001043717 001__ 1043717
001043717 005__ 20250716202230.0
001043717 0247_ $$2doi$$a10.25493/GF7X-2AU
001043717 037__ $$aFZJ-2025-03003
001043717 1001_ $$0P:(DE-Juel1)178766$$aKuckertz, Anika$$b0$$ufzj
001043717 245__ $$aAtlas of muscarinic M2 receptor distributions in the rat brain (v2)
001043717 260__ $$bEBRAINS$$c2025
001043717 3367_ $$2BibTeX$$aMISC
001043717 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1752680214_22848
001043717 3367_ $$026$$2EndNote$$aChart or Table
001043717 3367_ $$2DataCite$$aDataset
001043717 3367_ $$2ORCID$$aDATA_SET
001043717 3367_ $$2DINI$$aResearchData
001043717 520__ $$aRecent technological and methodological advances have facilitated the implementation and standardization of functional magnetic resonance imaging (fMRI) studies in rodents. Integration of such fMRI data with maps coding for the cyto- and receptor architectonic organization of the brain, as well as of its structural connectivity patterns, will facilitate the advance of our understanding of the biological underpinnings of functional networks and accelerate translational research using rat models. This dataset provides a high-resolution three-dimensional (3D) reconstruction of receptor autoradiographs coding for the distribution of the cholinergic muscarinic M2 receptor throughout the entire rat brain. The autoradiographs were obtained by means of in vitro receptor autoradiography using the specific agonist [3H]oxotremorine-M and digitization of the ensuing autoradiographs to enable their densitometric analysis. The pipeline BrainBuilder, developed for the 3D reconstruction of 2D multimodal histological datasets, was used for the reconstruction. The resulting 3D volume was registered to the Waxholm Space rat brain atlas (version 4), thus enabling its integration with fMRI data.
001043717 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001043717 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
001043717 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x2
001043717 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x3
001043717 588__ $$aDataset connected to DataCite
001043717 650_7 $$2Other$$aNeuroscience
001043717 7001_ $$0P:(DE-Juel1)131701$$aPalomero-Gallagher, Nicola$$b1$$eCorresponding author$$ufzj
001043717 7001_ $$0P:(DE-Juel1)181092$$aFunck, Thomas$$b2$$ufzj
001043717 773__ $$a10.25493/GF7X-2AU
001043717 909CO $$ooai:juser.fz-juelich.de:1043717$$popenaire$$pVDB$$pec_fundedresources
001043717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178766$$aForschungszentrum Jülich$$b0$$kFZJ
001043717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131701$$aForschungszentrum Jülich$$b1$$kFZJ
001043717 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181092$$aForschungszentrum Jülich$$b2$$kFZJ
001043717 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001043717 9141_ $$y2025
001043717 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001043717 980__ $$adataset
001043717 980__ $$aVDB
001043717 980__ $$aI:(DE-Juel1)INM-1-20090406
001043717 980__ $$aUNRESTRICTED