001044097 001__ 1044097
001044097 005__ 20250717202254.0
001044097 0247_ $$2doi$$a10.1107/S1600576725003620
001044097 0247_ $$2ISSN$$a0021-8898
001044097 0247_ $$2ISSN$$a1600-5767
001044097 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03020
001044097 037__ $$aFZJ-2025-03020
001044097 082__ $$a540
001044097 1001_ $$0P:(DE-Juel1)200039$$aBeddrich, Lukas$$b0$$eFirst author$$ufzj
001044097 245__ $$aComparison of time-of-flight and MIEZE neutron spectroscopy of H2O
001044097 260__ $$aCopenhagen$$bMunksgaard$$c2025
001044097 3367_ $$2DRIVER$$aarticle
001044097 3367_ $$2DataCite$$aOutput Types/Journal article
001044097 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752737524_21156
001044097 3367_ $$2BibTeX$$aARTICLE
001044097 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044097 3367_ $$00$$2EndNote$$aJournal Article
001044097 520__ $$aWe report a comparison of modulation of intensity with zero effort (MIEZE), a neutron spin–echo technique, and neutron time-of-flight (ToF) spectroscopy, a conventional neutron scattering method. The evaluation of the respective recorded signals, which can be described by the intermediate scattering function I(Q, τ) (MIEZE) and the dynamic structure factor S(Q, E) (ToF), involves a Fourier transformation that requires detailed knowledge of the detector efficiency, instrumental resolution, signal background and range of validity of the spin–echo approximation. It is demonstrated that data obtained from pure water align well within the framework presented here, thereby extending the applicability of the MIEZE technique beyond the spin–echo approximation and emphasizing the complementarity of the two methods. Computational methods, such as molecular dynamics simulations, are highlighted as essential for enhancing the understanding of complex systems. Together, MIEZE and ToF provide a powerful framework for investigating dynamic processes across different time and energy domains, with particular attention required to ensure identical sample geometries for meaningful comparisons.
001044097 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001044097 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001044097 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044097 65027 $$0V:(DE-MLZ)SciArea-220$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
001044097 65017 $$0V:(DE-MLZ)GC-2002-2016$$2V:(DE-HGF)$$aInstrument and Method Development$$x0
001044097 693__ $$0EXP:(DE-MLZ)RESEDA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)RESEDA-20140101$$6EXP:(DE-MLZ)NL5S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eRESEDA: Resonance spin echo spectrometer$$fNL5S$$x0
001044097 693__ $$0EXP:(DE-MLZ)TOF-TOF-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)TOF-TOF-20140101$$6EXP:(DE-MLZ)NL2au-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eTOFTOF: Cold neutron time-of-flight spectrometer $$fNL2au$$x1
001044097 7001_ $$00000-0002-0066-0944$$aJochum, Johanna K.$$b1$$eCorresponding author
001044097 7001_ $$00000-0002-2492-3956$$aBender, Philipp$$b2
001044097 7001_ $$00000-0002-1028-3548$$aSpitz, Leonie$$b3
001044097 7001_ $$0P:(DE-HGF)0$$aWendl, Andreas$$b4
001044097 7001_ $$0P:(DE-Juel1)165580$$aFranz, Christian$$b5
001044097 7001_ $$00000-0002-9815-909X$$aBusch, Sebastian$$b6
001044097 7001_ $$aJuranyi, Fanni$$b7
001044097 7001_ $$00000-0001-7749-7965$$aPfleiderer, Christian$$b8
001044097 7001_ $$00000-0002-0007-4865$$aSoltwedel, Olaf$$b9$$eLast author
001044097 773__ $$0PERI:(DE-600)2020879-0$$a10.1107/S1600576725003620$$gVol. 58, no. 4$$n4$$p1$$tJournal of applied crystallography$$v58$$x0021-8898$$y2025
001044097 8564_ $$uhttps://juser.fz-juelich.de/record/1044097/files/uz5018.pdf$$yOpenAccess
001044097 909CO $$ooai:juser.fz-juelich.de:1044097$$popenaire$$popen_access$$pdriver$$pVDB:MLZ$$pVDB$$pdnbdelivery
001044097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200039$$aForschungszentrum Jülich$$b0$$kFZJ
001044097 9101_ $$0I:(DE-588b)4597118-3$$60000-0002-0066-0944$$aHeinz Maier-Leibnitz Zentrum$$b1$$kMLZ
001044097 9101_ $$0I:(DE-588b)36241-4$$60000-0002-0066-0944$$aTechnische Universität München$$b1$$kTUM
001044097 9101_ $$0I:(DE-588b)4597118-3$$60000-0002-2492-3956$$aHeinz Maier-Leibnitz Zentrum$$b2$$kMLZ
001044097 9101_ $$0I:(DE-588b)36241-4$$60000-0002-2492-3956$$aTechnische Universität München$$b2$$kTUM
001044097 9101_ $$0I:(DE-588b)4597118-3$$6P:(DE-HGF)0$$aHeinz Maier-Leibnitz Zentrum$$b4$$kMLZ
001044097 9101_ $$0I:(DE-588b)36241-4$$6P:(DE-HGF)0$$aTechnische Universität München$$b4$$kTUM
001044097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165580$$aForschungszentrum Jülich$$b5$$kFZJ
001044097 9101_ $$0I:(DE-588b)4597118-3$$60000-0002-9815-909X$$aHeinz Maier-Leibnitz Zentrum$$b6$$kMLZ
001044097 9101_ $$0I:(DE-588b)36241-4$$60000-0001-7749-7965$$aTechnische Universität München$$b8$$kTUM
001044097 9101_ $$0I:(DE-588b)4597118-3$$60000-0001-7749-7965$$aHeinz Maier-Leibnitz Zentrum$$b8$$kMLZ
001044097 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001044097 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001044097 9141_ $$y2025
001044097 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001044097 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-17
001044097 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001044097 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-17
001044097 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL CRYSTALLOGR : 2022$$d2024-12-17
001044097 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ APPL CRYSTALLOGR : 2022$$d2024-12-17
001044097 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-17$$wger
001044097 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-17
001044097 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001044097 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044097 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-17
001044097 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-17
001044097 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001044097 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-17$$wger
001044097 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001044097 920__ $$lyes
001044097 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001044097 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
001044097 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
001044097 980__ $$ajournal
001044097 980__ $$aVDB
001044097 980__ $$aUNRESTRICTED
001044097 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001044097 980__ $$aI:(DE-588b)4597118-3
001044097 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001044097 9801_ $$aFullTexts