001043735 001__ 1043735
001043735 005__ 20250728202334.0
001043735 037__ $$aFZJ-2025-03017
001043735 1001_ $$0P:(DE-Juel1)187429$$aBühler, Jonas$$b0$$ufzj
001043735 1112_ $$aAPS Global Physics Summit 2025$$cAnaheim$$d2025-03-16 - 2025-03-21$$wUSA
001043735 245__ $$aQUOCCA.SET: A Scalable Readout IC for Semiconductor Quantum Dots
001043735 260__ $$c2025
001043735 3367_ $$033$$2EndNote$$aConference Paper
001043735 3367_ $$2DataCite$$aOther
001043735 3367_ $$2BibTeX$$aINPROCEEDINGS
001043735 3367_ $$2DRIVER$$aconferenceObject
001043735 3367_ $$2ORCID$$aLECTURE_SPEECH
001043735 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1753685027_15191$$xAfter Call
001043735 520__ $$aUniversal quantum computing, requires a scalable system with millions of qubits. One of the current bottlenecks is a fast and high fidelity readout without limiting the scalability by area consumption, wiring, or power dissipation. We address this challenge by developing an integrated readout circuitry (IC), in a 22 nm FD-SOI technology, operating at deep cryogenic temperatures. The IC will be connected to a Single Electron Transistor (SET). The prototype is made for reading out two SETs. It implements a high speed mode, to perform a single bit readout to distinct │0〉and │1〉state and a high resolution mode for tuning, which amplifies the signal and passes it to the room-temperature electronics.We characterize this IC inside a closed cycle Gifford-McMahon cryostat at a temperature of 6 K. The measurement shows a power consumption of 33.6 µW/SET for the single bit readout and 216 µW for the high-resolution mode. With a sampling time of 2×1 µs, the circuit shows low noise of 223 pA (1σ) for single bit readout, while the high-resolution mode has an input-referred noise level of 188 pA RMS (10 Hz to 1 MHz).With its high bandwidth, low input noise and low power consumption, this IC paves the way for scalable integrated readout and is a decisive step on the way to universal quantum computing.
001043735 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001043735 7001_ $$0P:(DE-Juel1)168167$$aNielinger, Dennis$$b1$$ufzj
001043735 7001_ $$0P:(DE-Juel1)176328$$aAshok, Arun$$b2$$ufzj
001043735 7001_ $$0P:(DE-Juel1)186966$$aDuipmans, Lammert$$b3$$ufzj
001043735 7001_ $$0P:(DE-Juel1)159350$$aGrewing, Christian$$b4$$ufzj
001043735 7001_ $$0P:(DE-Juel1)156521$$aKruth, Andre$$b5$$ufzj
001043735 7001_ $$0P:(DE-Juel1)187432$$aKusuma, Sabitha$$b6$$ufzj
001043735 7001_ $$0P:(DE-Juel1)194314$$aMair, Carl-Jonas$$b7$$ufzj
001043735 7001_ $$0P:(DE-Juel1)174244$$aSchubert, Petra$$b8$$ufzj
001043735 7001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b9$$ufzj
001043735 7001_ $$0P:(DE-Juel1)145837$$aZambanini, Andre$$b10$$ufzj
001043735 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b11$$ufzj
001043735 8564_ $$uhttps://summit.aps.org/events/MAR-G19/4
001043735 909CO $$ooai:juser.fz-juelich.de:1043735$$pVDB
001043735 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187429$$aForschungszentrum Jülich$$b0$$kFZJ
001043735 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168167$$aForschungszentrum Jülich$$b1$$kFZJ
001043735 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176328$$aForschungszentrum Jülich$$b2$$kFZJ
001043735 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186966$$aForschungszentrum Jülich$$b3$$kFZJ
001043735 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159350$$aForschungszentrum Jülich$$b4$$kFZJ
001043735 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156521$$aForschungszentrum Jülich$$b5$$kFZJ
001043735 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187432$$aForschungszentrum Jülich$$b6$$kFZJ
001043735 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194314$$aForschungszentrum Jülich$$b7$$kFZJ
001043735 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174244$$aForschungszentrum Jülich$$b8$$kFZJ
001043735 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b9$$kFZJ
001043735 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145837$$aForschungszentrum Jülich$$b10$$kFZJ
001043735 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b11$$kFZJ
001043735 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001043735 9141_ $$y2025
001043735 920__ $$lyes
001043735 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lIntegrated Computing Architectures$$x0
001043735 980__ $$aconf
001043735 980__ $$aVDB
001043735 980__ $$aI:(DE-Juel1)PGI-4-20110106
001043735 980__ $$aUNRESTRICTED