001     1043732
005     20250922202048.0
024 7 _ |a 10.1016/j.molliq.2025.127033
|2 doi
024 7 _ |a 0167-7322
|2 ISSN
024 7 _ |a 1873-3166
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03014
|2 datacite_doi
037 _ _ |a FZJ-2025-03014
082 _ _ |a 540
100 1 _ |a Buczek, Aneta
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Water modulated influence of intramolecular hydrogen-bonding on the conformational properties of Cannabidiol (CBD)
260 _ _ |a New York, NY [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1758524673_12203
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cannabidiol (CBD), a non-psychoactive phytocannabinoid from Cannabis sativa, has gained significant attention due to its diverse therapeutic properties, including anti-inflammatory, antioxidant, and anxiolytic effects. However, its clinical application is hindered by poor water solubility, which limits its bioavailability. The aim of this study is to deepen our understanding of the conformational properties of CBD, and investigate how these properties affect its solubility. Using Density Functional Theory (DFT) calculations, we analyzed the axial and equatorial positions of substituents on the limonene ring and the arrangement of both hydroxyl groups. Our findings indicate that the most stable conformation of CBD involves diequatorial substitution on the limonene ring, stabilized by specific –OH⋯π hydrogen bonding interactions. All-atom Molecular Dynamics (MD) simulations in an aqueous environment revealed that while single CBD molecules maintain their conformation, multiple CBD molecules tend to cluster. These insights provide a comprehensive understanding of the molecular interactions that underlies CBD’s low aqueous solubility and suggests potential strategies for enhancing its bioavailability, which could optimize its therapeutic potential.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rzepiela, Kacper
|0 P:(DE-Juel1)201369
|b 1
700 1 _ |a Broda, Małgorzata A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kupka, Teobald
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 4
|u fzj
700 1 _ |a Fatafta, Hebah
|0 P:(DE-Juel1)176262
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.molliq.2025.127033
|g Vol. 423, p. 127033 -
|0 PERI:(DE-600)1491496-7
|p 127033 -
|t Journal of molecular liquids
|v 423
|y 2025
|x 0167-7322
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/1043732/files/1-s2.0-S0167732225001928-main.pdf
856 4 _ |y Published on 2025-01-27. Available in OpenAccess from 2027-01-27.
|u https://juser.fz-juelich.de/record/1043732/files/CBD-DFT-MD.pdf
856 4 _ |y Published on 2025-01-27. Available in OpenAccess from 2027-01-27.
|u https://juser.fz-juelich.de/record/1043732/files/Supplementary%20material-CBD-DFT-MD.pdf
909 C O |o oai:juser.fz-juelich.de:1043732
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-30
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MOL LIQ : 2022
|d 2024-12-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MOL LIQ : 2022
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21