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Abstract

Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors
is a promising non-invasive method based on the inverse relationship between SM and
soil-emitted GR. In a previous study, we successfully estimated SM from environmental
gamma radiation (EGR) measured by a low-cost counter-tube detector. Since this detector
type provides a bulk GR response across a wide energy range, EGR signals are influenced
by several confounding factors, e.g., soil radon emanation, biomass. To what extent these
confounding factors deteriorate the accuracy of SM estimates obtained from EGR is not
fully understood. Therefore, the aim of this study was to compare the accuracy of SM
estimates from EGR with those from reference 40K GR (1460 keV) measurements which are
much less influenced by these factors. For this, a Geiger–Mueller counter (G–M), which is
commonly used for EGR monitoring, and a gamma spectrometer were installed side by
side in an agricultural field equipped with in situ sensors to measure reference SM and
a meteorological station. The EGRG–M and spectrometry-based 40K measurements were
related to reference SM using a functional relationship derived from theory. We found that
daily SM can be predicted with an RMSE of 3.39 vol. % from 40K using the theoretical
value of α = 1.11 obtained from the effective ratio of GR mass attenuation coefficients for
the water and solid phase. A lower accuracy was achieved for the EGRG–M measurements
(RMSE = 6.90 vol. %). Wavelet coherence analysis revealed that the EGRG–M measurements
were influenced by radon-induced noise in winter. Additionally, biomass shielding had a
stronger impact on EGRG–M than on 40K GR estimates of SM during summer. In summary,
our study provides a better understanding on the lower prediction accuracy of EGRG–M

and suggests that correcting for biomass can improve SM estimation from the bulk EGR
data of operational radioactivity monitoring networks.

Keywords: soil moisture monitoring; gamma radiation; confounding factors; wavelet
transform coherence

1. Introduction
Soil moisture (SM) is a key component of the terrestrial ecosystem, influencing hydrolog-

ical, ecological, and atmospheric processes [1]. It has a direct impact on local, regional, and
eventually global hydrological cycles by controlling water infiltration, storage, and movement
within the soil, which in turn determines how rainfall is distributed between groundwater
recharge and surface runoff [2–4]. Additionally, SM influences ecological processes by regu-
lating the complex interactions among water resources, energy fluxes, and biogeochemical
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cycles [5]. Through its influence on evapotranspiration, SM plays an essential role in the
exchange of energy between the land surface and atmosphere, thereby affecting weather
patterns and climate dynamics [6]. Hence, estimating the spatial and temporal dynamics
of soil moisture accurately is crucial. Several measurement techniques such as gravimetric
sampling, geophysical measurements, sensor networks, and air-borne and space-borne remote
sensing have been developed to estimate SM over a broad range of scales [1,7].

Measuring gamma radiation (GR) originating from the decay of natural soil radionu-
clides, such as 40K, 232Th, and 238U, is an emerging non-invasive technique for monitoring
the temporal variability of SM within a relatively large footprint (~100′s m2) [8,9]. The
measurement principle relies on the inverse relationship between SM and GR due to the
increased attenuation of GR emitted from soil with increasing SM content [10]. Airborne
GR measurements have been used to estimate spatial variation in SM content [11,12]. How-
ever, there are several challenges associated with obtaining SM estimates from airborne
GR measurements, such as the need to correct for variability in atmospheric vapor and
density [13]. In addition, the spatial distribution of soil radionuclides that determine the
background radiation is often not known [7]. Therefore, permanently installed ground-
based GR measurements are more promising than air-borne GR measurements in terms of
measurement accuracy and operational costs for monitoring field-scale SM dynamics [7].

Measurements of GR with permanently installed sensors have already been used to
monitor SM [8,14,15]. It was found that the GR signal emitted by 40K is a more reliable
source for SM estimation compared to other soil radionuclides, specifically 238U [8,9]. This
is because 40K decays by emitting gamma radiation at a single energy of 1460 keV and the
confounding factors (e.g., atmospheric conditions) have less influence on such high-energy
GR [9]. In contrast, 238U has a decay chain consisting of several radionuclides before ending
as a stable isotope, emitting 458 gamma rays with energies ranging between 20 and 3300
keV throughout the process [13]. Moreover, some radionuclides (intermediate or stable)
formed during the decay of 238U can be influenced by atmospheric conditions. As an
example, radon (222Rn), a gaseous progeny of the 238U decay series, can escape from the
soil into the atmosphere and decay further into the stable radionuclides 214Bi and 214Pb [13].
As a result, estimating SM from 238U GR intensity may be less accurate due to the additional
atmospheric GR contribution [9,11].

