within the AmberTools package, which enables
free energy calculations based on MD snapshots [46].
To enhance accessibility for GROMACS users, Valdés-
Tresanco developed gmx_mmpbsa, an adaptation of
MMPBSA.py for processing trajectories and topology
files generated with GROMACS [47]. Compared with
other MM/PB(GB)SA implementations for GROMACS,
such as g mmpbsa and GMXPBSAZ2.1, gmx_mmpbsa
offers several advantages [48]. It is compatible with all
GROMACS versions and provides enhanced calculation
and analysis features, including AGy;,q calculations with
different solvation models, stability assessments,
computational alanine scanning, AGyp;nq decomposition,
and entropy corrections. Furthermore, it supports the
Amber, OPLS, and CHARMM force fields and is easy to
install using Conda or AmberTools. These advantages
have contributed to the increasing use of gmx_mmpbsa
for analyzing pepPl sampled by MD simulation in
peptide—drug discovery studies [49—52].
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Peptide—drug design

Following the identification of promising binding pep-
tides, further refinements are needed to optimize their
affinity, stability, and absorption, distribution, meta-
bolism, excretion, and toxicity (ADMET) properties for
effective  and  safe  therapeutic  development
(Figure 2) [53].

Optimizing affinity

Rational design of a peptide drug requires reliable and
efficient computational tools for analyzing the affinity of
pepPIs. Computational alanine scanning (CAS) is a
AGping-based method that systematically replaces amino
acids with alanine to identify key residues critical for the
affinity and stability of pepPlIs. CAS is not only a great
method to identify these ‘hot spot’ residues in pepPls, it
has also helped to elucidate the structure—activity
relationship of different peptide drug candidates, by
giving insights into which residues are essential for ac-
tivity and which can be modified to enhance affinity,
specificity, or stability [54—56]. Another frequently
used method in computational peptide design is the
per-residue AGyp;,q decomposition, which analyses the
energetic contributions of individual amino acids to the
overall AGp,g of a peptide—protein complex
(Figure 3c). Weakly contributing residues can be
modified, with the effects evaluated through subse-
quent AGpi,g calculations after mutation. Using this
method, researchers were able to propose peptide res-
idue substitutions that led to improved binding affin-
ity [57,58].

There are several tools for AGpi,g-based analyses of
pepPls at the residues level. The BAlaS web application
offers a fast and user-friendly platform for performing
CAS, requiring only a structure file in PDB format as
input [59]. For the analysis of MD trajectories using
MM/PB(GB)SA calculations, tools such as CompASM
[60], an Amber-based plug-in for Visual Molecular Dy-
namics (VMD) [61] for conducting CAS, and
gmx_ MMPBSA [48], which enables both per-residue
AGping decomposition and CAS, have been developed.
While these methods can identify residues with modi-
fication potential, they do not directly suggest specific
mutations. In a peptide design approach based on
modeling the SARS-CoV-2 main protease with its sub-
strates, Chan et al. [62] utilized the computational
saturation mutagenesis algorithm BUDE_SM [63] from
the Bristol University Docking Engine (BUDE) [64] to
substitute each peptide residue with the corresponding
19 alternative proteinogenic amino acids. /z vitro inhi-
bition assays confirmed that they successfully translated
the BUDE SM predictions into potent pep-
tide inhibitors.

Structural stability

To enhance a peptide’s binding affinity and selectivity,
one approach is to maintain its target-bound conforma-
tion, which can be achieved through strategies like
cyclization. It also improves its stability and pharmaco-
kinetic properties, as cyclization protects peptides from
enzymatic degradation and hydrolysis, and reduces its
immunogenicity. Peptides can be linked to themselves
in different ways, such as head to tail (Figure 1c), side
chain to side chain, or head to side chain, using
nonpeptidic linkers or groups to facilitate these con-
nections [65,66]. Cyclization is often applied to pep-
tides derived from so-called ‘hot segments’, an
extension of the ‘hot spots’ concept that defines a
continuous binding region essential for a PPI [5]. This
was demonstrated by Lopez et al. who utilized MD
simulations with enhanced sampling methods to assess
the degree of preorganization—the structural confor-
mation that most accurately mimics the ‘hot loop’—in a
series of cyclic peptides differing in a few point muta-
tions and linker types [67]. They ultimately obtained an
inhibitor with the highest degree of preorganization and
a 280-fold improvement in binding affinity. In a recent ¢
novo peptide design study, the computational generation
of novel macrocyclic peptides without relying on pre-
existing sequences was realized using Al [68]. To this
end, Rettie et al. developed RFpeptides, a deep learning
framework using denoising diffusion models to design
macrocyclic peptides with high affinity for selected
protein targets.

