001     1043715
005     20250804115152.0
024 7 _ |a 10.1038/s41598-025-08639-2
|2 doi
024 7 _ |a 10.34734/FZJ-2025-03001
|2 datacite_doi
024 7 _ |a 40615574
|2 pmid
024 7 _ |a WOS:001523063600012
|2 WOS
037 _ _ |a FZJ-2025-03001
082 _ _ |a 600
100 1 _ |a Krautz, Agnieszka Ewa
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Prediction of suicide using web based voice recordings analyzed by artificial intelligence
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752732871_23245
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The integration of machine learning (ML) and deep learning models in suicide risk assessment has advanced significantly in recent years. In this study, we utilized ML in a case-control design, we predicted completed suicides using publicly available, web-based, real-world voice data, and treating speech as a biomarker. Our model demonstrated high accuracy in distinguishing between individuals who died by suicide and carefully matched controls achieving an area under the curve (AUC) of 0.74. This improved to an AUC of 0.85 and an accuracy of 76% when analyzing the subset of individuals who died by suicide within 12 months of the audio recording. The best predictive performance was observed with the Multilayer perceptron model, particularly when using the all Bene, Q + U Bene, and Q + U Raw feature sets—highlighting the importance of combining structured and unstructured paralinguistic features. The findings highlight the critical temporal proximity of voice biomarkers to suicide risk. The model’s robustness is further evidenced by its resilience to perturbations in the analytical pipeline. This is the first study to successfully predict actual suicidal behavior rather than surrogate markers, marking a major step forward in suicide prevention. By demonstrating that speech can serve as a non-invasive and objective biomarker for suicide risk, this research opens new avenues for diagnostic and prognostic applications.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Volkening, Julia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Raue, Janik
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Otte, Christian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 4
|u fzj
700 1 _ |a Ahlers, Eike
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Langner, Jörg
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1038/s41598-025-08639-2
|g Vol. 15, no. 1, p. 23855
|0 PERI:(DE-600)2615211-3
|n 1
|p 23855
|t Scientific reports
|v 15
|y 2025
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/1043715/files/s41598-025-08639-2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1043715
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a agnieszka.krautz@peakprofiling.com
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a PeakProfiling GmbH, Eschenallee 36, 14050, Berlin, Germany
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21