001044128 001__ 1044128
001044128 005__ 20250912110138.0
001044128 0247_ $$2doi$$a10.1021/acsmedchemlett.4c00517
001044128 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03035
001044128 0247_ $$2pmid$$a39967642
001044128 0247_ $$2WOS$$aWOS:001390582400001
001044128 037__ $$aFZJ-2025-03035
001044128 082__ $$a610
001044128 1001_ $$0P:(DE-HGF)0$$aLeveille, Alexandria N.$$b0
001044128 245__ $$aExploring Arylidene–Indolinone Ligands of Autophagy Proteins LC3B and GABARAP
001044128 260__ $$aWashington, DC$$bACS$$c2025
001044128 3367_ $$2DRIVER$$aarticle
001044128 3367_ $$2DataCite$$aOutput Types/Journal article
001044128 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756275409_9345
001044128 3367_ $$2BibTeX$$aARTICLE
001044128 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044128 3367_ $$00$$2EndNote$$aJournal Article
001044128 520__ $$aWe report the first structure–activity studies of arylidene–indolinone compound GW5074, which was reported as a ligand of autophagy-related protein LC3B. The literature has conflicting information on the binding affinity of this compound, and there is some debate regarding its use as a component of autophagy-dependent degrader compounds. We developed an AlphaScreen assay to measure competitive inhibition of the binding of known peptide ligands to LC3B and its paralog GABARAP. Eighteen analogs were synthesized and tested against both proteins. Inhibitory potencies were found to be in the mid- to high-micromolar range. 2D-NMR data revealed the binding site on GABARAP as hydrophobic pocket 1, where native peptide ligands bind with an aromatic side chain. Our results suggest that GW5074 binds LC3B and GABARAP with micromolar affinity. These affinities could support further exploration in targeted protein degradation, but only if off-target effects and poor solubility can be appropriately addressed.
001044128 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001044128 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044128 7001_ $$0P:(DE-HGF)0$$aSchwarzrock, Thomas$$b1
001044128 7001_ $$00009-0001-9855-5877$$aBrown, Hawley$$b2
001044128 7001_ $$0P:(DE-HGF)0$$aTrue, Bennett$$b3
001044128 7001_ $$0P:(DE-HGF)0$$aPlasencia, Joanet$$b4
001044128 7001_ $$0P:(DE-Juel1)144510$$aNeudecker, Philipp$$b5
001044128 7001_ $$0P:(DE-Juel1)181095$$aÜffing, Alina$$b6
001044128 7001_ $$0P:(DE-Juel1)131988$$aWeiergräber, Oliver H.$$b7
001044128 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b8
001044128 7001_ $$00000-0003-2878-6781$$aKritzer, Joshua A.$$b9$$eCorresponding author
001044128 773__ $$0PERI:(DE-600)2532386-6$$a10.1021/acsmedchemlett.4c00517$$gVol. 16, no. 2, p. 271 - 277$$n2$$p271 - 277$$tACS medicinal chemistry letters$$v16$$x1948-5875$$y2025
001044128 8564_ $$uhttps://juser.fz-juelich.de/record/1044128/files/2024_1125_Leveille_SI.pdf$$yPublished on 2025-01-06. Available in OpenAccess from 2026-01-06.
001044128 8564_ $$uhttps://juser.fz-juelich.de/record/1044128/files/2024_1217_leveille.pdf$$yPublished on 2025-01-06. Available in OpenAccess from 2026-01-06.
001044128 909CO $$ooai:juser.fz-juelich.de:1044128$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001044128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144510$$aForschungszentrum Jülich$$b5$$kFZJ
001044128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181095$$aForschungszentrum Jülich$$b6$$kFZJ
001044128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131988$$aForschungszentrum Jülich$$b7$$kFZJ
001044128 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b8$$kFZJ
001044128 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001044128 9141_ $$y2025
001044128 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001044128 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001044128 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
001044128 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-10
001044128 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001044128 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS MED CHEM LETT : 2022$$d2024-12-10
001044128 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10
001044128 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2024-12-10
001044128 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001044128 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001044128 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-10
001044128 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2024-12-10
001044128 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001044128 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001044128 920__ $$lyes
001044128 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001044128 980__ $$ajournal
001044128 980__ $$aVDB
001044128 980__ $$aUNRESTRICTED
001044128 980__ $$aI:(DE-Juel1)IBI-7-20200312
001044128 9801_ $$aFullTexts