Gamma-ray spectrometers are widely used to measure GR emitted by natural soil
radionuclides [8,12,14,15]. The spectrometers contain scintillator material based on NaI (Tl),
CsI, or LaBr3 (Ce) crystals, which absorb gamma photons and emit light proportional to the
energy of absorbed photons. Therefore, spectrometers can provide information on both the
GR intensity and the energy of incident GR. By integrating energy-resolved measurements,
spectrometers can also provide information on the bulk environmental gamma radiation
(EGR) intensity. In addition, GR spectrometers are sensitive to low-energy gamma rays,
which facilitates the detection of extremely low concentrations of artificial nuclides [16].
However, spectrometric GR detectors are expensive and require maintenance for long-term
operation [16,17].

Geiger–Mueller (G–M) counters are a type of gaseous ionization GR detectors widely
used in EGR monitoring networks that have been established to provide early warning
for nuclear accidents [17–21]. Because these detectors are relatively cheap and robust,
they can be successfully operated for many years [16,17]. However, a major limitation of
G–M counters is that they only provide EGR measurements integrated over a wide energy
range (~0–8000 keV). Therefore, it is not possible to extract the GR intensity of a specific
radionuclide in a particular energy window (e.g., 40K GR intensity at 1460 keV) from the
EGR measurements. This limitation is linked to the measurement principle of G–M counters,
which use a low-pressure inert gas-filled tube. When ionized by incident radiation, the
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gas produces an output pulse that does not provide information about the energy of the
incident radiation [16]. Due to the different measurement principles, G–M counters have a
different energy sensitivity compared to scintillator-based spectrometers [16].

It is well known that EGR measurements are influenced by several confounding
factors since the signatures of all soil radionuclides are embedded in it [22,23]. As an
example, clear spikes in EGR time series were observed during and up to three hours after
precipitation [22,24]. This is related to rain washout of radon progenies leading to an abrupt
increase in EGR measurements [25]. Apart from atmospheric washout, EGR measurements
can also be affected by radon variability due to variable mixing and exchange processes
in the atmospheric boundary layer [26]. In addition to the contribution of GR emitted by
terrestrial radionuclides, secondary cosmic radiation (SCR) associated with the interaction
of primary cosmic radiation with the Earth’s atmosphere also significantly contributes to
the EGR measurements [22,24]. Variations in SCR can occur due to changes in atmospheric
pressure and incoming neutron intensity leading to fluctuations in EGR measurements
over time [23,24]. Another confounding factor, biomass, can increase inaccuracies in SM
estimates from EGR measurements by further attenuating the GR signal [15,24,27].

In a previous study, we obtained SM estimates from EGR measured by proportional
counter tube-based gaseous ionization GR detectors with a similar measurement principle
as G–M detectors [24]. The accuracy of the obtained SM estimates was 7–9 vol.%, which
is lower than for other in situ measurement techniques. Despite this relatively low ac-
curacy, the long-term availability of ERG data in Europe through the EURDEP network
motivates us to carry out further investigations to improve the interpretation of EGR mea-
surements and to facilitate SM analysis at the continental-scale using EURDEP data. In
our previous study, we already applied correction methods to account for atmospheric
radon washout and SCR variability, but the influence of other confounding factors such as
soil or atmospheric radon not associated with precipitation, biomass, and detector-specific
characteristics (e.g., energy sensitivity) was not yet investigated. In addition, it was difficult
to understand how the confounding factors affected the EGR measurements in our previous
experimental set-up, and to what extent these factors reduced the accuracy of SM estimates
derived from EGR measurements.

