001     1044146
005     20250729202320.0
024 7 _ |a 10.34734/FZJ-2025-03048
|2 datacite_doi
037 _ _ |a FZJ-2025-03048
041 _ _ |a English
100 1 _ |a Alia, Ahmed
|0 P:(DE-Juel1)185971
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Modelling, Data Analytics and AI in Engineering
|g MadeAI 2025
|c Porto
|d 2025-07-07 - 2025-07-11
|w Portugal
245 _ _ |a A Dynamic Distance Social LSTM for Predicting Pedestrian Trajectories in Crowded Environments
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1753769244_5604
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a This work introduces dynamic distance Social Long Short-Term Memory, a deep learning approach for pedestrian trajectory prediction in crowded environments. The approach integrates a new dynamic distance-based loss function into Social Long Short-Term Memory, enhancing collision avoidance without compromising displacement accuracy. The method is trained and evaluated on a heterogeneous density dataset and four homogeneous density datasets, covering various crowd-density levels. Experimental results show that the proposed approach outperforms baseline methods in reducing collision rates without decreasing displacement accuracy and, in most cases, even improving it.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 1
|u fzj
700 1 _ |a Seyfried, Armin
|0 P:(DE-Juel1)132266
|b 2
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1044146/files/Abstract.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/1044146/files/MADEAI25-Final.pptx
909 C O |o oai:juser.fz-juelich.de:1044146
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185971
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132077
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132266
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21