001     1043713
005     20250804115222.0
024 7 _ |a 10.1038/s41398-025-03440-1
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02999
|2 datacite_doi
024 7 _ |a 40617812
|2 pmid
024 7 _ |a WOS:001522801400003
|2 WOS
037 _ _ |a FZJ-2025-02999
082 _ _ |a 610
100 1 _ |a Federmann, Lydia M.
|0 P:(DE-Juel1)188387
|b 0
|e Corresponding author
245 _ _ |a Neurobiological correlates of schizophrenia-specific and highly pleiotropic genetic risk scores for neuropsychiatric disorders
260 _ _ |a London
|c 2025
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752732084_23245
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neuropsychiatric disorders show shared and distinct neurobiological correlates. A cross-disorder genome-wide association study (GWAS) identified 23 highly pleiotropic single-nucleotide polymorphisms (SNPs) that were associated with at least four neuropsychiatric disorders, and 22 SNPs that were associated predominantly with schizophrenia. Exploring their link to brain-related traits might advance understanding their distinct neurobiological processes. Using the UK Biobank data (n = 28,952), this study examined the association of both a genetic risk score (GRS) for highly pleiotropic SNPs (PleioPsych-GRS), and a GRS for predominantly schizophrenia-associated SNPs (SCZ-GRS) with 154 measures of subcortical volume, cortical thickness, and surface area as well as 12 outcomes related to mental health. To generate further insights at the individual SNP level, the association between SNPs and brain structure was examined using GWAS summary statistics. The PleioPsych-GRS showed no significant association with brain structure after correction for multiple testing. The SCZ-GRS showed a significant association with an increased surface area of the lateral orbitofrontal region, and an increased volume of the putamen, among others. The PleioPsych-GRS and the SCZ-GRS were associated with eight and four outcomes related to mental health, respectively. Two highly pleiotropic and 10 SCZ-associated SNPs were associated with several structural brain phenotypes. Taken together, these findings indicated that GRSs of highly pleiotropic SNPs and predominantly schizophrenia-associated SNPs have partly distinct associations with brain structure and outcomes related to mental health. Thus, investigating schizophrenia-specific and pleiotropic variants may improve our understanding of the neurobiology of neuropsychiatric disorders.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Sindermann, Lisa
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Primus, Sabrina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Raimondo, Federico
|0 P:(DE-Juel1)185083
|b 3
700 1 _ |a Oexle, Konrad
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Goltermann, Janik
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Winkelmann, Juliane
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Nöthen, Markus M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 8
|u fzj
700 1 _ |a Mühleisen, Thomas W.
|0 P:(DE-Juel1)156419
|b 9
700 1 _ |a Cichon, Sven
|0 P:(DE-Juel1)140234
|b 10
|u fzj
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 11
|u fzj
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 12
700 1 _ |a Dannlowski, Udo
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 14
|u fzj
700 1 _ |a Forstner, Andreas J.
|0 P:(DE-Juel1)186755
|b 15
|e Corresponding author
773 _ _ |a 10.1038/s41398-025-03440-1
|g Vol. 15, no. 1, p. 230
|0 PERI:(DE-600)2609311-X
|n 1
|p 230
|t Translational Psychiatry
|v 15
|y 2025
|x 2158-3188
856 4 _ |u https://juser.fz-juelich.de/record/1043713/files/s41398-025-03440-1.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1043713
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188387
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)185083
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)156419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)140234
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)172843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)186755
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRANSL PSYCHIAT : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:46:03Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:46:03Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:46:03Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b TRANSL PSYCHIAT : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21