Within this context, the aim of the present study was to compare the accuracy of SM
estimates derived from low-cost G–M-based EGR (EGRG–M) and spectrometry-based reference
40K GR (1460 keV) measurements, which are less influenced by the confounding factors. To
better understand the influence of confounding factors on EGRG–M measurements, we used
additional spectral GR information and in situ measurements for data interpretation. The
remainder of this paper is organized as follows. First, we investigated the correlation of
EGRG–M measurements with spectrometry-based EGR (EGRS) measurements, which are
comparable to EGRG–M measurements, over different time scales to understand the detector-
specific characteristics of G–M counters such as energy sensitivity. Next, we investigated
the correlation of EGRS with 214Bi (which is an indicator of radon variability that is driven
by atmospheric processes but not related to atmospheric washout due to precipitation) and
40K to understand the variability of EGR caused by those radionuclides over different time
scales. In addition, we also investigated the correlation of SM with all GR measurements. For
analyzing the correlation between two time series, we used wavelet analysis technique as it is
a multi-resolution technique to examine localized variations in time-series data within the
time-frequency domain [28,29]. In a final step, we estimated SM from EGRG–M and 40K GR
measurements based on the functional relationship between reference SM and GR derived
from GR attenuation theory. Here, we also identified the results for the period when biomass
was present to assess the influence of biomass on EGRG–M and 40K GR signals. Finally, we
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compared the results of EGRG–M with reference 40K GR to evaluate how confounding factors
reduce the accuracy of SM estimates obtained from EGRG–M measurements.

2. Materials and Methods
2.1. Experimental Site

The experiment was conducted at the agricultural research station Selhausen (50.865◦ N,
6.447◦ E, 101 m above sea level) in western Germany. The station is part of the TERENO
(TERrestrial ENvironmental Observatories; [30]) and ICOS (Integrated Carbon Observation
System; [31]) research networks and falls within climate class Cfb (temperate maritime
climate zone). The mean annual temperature is 10.2 ◦C and the mean annual precipitation
is 714 mm. The soil is characterized by a silty loam texture with 1% organic carbon content.
More detailed information on this site can be found in Bogena et al. [32].

This study considered an observation period from February 2023 to March 2024 in
which winter wheat was the main crop with a growing season from October 2022 to July
2023. Due to a technical problem, the harvest of winter wheat adjacent to the measurement
footprint of the GR detectors was delayed and a late harvest was eventually conducted
in August 2023. After the harvest of winter wheat, a mix of cover crops was planted in
September 2023 and harvested at the end of January 2024. The harvesting process ensured
minimal soil disturbance as plant residues were left during harvesting. However, the soil
was disturbed once in September 2023, when it was ploughed before planting cover crops.
Plant height was measured at regular intervals of approximately 15–20 days throughout
the entire investigation period. A time window with high fresh biomass and dry biomass
(after ripening) was identified based on available crop information (i.e., growth stages,
plant height) to investigate the importance of the shielding effect of biomass.

2.2. Experimental Setup

The experimental setup consisted of a spectrometric GR detector (SARA, ENVINET
GmbH, Haar, Germany), a G–M detector (MIRA, ENVINET GmbH, Haar, Germany), five
reference SoilNet soil moisture stations [33], and an eddy covariance (EC) station with
meteorological sensors. The SARA detector uses scintillation material based on NaI crystals
to measure energy-resolved GR in the energy range of 30–3000 keV with an accuracy of
±10%. A two-step process was used to obtain radionuclide-specific GR intensity from
the measured GR spectrum [34]. First, the flux rate (number of incident photons over the
cross-sectional area of the detector) was calculated considering a specific energy window
of the GR spectrum. Subsequently, the GR intensity was calculated from the flux rate
using energy-dependent conversion coefficients. In the case of a radionuclide with several
gamma lines, such as 214Bi, all lines throughout the measured spectrum (e.g., at 609, 1120,
1764, 2204 keV) were considered and summarized to obtain the GR intensity. In the same
way, the bulk GR intensity or EGR intensity was calculated considering all the gamma
lines of the spectrum emitted from all ambient radionuclides in the given energy range
of the spectrometer. It should be noted that the SARA detector response is sensitive to
temperature change and can drift due to the aging of detector components causing the
same gamma-ray energy to appear at different positions (channels) in the spectrum over
time. Therefore, continuous and automatic energy stabilization is carried out for SARA
in real time using an active energy-stabilization algorithm which employs a temperature
sensor and a naturally occurring reference radionuclide such as 40K (1460.8 keV). Hence,
the GR response factor stays relatively stable in the energy range of about 700–3000 keV but
shows significant variation for low-energy GR below 500 keV (see the relative efficiency as
a function of gamma-ray energy in Figure A1a of Appendix A).
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The MIRA detector contains G–M counter tubes filled with inert gas at a low pressure
to which a high voltage is applied. The counter tubes detect bulk EGR using the ionization
effect, generating an output pulse for each detected ionization event regardless of the
gamma-ray energy, which is then counted. Two separate G–M counting tubes for low-
and high-GR-intensity measurements are incorporated in the MIRA detector to facilitate
a wide detection range of up to >10 Sv h−1. In this study, MIRA was used to measure
EGR intensity with a 10 min integration time and a temperature-dependent intrinsic
background compensation that is valid from −25 ◦C to 65 ◦C. The MIRA detector does
not need continuous energy calibration as the SARA detector does. Instead, the functional
calibration is based on the count rate response using a known test source (137Cs at 662 keV)
in a fixed geometry. Therefore, MIRA gives a linear response in the 30–1000 keV range with
a significant increase in sensitivity at energies above 1000 keV (Figure A1b). As both GR
detectors were installed at a height of 1 m above ground, it can be assumed that 95% of the
detected GR signals originated from an area with an approximate 7–15 m radius and 12–25
cm depth depending on GR energy [8,24].

