001044113 001__ 1044113
001044113 005__ 20250912110139.0
001044113 0247_ $$2doi$$a10.1109/TNS.2025.3587945
001044113 0247_ $$2ISSN$$a0018-9499
001044113 0247_ $$2ISSN$$a1558-1578
001044113 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03029
001044113 0247_ $$2WOS$$aWOS:001555522300030
001044113 037__ $$aFZJ-2025-03029
001044113 082__ $$a620
001044113 1001_ $$0P:(DE-Juel1)156472$$aJokhovets, L.$$b0$$eCorresponding author
001044113 245__ $$aScintillator-based SiPM Detector: Improved Performance by Equalization of Pulse Arrival Times
001044113 260__ $$aNew York, NY$$bIEEE$$c2025
001044113 3367_ $$2DRIVER$$aarticle
001044113 3367_ $$2DataCite$$aOutput Types/Journal article
001044113 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756104253_1898
001044113 3367_ $$2BibTeX$$aARTICLE
001044113 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044113 3367_ $$00$$2EndNote$$aJournal Article
001044113 520__ $$aA desired temporal accuracy of scintillator-based detectors is less than 100 ps. In medical imaging, this is necessary for successful time-of-flight positron emission tomography (TOF-PET) measurements. In high-energy physics, the calorimeter time resolution must also be on the order of tens of picoseconds. In this work we describe a way to achieve such a high level of performance for a detector consisting of a monolithic scintillator that distributes light over several cells of an analog silicon photomultiplier (SiPM) array. Each of the cells is read and analyzed separately, applying a waveform sampling (WFS)technique combined with a nonlinear rise approximation (nLRA).Initially, due to a specific spatiotemporal distribution of photons in the scintillator as well as saturation and recovery effects inherent to SiPMs, the spread of arrival times deduced from signals of different cells can exceed 1 ns for the same array and the same event. To improve the timing performance we propose a method of equalization of arrival times for predominantly illuminated cells in the same SiPM array. This results in a coincidence time resolution (CTR) below 100 ps FWHM for a pair of identical detectors
001044113 536__ $$0G:(DE-HGF)POF4-622$$a622 - Detector Technologies and Systems (POF4-622)$$cPOF4-622$$fPOF IV$$x0
001044113 536__ $$0G:(DE-HGF)POF4-1121$$a1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112)$$cPOF4-112$$fPOF IV$$x1
001044113 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x2
001044113 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044113 7001_ $$0P:(DE-Juel1)162349$$aVan den Boom, J.$$b1$$ufzj
001044113 7001_ $$0P:(DE-Juel1)156247$$aFurletov, Sergey$$b2
001044113 7001_ $$0P:(DE-Juel1)164820$$aHarff, M.$$b3$$ufzj
001044113 7001_ $$0P:(DE-Juel1)131225$$aKulessa, P.$$b4$$ufzj
001044113 7001_ $$0P:(DE-Juel1)133929$$aRamm, M.$$b5$$ufzj
001044113 7001_ $$0P:(DE-Juel1)171480$$aRoth, C.$$b6$$ufzj
001044113 7001_ $$0P:(DE-Juel1)133936$$aSchlösser, M.$$b7
001044113 7001_ $$0P:(DE-Juel1)133944$$aStreun, M.$$b8
001044113 7001_ $$0P:(DE-Juel1)133954$$aWagenknecht, G.$$b9$$ufzj
001044113 7001_ $$0P:(DE-Juel1)142562$$aVan Waasen, S.$$b10
001044113 773__ $$0PERI:(DE-600)2025398-9$$a10.1109/TNS.2025.3587945$$gp. 1 - 1$$n8$$p 2956 - 2964$$tIEEE transactions on nuclear science$$v72$$x0018-9499$$y2025
001044113 8564_ $$uhttps://juser.fz-juelich.de/record/1044113/files/Postprint_handed_in.pdf$$yOpenAccess
001044113 909CO $$ooai:juser.fz-juelich.de:1044113$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001044113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156472$$aForschungszentrum Jülich$$b0$$kFZJ
001044113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162349$$aForschungszentrum Jülich$$b1$$kFZJ
001044113 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)156247$$a Thomas Jefferson National Accelerator Facility, Newport News, VA, USA$$b2
001044113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164820$$aForschungszentrum Jülich$$b3$$kFZJ
001044113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131225$$aForschungszentrum Jülich$$b4$$kFZJ
001044113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133929$$aForschungszentrum Jülich$$b5$$kFZJ
001044113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171480$$aForschungszentrum Jülich$$b6$$kFZJ
001044113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133936$$aForschungszentrum Jülich$$b7$$kFZJ
001044113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133944$$aForschungszentrum Jülich$$b8$$kFZJ
001044113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133954$$aForschungszentrum Jülich$$b9$$kFZJ
001044113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b10$$kFZJ
001044113 9131_ $$0G:(DE-HGF)POF4-622$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vDetector Technologies and Systems$$x0
001044113 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1121$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x1
001044113 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x2
001044113 9141_ $$y2025
001044113 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
001044113 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
001044113 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-28
001044113 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-28
001044113 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T NUCL SCI : 2022$$d2024-12-28
001044113 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
001044113 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
001044113 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-28
001044113 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044113 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-28
001044113 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-28
001044113 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
001044113 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
001044113 920__ $$lyes
001044113 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lIntegrated Computing Architectures$$x0
001044113 980__ $$ajournal
001044113 980__ $$aVDB
001044113 980__ $$aUNRESTRICTED
001044113 980__ $$aI:(DE-Juel1)PGI-4-20110106
001044113 9801_ $$aFullTexts