Another popular method to stabilize secondary structure
elements like helices is by using staples, which involve
cross-linking two or more side chains to provide addi-
tional structural support (Figure 1d). The most common
form of staples in peptides is the introduction of disul-
fide bonds. However, synthetic staples can also include
various linkers or chemical groups that can react with
amino acid side chains to stabilize the desired confor-
mation. Like cyclic peptides, stapled peptides often
possess further advantages like enhanced cell penetra-
tion and proteolytic stability [69,70].

Absorption, distribution, metabolism, excretion, and
toxicity

In addition to high affinity and selectivity, the devel-
opment of effective and safe drugs requires careful
consideration of their ADMET properties [53]. Espe-
cially in the context of peptide-based therapeutics,
proteolytic cleavage, rapid clearance, and low membrane
permeability represent a major challenge [6,71]. To
overcome these limitations, strategies like chemical
modifications (e.g. acetylation/amidation and nonnat-
ural or d-amino acids), conjugation strategies (e.g.
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lipidation, PEGylation, and fusion proteins), and struc-
tural stabilization (e.g. stapling or cross-linking) have
been developed [72]. Two web servers for ADMET
prediction have recently been introduced enabling the
assessment of key drug-like properties, such as solubil-
ity, bioavailability, blood—brain barrier penetration, and
toxicity. ADMET-AI allows rapid screening of up to 1000
molecules (and one million molecules with a local
version) at once, making it ideal for high-throughput
evaluation [73]. For a more comprehensive approach,
ADMETIab 3.0 offers a wider range of ADMET prop-
erties, detailed toxicity risk assessments, and an uncer-
tainty estimate module to aid in the candidate selection
process [74]. However, it should be noted that most
ADMET prediction tools are trained on small molecules
and therefore face challenges to accurately predict the
pharmacokinetics of therapeutic peptides. Developing a
dedicated platform to address these specific ADMET
challenges for peptide drugs would be highly beneficial.

Conclusion and outlook

This review emphasizes some of the latest and most
innovative methods for modeling peptide—protein in-
teractions (pepPls) and computer-aided peptide drug
design. We addressed recent advancements for the pep-
tide pose generation using docking and Al techniques,
the evaluation of peptide flexibility using MD simula-
tions, interactions at the binding site using binding free
energy decompositions, and the rational design of new
peptide drugs. We recommend employing a consensus
approach that integrates physics-based and Al-based
docking methods to increase the likelihood of obtaining
accurate structural predictions. Enhanced sampling MD
simulations can further improve structural reliability,
while techniques like MM/PBSA for binding free energy
decomposition and computational alanine scanning
facilitate the peptide design process. Despite these ad-
vancements, a significant challenge remains: the devel-
opment of a comprehensive workflow as illustrated in
Figure 2 that consolidates the best available tools in one
platform would greatly benefit the field. Looking ahead,
the integration of Al for producing structures of
peptide—protein complexes as well as for assessing the
ADMET properties of peptides will play an increasingly
vital role in peptide design, further enhancing our capa-
bilities in drug development. The ultimate goal is to
accurately predict pepPls so that m siico results match
the reliability of protein structure predictions with
AlphaFold and yield binding energies that correlate with
experimentally determined Kp values from binding
assays. Achieving this would enable peptide—protein
docking to replace experiments, which are challenged
by the often transient pepPIs that produce noisy data.
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