The reference in situ SM was measured with SoilNet at five locations with a temporal
resolution of 15 min (Figure 1). Each of the SoilNet stations was equipped with eight
SMT100 sensors (Truebner GmbH, Neustadt, Germany). The sensors were installed in
pairs at depths of 2, 5, 10, and 20 cm and were assumed to represent the following depth
ranges: 0–3.5, 3.5–7.5, 7.5–15, and 15–25 cm, respectively. Additionally, the EC station was
also equipped with two additional SM sensors (CS616, Campbell Scientific Inc., Logan,
UT, USA), installed at a 2 cm depth parallel to each other representing SM measurements
at a 0–3.5 cm depth. The SM measured at different depths by all stations was averaged
horizontally to derive an average SM representative for each depth range. Since the vertical
distribution of the sensors was not uniform, the mean reference SM (θref), for the top 25 cm
soil within the measurement footprint of the GR detectors was obtained as follows:

θre f =
(SM 1 × d1 + SM2 × d2 + SM3 × d3 + SM4 × d4)

d1 + d2 + d3 + d4
(1)

where SM1, SM2, SM3, and SM4 are the average SM values over the depth intervals
0–3.5 cm, 3.5–7.5 cm, 7.5–15 cm, and 15–25 cm, respectively, and the variables d1, d2, d3, and
d4 represent the thickness of the corresponding soil layers in centimeters.

Figure 1. Site overview of the Selhausen TERENO/ICOS observatory. Insets show the experimen-
tal setup and the co-located gamma radiation (GR) detectors. Acronyms: TERENO—TERrestrial
ENvironmental Observatories; ICOS—Integrated Carbon Observation System.
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2.3. Data Filtering, Correction and Gap Filling

The EGR and 214Bi measurements require filtering for the washout of atmospheric
radon progenies during and three hours after precipitation [24]. The precipitation time
series throughout the whole investigation period was obtained from a nearby climate
station ~400 m northeast of the experimental site. Following Akter et al. [24], periods with
precipitation and up to three hours after precipitation were identified and excluded from
further analysis. No filter was used for 40K GR measurements as these measurements did
not show spikes in radiation associated with precipitation. The EGR measurements also
require correction for the contribution of SCR [24]. The long-term fraction of SCR in EGR
is assumed to be constant for the experimental site. However, atmospheric pressure and
incoming neutron intensity can cause short-term variations in SCR leading to variations in
EGR measurements [24]. Hence, for the purpose of this study, it is sufficient to correct the
EGR measurements for short-term SCR variability. The atmospheric pressure data were
obtained from the EC station situated next to the GR detectors. Incoming neutron intensity
data were obtained from the neutron monitor database (NMDB https://www.nmdb.eu/
nest/ (accessed on 12 October 2024)) for the closest station at the Jungfraujoch (JUNG,
Switzerland). We used the two time series to investigate the influence of short-term SCR
variability on the EGR measurements and corrected accordingly following Akter et al. [24]
without including the constant contributions of muon and neutron flux to the SCR.

