
                   

COMMENT • OPEN ACCESS

Comment on ‘Electromagnetic lensing using the
Aharonov–Bohm effect’
To cite this article: Markus Lentzen 2024 New J. Phys. 26 118001

 

View the article online for updates and enhancements.

You may also like
Optical Aharonov–Bohm effect due to
toroidal moment inspired by general
relativity
A Besharat, M Miri and M Nouri-Zonoz

-

A random wave model for the
Aharonov–Bohm effect
Alexander J H Houston, Martin Gradhand
and Mark R Dennis

-

Demystifying the nonlocality problem in
Aharonov–Bohm effect
Kolahal Bhattacharya

-

This content was downloaded from IP address 134.94.122.118 on 29/07/2025 at 09:02

https://doi.org/10.1088/1367-2630/ad8c73
/article/10.1088/2399-6528/ab582a
/article/10.1088/2399-6528/ab582a
/article/10.1088/2399-6528/ab582a
/article/10.1088/1751-8121/aa660f
/article/10.1088/1751-8121/aa660f
/article/10.1088/1402-4896/ac0189
/article/10.1088/1402-4896/ac0189


New J. Phys. 26 (2024) 118001 https://doi.org/10.1088/1367-2630/ad8c73

New Journal of Physics

OPEN ACCESS

RECEIVED

26 July 2024

REVISED

28 August 2024

ACCEPTED FOR PUBLICATION

29 October 2024

PUBLISHED

8 November 2024

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

COMMENT

Comment on ‘Electromagnetic lensing using the Aharonov–Bohm
effect’
Markus Lentzen
Ernst Ruska Centre, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

E-mail: m.lentzen@fz-juelich.de

Keywords: electron optics, magnetic lens, magnetic vector potential, Aharonov–Bohm effect

Abstract
Recently, Schreiber et al (2024 New J. Phys. 26 043012) have presented the theory of an electron
lens acting through the Aharonov–Bohm effect in the field-free opening of a static toroidal
magnetic field. In this Comment, three key results of this theory are shown to be incorrect due to
six basic calculation errors. The errors are corrected, and three correspondingly modified key
results are derived. These results are discussed with respect to the hypothetical lens effect and the
underlying Aharonov–Bohm effect.

1. Introduction

Recently, Schreiber et al [1] have proposed a concept for an electron-optical lens, in which an electron beam
propagates through the field-free opening of a static toroidal magnetic field. It is claimed that the
hypothetical lens effect is caused by an Aharonov–Bohm effect [2] in the magnetic vector potential of the
torus opening. Three theoretical results are presented in [1] as evidence for the hypothetical lens effect: a
classical equation of motion, plots of numerically calculated classical trajectories, and plots of numerically
calculated phase profiles.

In this Comment it is shown that these key results are incorrect due to six basic calculation errors. The
errors, one in the use of differential calculus and five programming errors, are reported in the following three
sections. Then, modified key results are reported, which were obtained after correction of all errors. Finally,
the modified results are discussed with respect to the hypothetical lens effect [1].

Due to the nature of the errors, no specific physical theory is involved in the error analysis, based entirely
on the equations in the supplementary material of [1] and the scripts used for the numerical calculations [3].
A set of essential equations and instructions from one of the scripts that are central to the analysis are
reproduced in this Comment, avoiding the reproduction of large parts of the contents of [1] and [3]. It is,
however, recommended to place the supplementary material of [1] and the scripts [3] side by side and use the
following three sections as a guide to the analysis. In the following, ‘figure M1’ denotes figure 1 of the main
text [1], ‘figure S…’ and ‘(S…)’ a figure and an equation in the supplementary material of [1], respectively.

