001     1043717
005     20250716202230.0
024 7 _ |a 10.25493/GF7X-2AU
|2 doi
037 _ _ |a FZJ-2025-03003
100 1 _ |a Kuckertz, Anika
|0 P:(DE-Juel1)178766
|b 0
|u fzj
245 _ _ |a Atlas of muscarinic M2 receptor distributions in the rat brain (v2)
260 _ _ |c 2025
|b EBRAINS
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Dataset
|b dataset
|m dataset
|0 PUB:(DE-HGF)32
|s 1752680214_22848
|2 PUB:(DE-HGF)
336 7 _ |a Chart or Table
|0 26
|2 EndNote
336 7 _ |a Dataset
|2 DataCite
336 7 _ |a DATA_SET
|2 ORCID
336 7 _ |a ResearchData
|2 DINI
520 _ _ |a Recent technological and methodological advances have facilitated the implementation and standardization of functional magnetic resonance imaging (fMRI) studies in rodents. Integration of such fMRI data with maps coding for the cyto- and receptor architectonic organization of the brain, as well as of its structural connectivity patterns, will facilitate the advance of our understanding of the biological underpinnings of functional networks and accelerate translational research using rat models. This dataset provides a high-resolution three-dimensional (3D) reconstruction of receptor autoradiographs coding for the distribution of the cholinergic muscarinic M2 receptor throughout the entire rat brain. The autoradiographs were obtained by means of in vitro receptor autoradiography using the specific agonist [3H]oxotremorine-M and digitization of the ensuing autoradiographs to enable their densitometric analysis. The pipeline BrainBuilder, developed for the 3D reconstruction of 2D multimodal histological datasets, was used for the reconstruction. The resulting 3D volume was registered to the Waxholm Space rat brain atlas (version 4), thus enabling its integration with fMRI data.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
536 _ _ |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)
|0 G:(DE-HGF)InterLabs-0015
|c InterLabs-0015
|x 2
536 _ _ |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)
|0 G:(EU-Grant)101147319
|c 101147319
|f HORIZON-INFRA-2022-SERV-B-01
|x 3
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Neuroscience
|2 Other
700 1 _ |a Palomero-Gallagher, Nicola
|0 P:(DE-Juel1)131701
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Funck, Thomas
|0 P:(DE-Juel1)181092
|b 2
|u fzj
773 _ _ |a 10.25493/GF7X-2AU
909 C O |o oai:juser.fz-juelich.de:1043717
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178766
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131701
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)181092
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21