The GR data were measured continuously without any gap throughout the whole
investigation period. However, data filtering for the removal of radon washout resulted
in a few short-time data gaps and those gaps were filled by linear interpolation. Four
of the SoilNet stations were removed at the end of July 2023 to enable crop harvest and
reinstalled at the beginning of September 2023 after ploughing and planting cover crops.
The resulting one-month data gap was filled using the SM time series measured by the
remaining SoilNet station installed near the GR detectors. To do so, a linear regression
relationship was established between the mean SM and the SM measurements from that
single station for each depth range. Since the plant height was measured biweekly, a linear
interpolation method was used to estimate daily plant height data.

2.4. Wavelet Analysis

Wavelet analysis is a multi-resolution technique used to explore localized variations
in a time series with a focus on the time-frequency space. It breaks down time-series
data into different time-frequency scales, allowing the signal to be represented as scaled
and shifted versions of the original wavelet [29]. By doing so, it enables the detailed
examination of changes in correlation and lag times between variables across different
time scales and identifies localized, intermittent periodic patterns [28]. Unlike traditional
mathematical approaches, such as Fourier Analysis, which assume processes are time-
invariant, wavelet analysis provides a more flexible approach by handling non-stationary
data [35]. More information on the background of wavelet analysis can be found in Torrence
and Compo [29], Grinsted et al. [28], and Weigand et al. [35].

Wavelet transforms can be divided into two classes: continuous wavelet transforms
(CWT) and discrete wavelet transforms (DWT). In this study, CWT was selected because
of its ability to extract features while effectively managing complex and noisy time-series
data [28,35]. We used the Morlet wavelet that is widely used in CWT [35,36] because it
provides a good balance between time and frequency localization [28]. As part of the
wavelet analysis, the wavelet transform coherence (WTC) was obtained. It is a localized
correlation coefficient that reveals not only when two CWTs are correlated, but also at
which frequencies. It allows for a more nuanced understanding of interactions over varying
timescales [28]. The WTC is often presented in a time-frequency plot called a scalogram,

https://www.nmdb.eu/nest/
https://www.nmdb.eu/nest/
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which shows time on the horizontal axis and frequency (or scale) on the vertical axis.
These frequencies represent different time scales, with lower frequencies corresponding to
longer-term trends (e.g., seasonal or annual trends), and higher frequencies reflecting short-
term variations (e.g., daily variations). The arrows in the scalogram represent the phase
relationship between two time series over time and frequency. Arrows pointing to the right
indicate that the two time series are in phase (positively correlated), while arrows pointing
to the left indicate they are in anti-phase (negatively correlated). Arrows pointing straight
up or down indicate a phase shift of −90◦ or +90◦, respectively, while diagonal arrows
represent intermediate phase differences between two time series. The color spectrum
in the scalogram represents the wavelet power or the strength of coherence (correlation)
between two time series at different times and frequencies, which can vary between 0 (no
coherence) and 1. A value of 0.6 is often used to determine a scale decorrelation length for
the Morlet wavelet [29]. The Cone of Influence (COI) in the scalogram marks the region
(near the edges of the plot) where results could be influenced by edge effects causing
distortion. Data outside the COI should be interpreted cautiously, as the results may be
less reliable. The wavelet analysis was performed using the Cross Wavelet and Wavelet
Coherence Toolbox in MATLAB R2024b (http://grinsted.github.io/wavelet-coherence/
(accessed on 27 July 2024)), which was developed by Grinsted et al. [28]. For more detailed
information on how to interpret the results of a wavelet analysis, the reader is referred to
Robinson et al. [36].

2.5. Soil Moisture Estimation

Both the 40K GR and EGRG-M measurements were calibrated against the mean SM
of the top 25 cm of soil. For this, a functional relationship derived from established GR
attenuation theory assuming homogeneous soil was used [37,38]:

GR
GRdry

=
1

1 + α
θρw
ρb

(2)

where θ is the SM in volumetric percentage (vol. %), GR is the measured 40K GR or EGRG-M

intensity, GRdry is the maximum 40K GR or EGRG-M intensity when θ = 0 vol. %, α is the
effective ratio of the GR mass attenuation coefficients for water and solid phases, ρw is
the density of water, and ρb is the dry bulk density of the soil. For the present study, ρb

was measured from soil samples of 30 cm length and 5 cm diameter obtained using a
HUMAX soil corer (Martin Bruch AG, Rothenburg, Switzerland). We collected three soil
cores within the measurement footprint of the GR detectors. Each core was subdivided into
six subsamples of 5 cm length and oven-dried at 105 ◦C for 24 h. The average ρb of the top
five samples of each core was used to calculate the mean ρb of the top 25 cm of soil.

