Hauptseite > Publikationsdatenbank > Scintillator-based SiPM Detector: Improved Performance by Equalization of Pulse Arrival Times > print |
001 | 1044113 | ||
005 | 20250912110139.0 | ||
024 | 7 | _ | |a 10.1109/TNS.2025.3587945 |2 doi |
024 | 7 | _ | |a 0018-9499 |2 ISSN |
024 | 7 | _ | |a 1558-1578 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-03029 |2 datacite_doi |
024 | 7 | _ | |a WOS:001555522300030 |2 WOS |
037 | _ | _ | |a FZJ-2025-03029 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Jokhovets, L. |0 P:(DE-Juel1)156472 |b 0 |e Corresponding author |
245 | _ | _ | |a Scintillator-based SiPM Detector: Improved Performance by Equalization of Pulse Arrival Times |
260 | _ | _ | |a New York, NY |c 2025 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1756104253_1898 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A desired temporal accuracy of scintillator-based detectors is less than 100 ps. In medical imaging, this is necessary for successful time-of-flight positron emission tomography (TOF-PET) measurements. In high-energy physics, the calorimeter time resolution must also be on the order of tens of picoseconds. In this work we describe a way to achieve such a high level of performance for a detector consisting of a monolithic scintillator that distributes light over several cells of an analog silicon photomultiplier (SiPM) array. Each of the cells is read and analyzed separately, applying a waveform sampling (WFS)technique combined with a nonlinear rise approximation (nLRA).Initially, due to a specific spatiotemporal distribution of photons in the scintillator as well as saturation and recovery effects inherent to SiPMs, the spread of arrival times deduced from signals of different cells can exceed 1 ns for the same array and the same event. To improve the timing performance we propose a method of equalization of arrival times for predominantly illuminated cells in the same SiPM array. This results in a coincidence time resolution (CTR) below 100 ps FWHM for a pair of identical detectors |
536 | _ | _ | |a 622 - Detector Technologies and Systems (POF4-622) |0 G:(DE-HGF)POF4-622 |c POF4-622 |f POF IV |x 0 |
536 | _ | _ | |a 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112) |0 G:(DE-HGF)POF4-1121 |c POF4-112 |f POF IV |x 1 |
536 | _ | _ | |a 5253 - Neuroimaging (POF4-525) |0 G:(DE-HGF)POF4-5253 |c POF4-525 |f POF IV |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Van den Boom, J. |0 P:(DE-Juel1)162349 |b 1 |u fzj |
700 | 1 | _ | |a Furletov, Sergey |0 P:(DE-Juel1)156247 |b 2 |
700 | 1 | _ | |a Harff, M. |0 P:(DE-Juel1)164820 |b 3 |u fzj |
700 | 1 | _ | |a Kulessa, P. |0 P:(DE-Juel1)131225 |b 4 |u fzj |
700 | 1 | _ | |a Ramm, M. |0 P:(DE-Juel1)133929 |b 5 |u fzj |
700 | 1 | _ | |a Roth, C. |0 P:(DE-Juel1)171480 |b 6 |u fzj |
700 | 1 | _ | |a Schlösser, M. |0 P:(DE-Juel1)133936 |b 7 |
700 | 1 | _ | |a Streun, M. |0 P:(DE-Juel1)133944 |b 8 |
700 | 1 | _ | |a Wagenknecht, G. |0 P:(DE-Juel1)133954 |b 9 |u fzj |
700 | 1 | _ | |a Van Waasen, S. |0 P:(DE-Juel1)142562 |b 10 |
773 | _ | _ | |a 10.1109/TNS.2025.3587945 |g p. 1 - 1 |0 PERI:(DE-600)2025398-9 |n 8 |p 2956 - 2964 |t IEEE transactions on nuclear science |v 72 |y 2025 |x 0018-9499 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1044113/files/Postprint_handed_in.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1044113 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)156472 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)162349 |
910 | 1 | _ | |a Thomas Jefferson National Accelerator Facility, Newport News, VA, USA |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)156247 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)164820 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131225 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)133929 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)171480 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)133936 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)133944 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)133954 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)142562 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-622 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Detector Technologies and Systems |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Energiesystemdesign (ESD) |1 G:(DE-HGF)POF4-110 |0 G:(DE-HGF)POF4-112 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Digitalisierung und Systemtechnik |9 G:(DE-HGF)POF4-1121 |x 1 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5253 |x 2 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE T NUCL SCI : 2022 |d 2024-12-28 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-28 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-28 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-4-20110106 |k PGI-4 |l Integrated Computing Architectures |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|