001043722 001__ 1043722
001043722 005__ 20250820202246.0
001043722 0247_ $$2doi$$a10.1002/pro.70188
001043722 0247_ $$2ISSN$$a0961-8368
001043722 0247_ $$2ISSN$$a1469-896X
001043722 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03008
001043722 0247_ $$2pmid$$a40563206
001043722 0247_ $$2WOS$$aWOS:001516471300001
001043722 037__ $$aFZJ-2025-03008
001043722 082__ $$a610
001043722 1001_ $$0P:(DE-HGF)0$$aLeitz, Anna$$b0
001043722 245__ $$aGuanidinylation of the cold shock protein YB ‐1: Molecular basis, structural changes and Notch‐3 receptor binding
001043722 260__ $$aHoboken, NJ$$bWiley$$c2025
001043722 3367_ $$2DRIVER$$aarticle
001043722 3367_ $$2DataCite$$aOutput Types/Journal article
001043722 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752754940_1979
001043722 3367_ $$2BibTeX$$aARTICLE
001043722 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001043722 3367_ $$00$$2EndNote$$aJournal Article
001043722 520__ $$aPosttranslational modifications of Y-box binding protein (YB)-1 are the prerequisite for its very different protein functions. Here, we investigate the underlying molecular mechanisms of YB-1 guanidinylation and link increased serum urea levels as well as the activity of glycine amidinotransferase (GATM) with guanidinylation. Computer simulations show changes in stability and conformation of the YB-1 protein induced by these modifications. In particular, the secondary structure of the doubly guanidinylated YB-1 (YB-1-2G) shows a reduced tendency to form β-sheets, and the modified cold shock domain is more exposed to the solvent. Protein-protein docking techniques in conjunction with molecular dynamics simulations confirm the binding between YB-1 and its receptor Notch-3 at EGF domains 17-24 but show no significant differences in the binding behavior of YB-1 and YB-1-2G. This is confirmed in two different types of receptor-ligand binding assays. In addition, we demonstrate for the first time a high-affinity binding of YB-1 to another ligand binding site on the Notch-3 receptor, thereby achieving effective displacement of the canonical ligand Jagged. In conclusion, we identified molecular processes that lead to the guanidinylation of YB-1 and revealed their effects on the structure and binding to receptor Notch-3.
001043722 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001043722 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001043722 7001_ $$0P:(DE-Juel1)178946$$aKav, Batuhan$$b1
001043722 7001_ $$0P:(DE-HGF)0$$aLiu, Xiyang$$b2
001043722 7001_ $$0P:(DE-Juel1)176262$$aFatafta, Hebah$$b3
001043722 7001_ $$0P:(DE-HGF)0$$aJankowski, Vera$$b4
001043722 7001_ $$0P:(DE-HGF)0$$aAggeler, Bastian$$b5
001043722 7001_ $$0P:(DE-HGF)0$$aGao, Yingying$$b6
001043722 7001_ $$0P:(DE-HGF)0$$aMartin, Ina Verena$$b7
001043722 7001_ $$0P:(DE-HGF)0$$aVogt, Kristian$$b8
001043722 7001_ $$0P:(DE-HGF)0$$aKramann, Rafael$$b9
001043722 7001_ $$0P:(DE-HGF)0$$aOstendorf, Tammo$$b10
001043722 7001_ $$0P:(DE-HGF)0$$aRauen, Thomas$$b11
001043722 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b12$$eCorresponding author
001043722 7001_ $$00000-0002-7236-9793$$aRaffetseder, Ute$$b13$$eCorresponding author
001043722 773__ $$0PERI:(DE-600)2000025-X$$a10.1002/pro.70188$$gVol. 34, no. 7, p. e70188$$n7$$pe70188$$tProtein science$$v34$$x0961-8368$$y2025
001043722 8564_ $$uhttps://juser.fz-juelich.de/record/1043722/files/Protein%20Science%20-%202025%20-%20Leitz%20-%20Guanidinylation%20of%20the%20cold%20shock%20protein%20YB%E2%80%901%20Molecular%20basis%20structural%20changes%20and.pdf$$yOpenAccess
001043722 8767_ $$d2025-08-20$$eHybrid-OA$$jDEAL
001043722 909CO $$ooai:juser.fz-juelich.de:1043722$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
001043722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b12$$kFZJ
001043722 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001043722 9141_ $$y2025
001043722 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001043722 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
001043722 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-01
001043722 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-01
001043722 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001043722 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROTEIN SCI : 2022$$d2025-01-01
001043722 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-01$$wger
001043722 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-01
001043722 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
001043722 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
001043722 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001043722 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPROTEIN SCI : 2022$$d2025-01-01
001043722 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001043722 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
001043722 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001043722 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001043722 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001043722 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001043722 920__ $$lyes
001043722 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001043722 9801_ $$aFullTexts
001043722 980__ $$ajournal
001043722 980__ $$aVDB
001043722 980__ $$aUNRESTRICTED
001043722 980__ $$aI:(DE-Juel1)IBI-7-20200312
001043722 980__ $$aAPC