For the 40K GR measurements at 1460 keV, the mass attenuation coefficients for the
solid and water phase are well known. Their ratio results in an α value of 1.11 [39], which
is in agreement with the findings of Baldoncini et al. [27]. The α value of 1.11 is only
valid for gamma rays within an energy range of 500–1500 keV [39]. Becker et al. [15]
found an α value of 0.63 for 40K GR measurements while using a full spectrum analysis for
SM estimation, suggesting that further research and measurements at additional sites are
required to establish appropriate values for α. As was already shown in Akter et al. [24],
the α-value of 1.11 is also not applicable for EGRG-M measurements that cover a broader
energy range. Therefore, we calibrated the α parameter only for the EGRG-M measure-
ments. More detailed information on calibrating EGR measurements can be found in
Akte et al. [24]. The remaining unknown parameter, GRdry, was calibrated for both the 40K
GR and EGRG-M measurements. After calibration, SM was estimated from the 40K GR and
EGRG-M measurements using a reorganized form of Equation (2).

http://grinsted.github.io/wavelet-coherence/
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To establish a relationship between 40K GR and SM, Becker et al. [15] also accounted
for additional site-specific hydrogen pools that attenuate GR signals such as lattice water
(hydrogen structurally bound within the crystal lattice of clay minerals) and soil organic
carbon (hydrogen physically or chemically bound to soil organic matter) in addition to
pore water. In this study, detailed information on lattice water and soil organic carbon
water was not available. However, lattice water and soil organic carbon water should be
approximately constant over a year [40]. Therefore, we did not consider corrections for
lattice water and soil organic carbon content here.

We also excluded the data collected during snow events and in the few days after
reinstalling the reference SM sensors following harvest from the analysis to reduce the
uncertainty of the SM estimates.

3. Results and Discussion
3.1. Analysis of Daily Gamma Radiation (GR) Time Series

The daily time series of precipitation, temperature, and GR measurements obtained
from the GR detectors MIRA (EGRG-M) and SARA (EGRS; GR from 40K and 214Bi), ref-
erencing in situ SM, plant height, and land cover are shown in Figure 2. The measured
GR data with a 10 min temporal resolution were noisy due to uncertainty in the count
rate. Moreover, different diurnal trends were observed for different kinds of GR measure-
ments, which also varied throughout the year (Figures A2 and A3). As an example, an
increase in 40K GR intensity was observed with an increase in temperature, peaking at
midday during the summer (Figure A2). This temperature-dependent daily cycle could
be a consequence of temperature-dependent SM changes during dry summer days. With
the increase in temperature, SM decreases due to evaporation leading to an increase in
40K GR intensity during the day. In agreement with this finding, Amestoy et al. [11] also
reported a pronounced diurnal cycle of 40K GR intensity possibly related to the diurnal
cycle of SM. It is interesting to note that a small time-lag between the daily 40K GR intensity
and temperature can occasionally be observed (Figure A2). This delay can be attributed
to the depth-dependent changes in SM during evaporation, where the near-surface soil
dries out quickly on dry summer days due to evaporation, but deeper parts of the soil
dry out more slowly. In contrast, the increase in 40K GR intensity begins as soon as the
topsoil layer starts to dry [11]. However, it should be noted that careful consideration
is required when interpreting diurnal SM variations, as apparent diurnal SM variations
may result from temperature effects on sensor electronics. Therefore, future studies with
co-located spectrometers from different manufacturers are required to confirm that the
observed changes in 40K GR intensity are related to actual changes in the soil.

On several cloud-free summer days, EGR measurements showed an increase during
the night followed by a sharp decrease after sunrise (Figure A3). This is attributed to
atmospheric temperature inversion layers that retain radon and radon progenies during
the night which leads to an increase in EGR. After sunrise, surface warming destroys
these inversion layers [26], which leads to a decrease in EGR [41,42]. To minimize the
measurement uncertainties associated with short integration times (i.e., hourly), a daily
mean value smoothed with a three-day rolling mean filter was used for GR measurements
in the remainder of this study. Similarly, the reference SM and temperature measurements
were averaged to create a daily time series.

