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INTRODUCTION

Can Speech predict Cognitive Performance? Can we acquire high-quality Neuroimaging during Productive Speech?

@S i & -l

- Speech and executive functions (EF) |- SpEx study collected behavioural data |+ SpExNeuro expands this by adding|+ Speaking introduces noise and spatial

are related [1, 2]. from healthy participants [4]. neuroimaging data. misalignment in fMRI data.
* However, the validity of speech|. We used ML to research if prosodic |+ ->Investigation of neural mechanisms|+ Identifying excessive motion is crucial to
biomarkers remains inconclusive [3]. features can predict EF. linking speech and EF avoid false neural findings.

PART A METHODS PART B
SpEXx: Prediction of EF by Prosody SpExNeuro: Expansion of SpEx through the integration of Neuroimaging Data
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: : : : Higher signal variability observed during speech Lenient (FD = 0.5 mm) and strict (FD = 0.2 for T1. Overall quality score derived
> Careiul control of confounding variables is essential. production. mm) thresholds [7]. from all IQMs — all subjects < 0.75.

DISCUSSION

T

 SpEx(Neuro) datasets provide a]+ Quality control is crucial for maintaining data integrity and ensuring that observed effects]¢ \We encourage scientists to leverage this
comprehensive multimodal resource to reflect true neural and cognitive processes - particularly in productive speech data,] growing dataset for collaborative

investigate individual differences. which is highly sensitive to noise and motion. research.
ML analyses can uncover shared brain |+ Despite expected variability, our results suggest that acquiring productive speech in thefje - Available data paper: Camilleri &
activation patterns of speech and EF. scanner is feasible without major loss in image quality. Volkening et al., 2024 [4]
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