2. Classical equation of motion

In [1] a classical equation of motion for an electron in a field-free region is derived. Cylindrical coordinates r,
θ, z for radius, azimuth, and axial coordinate of the electron position are employed. The respective
components of the magnetic vector potential A are Ar, Aθ, Az. The result for the radial motion θ = const is
(S34),

p0r ′ ′

(1+ r ′2)3/2
= qr ′

∂Ar

∂r
, (1)

with p0 the constant kinetic momentum, q the electron charge, and a prime the derivative d/dz.
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The details of the derivation, which are not set out in [1], are shown now in order to check the result (1).
For the radial motion θ = const, with θ ′ = 0, the reduced refractive index (S32) is

nred = p0
√
1+ r ′2 + q(r ′Ar +Az) . (2)

Then, equation (S33)

d

dz

∂nred
∂r ′

=
∂nred
∂r

(3)

yields

p0r ′ ′

(1+ r ′2)3/2
= q

(
∂Az

∂r
− ∂Ar

∂z

)
(4)

through direct calculation of the partial and total derivatives

∂nred
∂r

= q

(
r ′
∂Ar

∂r
+

∂Az

∂r

)
, (5)

∂nred
∂r ′

= p0
r ′√

1+ r ′2
+ qAr, (6)

d

dz

r ′√
1+ r ′2

=
r ′ ′

(1+ r ′2)3/2
, (7)

dAr

dz
=

dr

dz

∂Ar

∂r
+

∂Ar

∂z
= r ′

∂Ar

∂r
+

∂Ar

∂z
. (8)

With the azimuthal component of the magnetic field B= rotA,

Bθ =
∂Ar

∂z
− ∂Az

∂r
, (9)

and Bθ = 0 due to the magnetic field vanishing outside the torus, equation (4) yields the radial equation of
motion

r ′ ′ = 0. (10)

The radial equation of motion (1) presented in [1] differs from equation (10) and therefore is evidently
incorrect. Since the details of the derivation are not shown in [1], the exact nature of the error leading to (1)
is unclear. The error most probably lies in the incorrect substitution

dAr

dz
=

∂Ar

∂z
(11)

of the total derivative (8), which leads to (1) if all other substitutions are made as above.

3. Numerically calculated classical trajectories

In [1] equation (3) is numerically solved for trajectories initially directed parallel to the z-axis, with the initial
values

r(z0) = r0, r ′ (z0) = 0, (12)

at an axial coordinate z0. Plots of numerically calculated sets of curved trajectories through the torus opening
of the lens are displayed in figure S2.

The respective numerical calculations in [1] were performed with the Mathematica script
‘ray-trajectories-torus.nb’ [3], which contains the following three errors.

Firstly, the function Blz, representing the corresponding component in equation (S22) of the model for
the magnetic vector potential (S19), exhibits a wrong additional factor r[z] in the denominator.

Secondly, the Mathematica functions EllipticK and EllipticE are called with the wrong argument kc (S23),
instead of k2c following the different convention for the argument k used in the functions (S24) and (S25).
Note: these contain a typographic error with the term sinθ ′ instead of the correct sin2θ ′.

Thirdly, the function nred, representing the reduced refractive index (2), exhibits the wrong term
√
1+ r ′

instead of the correct
√
1+ r ′2.

Through these errors, all sets of curved trajectories through the torus opening of the lens, presented in
[1], are incorrect.
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Table 1. Variables and corresponding signs in the MATLAB script ‘torus_calculations.m’ and their equivalents in the loop integral (13).
Wrong signs in bold.

Script variable Sign of sum Term in (13) Sign of integral in (13)

rpathbottom negative 1st positive
rpathtop positive 2nd negative
opticpath positive 3rd positive
zpath negative 4th negative

4. Numerically calculated phase profiles

In [1] phase profiles across the toroidal lens are determined using the loop integral (S26)

h̄

qe
∆φ r (r1) =

r1ˆ

r0

Ar (r,z1) dr−
r1ˆ

r0

Ar (r,z0) dr+

z1ˆ

z0

Az (r0,z) dz−
z1ˆ

z0

Az (r1,z) dz, (13)

with h̄ the reduced Planck constant and qe the electron charge. The rectangular loop has radial and axial
sides, between r0 and r1 and between z0 and z1, respectively. Plots of numerically calculated phase profiles
∆φ r are displayed in figures S6, M1(f) and (g).