Table 1 presents summary statistics of the daily GR time series. Although the coefficient
of variation for EGRG–M and EGRS measurements were found to be similar, the mean
EGRG–M is higher than the mean EGRS (difference of 18 nSv h−1), which is in agreement
with the findings of Casanovas et al. [34]. The reason for this discrepancy could be that
the G–M detectors generally respond more strongly to GR above >662 keV because they
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are calibrated with a 137Cs source [34]. For the radionuclide-specific GR measurements of
SARA, the coefficient of variation was higher compared to the EGR measurements.

Figure 2. Daily time series of (a) precipitation, (b) temperature, (c) environmental gamma radia-
tion measured by the MIRA detector (EGRG–M), (d) environmental gamma radiation measured by
the SARA detector (EGRS), (e) gamma radiation (GR) from 40K measured by the SARA detector,
(f) gamma radiation (GR) from 214Bi measured by the SARA detector, (g) reference soil moisture (Ref.
SM), (h) plant height, and (i) crop rotation. All the data are shown in daily resolution except rain
(10 min) and plant height (weekly/biweekly). The beige areas indicate the periods with crops, the
dark green area indicates the period with high fresh biomass and the light green area indicates the
period with dry biomass (after ripening, winter wheat crops lost water and dried almost completely
before harvest). The vertical red lines indicate periods with discrepancies between EGRG–M and
EGRS measurements.

The EGRG-M measurements were largely consistent with EGRS measurements for most
of the time (Figure 2c,d). A scatter plot between measurements of both detectors corrobo-
rates this consistency and results in a Pearson correlation coefficient of 0.91 (Figure A4).
However, there are a few time windows where the dynamic variations in both types of
measurements were different (highlighted in Figure 2c,d). Since the EGR measurements
consist of gamma rays emitted from all radionuclides present in the environment, the
contribution of SCR is also embedded in it [43]. Changes in atmospheric pressure and
incoming neutron intensity lead to the short-term variation in SCR [23,24]. Therefore, it
was expected that the EGR measurements would be negatively correlated with atmospheric
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pressure and positively correlated with incoming neutron intensity [23,24]. In this study,
the EGRG-M measurements showed a weak negative correlation with atmospheric pres-
sure (r = −0.28) and no correlation with incoming neutron intensity (r = 0.09). The EGRS

measurements showed no correlation with atmospheric pressure and incoming neutron
intensity. This finding aligns with the fact that SCR significantly contributes to EGR at low
energies (<300 keV) [44] and high energies (≥3000 keV) [45]. The contribution of SCR is
lower for energies between 300 and 3000 keV, where the spectrometric monitoring system
operates. Therefore, the minor discrepancies between the two types of GR detectors high-
lighted in Figure 2 may be attributed to differences in SCR contribution to the EGRG-M and
EGRS measurements. Based on this analysis, the EGRG-M measurements were corrected for
short-term SCR variability caused by atmospheric pressure and incoming neutron intensity
and are referred to as EGRG-M′ from here on. The EGRS measurements were not corrected.

Table 1. Summary statistics of daily gamma radiation (GR) time series.

Measurements Mean
[nSv h−1]

Maximum
[nSv h−1]

Minimum
[nSv h−1]

Coefficient
of Variation

EGRG–M
1 92.98 100.76 87.12 0.032

EGRG-M′ 2 91.71 99.49 86.66 0.031
EGRS

3 75.18 82.76 70.84 0.038
GR from 40K 4 10.17 12.04 9.20 0.073

GR from 214Bi 5 6.11 7.82 5.43 0.075
1 EGRG–M, environmental gamma radiation measured by the MIRA detector; 2 EGRG–M′ , corrected environmental
gamma radiation measured by the MIRA detector; 3 EGRS, environmental gamma radiation measured by the
SARA detector; 4 GR from 40K, gamma radiation from 40K radionuclide measured by the SARA detector; 5 GR
from 214Bi, gamma radiation from 214Bi radionuclide measured by the SARA detector.

