001     1044128
005     20250912110138.0
024 7 _ |a 10.1021/acsmedchemlett.4c00517
|2 doi
024 7 _ |a 10.34734/FZJ-2025-03035
|2 datacite_doi
024 7 _ |a 39967642
|2 pmid
024 7 _ |a WOS:001390582400001
|2 WOS
037 _ _ |a FZJ-2025-03035
082 _ _ |a 610
100 1 _ |a Leveille, Alexandria N.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Exploring Arylidene–Indolinone Ligands of Autophagy Proteins LC3B and GABARAP
260 _ _ |a Washington, DC
|c 2025
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756275409_9345
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report the first structure–activity studies of arylidene–indolinone compound GW5074, which was reported as a ligand of autophagy-related protein LC3B. The literature has conflicting information on the binding affinity of this compound, and there is some debate regarding its use as a component of autophagy-dependent degrader compounds. We developed an AlphaScreen assay to measure competitive inhibition of the binding of known peptide ligands to LC3B and its paralog GABARAP. Eighteen analogs were synthesized and tested against both proteins. Inhibitory potencies were found to be in the mid- to high-micromolar range. 2D-NMR data revealed the binding site on GABARAP as hydrophobic pocket 1, where native peptide ligands bind with an aromatic side chain. Our results suggest that GW5074 binds LC3B and GABARAP with micromolar affinity. These affinities could support further exploration in targeted protein degradation, but only if off-target effects and poor solubility can be appropriately addressed.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schwarzrock, Thomas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Brown, Hawley
|0 0009-0001-9855-5877
|b 2
700 1 _ |a True, Bennett
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Plasencia, Joanet
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Neudecker, Philipp
|0 P:(DE-Juel1)144510
|b 5
700 1 _ |a Üffing, Alina
|0 P:(DE-Juel1)181095
|b 6
700 1 _ |a Weiergräber, Oliver H.
|0 P:(DE-Juel1)131988
|b 7
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 8
700 1 _ |a Kritzer, Joshua A.
|0 0000-0003-2878-6781
|b 9
|e Corresponding author
773 _ _ |a 10.1021/acsmedchemlett.4c00517
|g Vol. 16, no. 2, p. 271 - 277
|0 PERI:(DE-600)2532386-6
|n 2
|p 271 - 277
|t ACS medicinal chemistry letters
|v 16
|y 2025
|x 1948-5875
856 4 _ |y Published on 2025-01-06. Available in OpenAccess from 2026-01-06.
|u https://juser.fz-juelich.de/record/1044128/files/2024_1125_Leveille_SI.pdf
856 4 _ |y Published on 2025-01-06. Available in OpenAccess from 2026-01-06.
|u https://juser.fz-juelich.de/record/1044128/files/2024_1217_leveille.pdf
909 C O |o oai:juser.fz-juelich.de:1044128
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144510
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)181095
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131988
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-10
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS MED CHEM LETT : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21