The respective numerical calculations in [1] were performed with the MATLAB script
‘torus_calculations.m’ [3], which contains the following two errors.

Firstly, the radial sums calculated for rpathbottom and rpathtop, representing approximations of the first
and second integral in (13), respectively, receive wrong signs (table 1). The extensive error analysis revealing
the sign errors is shown in appendix A.

Secondly, an incorrect term Bpath, which contains a double sum approximating the integral

z1ˆ

z0

r1ˆ

r0

Bθ (r,z) drdz, (14)

is added to the value of the loop integral (13). The term shall replace that part of the integral in which the
loop runs through the toroidal magnetic field Bθ (S18), where the magnetic vector potential is not given by
equation (S19). Yet, through Stokes’ theorem (S6), the term (14) is equal to the value of the entire loop
integral (13). As a result, the large steps of the phase profiles at the radial positions of the torus are incorrectly
doubled in magnitude. This affects the display of all phase profiles in [1], which are normalised to the step
magnitude, so that in particular the magnified profiles, figures S6(e), (f) and M1(g), appear at one half of
their true magnitude.

Through these errors, all radial phase profiles across the toroidal lens, presented in [1], are incorrect.
Finally, it should be noted that the approximation of the integrals (13) by sums causes a tiny numerical

error dependent on the radial and axial step sizes deltar2D and deltaz2D, respectively. For the phase profiles
across the toroidal lens (figures S6, M1(f) and (g)), this error, determined through variation of the step sizes,
increases with the radial coordinate from zero at r/rl = 0 to 4.1× 10−5 at r/rl = 0.5, with rl the major radius
of the torus.

5. Modified results after correction of all errors

5.1. Correct classical equation of motion
The correct equation of motion is (10), which does not depend on the magnetic vector potential.

5.2. Correct classical trajectories
The correct trajectories fulfilling the correct radial equation of motion (10) and the initial conditions (12)
are evidently

r(z) = r0. (15)

They are invariably straight, run parallel to the z-axis at a constant distance r0, and are independent of the
kinetic momentum p0 (figure 1).
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Figure 1. Straight trajectories through the torus opening, directed parallel to the z-axis, with z the axial coordinate, r the radial
coordinate, and rl the major radius of the torus. The torus at z= 0, with minor radius rs = 0.444 rl, appears distorted due to the
different axial and radial scales.

Figure 2. Phase versus radial coordinate r across the torus opening, normalised to the phase step at the major radius rl of the
torus. (A) Wrong signs, correct magnitude. (B) Wrong signs, wrong magnitude. (C) Correct profile according to (13). (D) Wrong
signs, wrong magnitude, potential reversed. (E) Wrong signs, correct magnitude, potential reversed.

5.3. Correct phase profile
The correct phase profile according to (13) is flat across the torus opening, and the phase is vanishing,
independent of the orientation of the magnetic vector potential (figure 2, profile C). The profile was
calculated with the same parameters as in the MATLAB script ‘torus_calculations.m’ [3] used in [1], but with
the correct signs (table 1) and with the correct magnitude.

The impact of the sign errors (table 1) and the magnitude error related to the term (14) is illustrated
through the other phase profiles displayed in figure 2. The incorrect profiles (A) and (E), calculated with the
wrong signs, have positive and negative curvature, depending on the two opposite orientations of the
magnetic vector potential. Their magnitude is twice as large as that of the incorrect, curved profiles (B) and
(D), which correspond with the profiles displayed in figures S6(e), (f) and M1(g).

6. Discussion

The modified results, calculated after correction of all errors in [1], indicate that the electron beam
propagating through the field-free torus opening is not deflected by the magnetic vector potential. Since the
classical trajectories are straight (figure 1) and the phase profile is flat (figure 2, profile C), there is no
theoretical evidence for a lens effect.

The original results in [1], containing the calculation errors shown above, comprise curved classical
trajectories (figure S2) and curved phase profiles (figure S6, M1(f) and (g)). Therefore, they give the false
impression of electrons being deflected by the magnetic vector potential and of a respective lens effect.

Further, the phase (13) is vanishing across the opening (figure 2, profile C), which indicates that the
magnetic vector potential is conservative in the cylindrical region r< rl − rs of the torus opening. The
respective assumption in [1] of a non-conservative magnetic vector potential in the torus opening, which
leads to an Aharonov–Bohm effect [2], is obviously incorrect.

Finally, no other theoretical evidence is presented in [1] for the hypothetical lens effect.
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It remains to mention a contradiction in the application of Stokes’ theorem (S6) in [1] and [3]. On the
one hand it is argued in [1] that ‘Stokes’ theorem cannot actually be applied here due to the magnetic vector
potential being non-continuously differentiable when the whole system is considered.’ On the other hand,
Stokes’ theorem is explicitly used in the MATLAB script ‘torus_calculations.m’ [3] in the attempt to replace
that part of the integral (13) in which the loop runs through the toroidal magnetic field by the term (14), see
section 4. The contradiction is resolved through the usual convention of electromagnetic theory [4], see
appendix B, in which Stokes’ theorem is valid throughout, even across the step discontinuity of the magnetic
field.

7. Conclusions

The results of the theory in [1], namely the equation of motion (1), the numerically calculated trajectories
(figure S2), and the numerically calculated phase profiles (figures S6, M1(f) and (g)), are incorrect due to
calculation errors.

There is no theoretical evidence for the hypothetical lens effect [1], a non-conservative magnetic vector
potential, or an Aharonov–Bohm effect [2] in the field-free opening of a static toroidal magnetic field.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).
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Appendix A. Analysis of sign errors in the script ‘torus_calculations.m’

The analysis of the sign errors in the MATLAB script ‘torus_calculations.m’ [3] (section 4) is based on the
compilation of important script variables (table 2) and instructions (table 3), which are labelled below by
their line numbers. Central to the data structure of the script is a system of radial and axial indices, which
convert to radial and axial coordinates through the arrays r2D and z2D, respectively.

The correspondence of the sums in the script with the integrals in equation (13), compiled in table 1, is
determined in the following way. The sum in line #118 corresponds with the third integral, because the
constant radial index Nr2D/2+ 1 converts to r2D(Nr2D/2+ 1) and corresponds with the constant radial
coordinate r0 = 0 (table 2). Therefore, the lower and upper axial summation indices
lenstopind < lensbottomind, converting to z2D(lenstopind)< z2D(lensbottomind), correspond with the lower
and upper axial integration limits z0 < z1, respectively (table 2). Then, the sum in line #132 corresponds with
the second integral, because the constant axial index lenstopind corresponds with the constant axial
coordinate z0. Further, the sum in line #133 corresponds with the first integral, because the constant axial
index lensbottomind corresponds with the constant axial coordinate z1. Finally, the remaining sum in line
#119 corresponds with the fourth integral.

The signs of the sums (table 1) are determined without the explicit minus sign for the electron charge−qe
on the right-hand side of the instructions, in accordance with equation (13) where the electron charge qe
appears on the left-hand side. Then, the comparison of the second and fourth column of table 1 reveals the
sign errors of the terms rpathbottom and rpathtop.

Note: In lines #132 and #133 an incorrect step size deltaz2D, instead of deltar2D, is used for the radial
sums. The error has no effect in the numerical calculations in [1] only because the two values are chosen to
be equal.

Appendix B. Stokes’ theorem

In [1] it is argued that Stokes’ theorem (S6) is invalid in the present case, because the step discontinuity of the
magnetic field at the torus surface would cause discontinuous derivatives of the magnetic vector potential
there.

In the usual convention of electromagnetic theory [4], however, any step discontinuity can be understood
as a limit of a sequence of functions, each of which can be chosen to have continuous first-order derivatives
in approaching a step function. In the same way, throughout the limit process, all components of the
magnetic vector potential can be chosen to have continuous first-order partial derivatives at the torus
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Table 2. Terms and variables in the MATLAB script ‘torus_calculations.m’ and their equivalents in the loop integral (13).

Script term/variable Value Symbol Comment

qe 1.60217662× 10−19 e Elementary charge
qe =−e Electron charge in (13)

hbar 1.0545718× 10−34 h̄ Reduced Planck constant
pathint ∆φ r Phase value of the loop integral (13), rpathbot-

tom+ rpathtop+ opticpath+ zpath+ Bpath
Atmapr Ar Radial component of magnetic vector potential
Atmapz Az Axial component of magnetic vector potential
Btmaptheta Bθ Azimuthal component of magnetic field,

see (14)
Bpath see (14) Term causing the magnitude error, see

section 4
rl 900× 10−9 rl Major radius of the torus
rs 400× 10−9 rs Minor radius of the torus
Nr2D/2+ 1 1025 Constant radial index in sum for opticpath,

lower index in sums for rpathtop and
rpathbottom

rr Upper index in sums for rpathtop and
rpathbottom

r2D Array of radial coordinates
r2D(Nr2D/2+ 1) 0 r0 Constant radial coordinate of 3rd term in (13),

lower integration limit in 1st and 2nd term
in (13)

r2D(rr) r1 Constant radial coordinate of 4th term in (13),
upper integration limit in 1st and 2nd term
in (13)

deltar2D 3.515625× 10−9 dr Step size of radial coordinate
lenstopind 1 Constant axial index in sum for rpathtop, lower

index in sums for opticpath and zpath
lensbottomind 1400 Constant axial index in sum for rpathbottom,

upper index in sums for opticpath and zpath
z2D Array of axial coordinates
z2D(lenstopind) −4 rl z0 Constant axial coordinate of 2nd term in (13),

lower integration limit in 3rd and 4th term
in (13)

z2D(lensbottomind) 1.46484375 rl z1 Constant axial coordinate of 1st term in (13),
upper integration limit in 3rd and 4th term
in (13)

deltaz2D 3.515625× 10−9 dz Step size of axial coordinate

Table 3. Excerpts from the MATLAB script ‘torus_calculations.m’ for the case rr > Nr2D/2+ 1 corresponding with r1 > r0.

line instruction

118 opticpath=−qe/hbar∗sum(Atmapz(lenstopind:lensbottomind,Nr2D/2+ 1))∗deltaz2D;
119 zpath=−1∗−qe/hbar∗sum(Atmapz(lenstopind:lensbottomind,:),1)∗deltaz2D;
124 zpathtorusedge= zeros(1,length(r2D));
132 rpathtop(rr)=−qe/hbar∗sum(Atmapr(lenstopind,Nr2D/2+ 1:rr))∗deltaz2D;
133 rpathbottom(rr)=−1∗−qe/hbar∗sum(Atmapr(lensbottomind,Nr2D/2+ 1:rr))∗deltaz2D;
134 Bpath(rr)=−qe/hbar∗sum(sum(Btmaptheta(lenstopind:lensbottomind,Nr2D/2+ 1:rr)))∗deltaz2D∗deltar2D;
135 pathint= opticpath+ zpath+ rpathtop+ rpathbottom+ Bpath+ zpathtorusedge;

surface. Further, it should be noted that the idealisation of a step discontinuity does not play a role in real
experiments due to the finite extension of real charge and current distributions as causes for electromagnetic
potentials and fields.

With the convention [4], Stokes’ theorem (S6) is valid without restriction for the case of the toroidal
solenoid, even if the surface of integration is extended such that it cuts the torus surface. Therefore, the
criticism in [1] regarding Stokes’ theorem is unfounded in the present case.
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