3.2. Wavelet Coherence Analysis

The WTC plot in Figure 3a shows the correlation between EGRG-M and EGRS mea-
surements for different time frequencies. The correlation between the two types of mea-
surements is unclear at the hourly time scale due to the high uncertainty in the count
rate of the hourly data. However, a distinct positive correlation between the time series
was observed on a daily time scale, specifically during the summertime (i.e., red arrows
between a period of 16–32 h from May 2023 to August 2023 in Figure 3a). Between Novem-
ber 2023 and March 2024, this correlation was barely observed. The time-series data of
those two types of measurements in Figure 3b also confirm that the discrepancies between
them were mainly observed during spring- and wintertime (March 2023 to May 2023;
November 2023 to March 2024). The consistency of the EGRG-M and EGRS measurements
improved after correction for short-term SCR variability (EGRG-M′ ), specifically during the
springtime (March 2023 to May 2023, light gray shaded area in Figure 3d). The Pearson
correlation coefficient with EGRS also improved from 0.91 to 0.96 when daily EGRG-M′

measurements were used (Figures A4 and A5). At the same time, it is also evident that
some discrepancies remained, especially during wintertime (November 2023 to March
2024, Figure 3d). After the unwanted noise due to SCR was removed, the EGRG-M′ and
EGRS measurements showed similar variability in GR albeit with a different magnitude.
Consequently, the correlation between the two types of measurement improved for longer
time periods between November 2023 and March 2024 (Figure 3c).

In a next step, the different types of GR measurements obtained from MIRA (EGRG–M′)
and SARA (EGRS; GR from 40K and 214Bi) detectors were used to assess their coherence with
the reference SM using WTC analysis (Figure 4). As expected, an anticorrelation between
reference SM and different types of GR measurements was observed. In the WTC plots,
the anticorrelation was not very distinct at the daily time scale but became more evident at
the weekly or biweekly time scales (128 to 512 h). The GR measurements from 40K showed
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the highest correlation with SM (Figure 4c), while the lowest correlation was obtained for
214Bi (Figure 4d). The coherence spectra for 40K indicated a weak correlation between GR
measurements from 40K and SM for the period between October 2023 and March 2024. The
SM did not vary much during that period due to low evapotranspiration and the excess
supply of precipitation (Figure 2a,b,g). This resulted in a weak correlation between SM and
GR measurements from 40K in this period. A similar correlation trend over time was observed
for EGRS measurements, although the coherence of SM with EGRS measurements was weaker
than that with 40K GR measurements (Figure 4a,c). No distinct differences were visible in the
correlation of SM with EGRS and EGRG–M′ measurements (Figure 4a,b).

 

Figure 3. The WTC analysis results showing correlation between MIRA and SARA detectors in terms
of environmental gamma radiation measurements: (a,c) show WTC plots before and after correcting
MIRA measurements, respectively, across different time frequencies; (b,d) present the corresponding
daily time series. WTC, wavelet transform coherence; EGRG–M, environmental gamma radiation
measured by the MIRA detector; EGRG–M′ , corrected environmental gamma radiation measured by
the MIRA detector; EGRS, environmental gamma radiation measured by the SARA detector. The
time windows highlighted by light gray and navy blue show the periods with discrepancies between
the two types of gamma radiation detectors. In the WTC plots, the orientation of the red arrows
indicates how two time series are related in time and frequency: right-pointing arrows indicate
positive correlation, left-pointing arrows indicate negative correlation, straight up- or down-pointing
arrows indicate a phase shift of −90◦ or +90◦, respectively, and diagonal arrows indicate intermediate
phase differences between two time series. The color spectrum shows correlation strength, with blue
indicating weak and yellow indicating strong correlation.
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Figure 4. The WTC analysis results showing the correlation between reference soil moisture (SM)
and different types of gamma radiation (GR) measurements obtained from both detectors: (a) EGRS,
(b) EGRG–M′ , (c) 40K, and (d) 214Bi. WTC, wavelet transform coherence; EGRS, environmental gamma
radiation measured by the SARA detector; EGRG–M′ , corrected environmental gamma radiation
measured by the MIRA detector; 40K, GR from 40K radionuclide measured by the SARA detector;
214Bi, GR from 214Bi radionuclide measured by the SARA detector. The orientation of the red arrows
indicates how two time series are related in time and frequency: right-pointing arrows indicate
positive correlation, left-pointing arrows indicate negative correlation, straight up- or down-pointing
arrows indicate a phase shift of −90◦ or +90◦, respectively, and diagonal arrows indicate intermediate
phase differences between two time series. The color spectrum shows correlation strength, with blue
indicating weak and yellow indicating strong correlation.

The coherence between different types of GR measurements obtained from the SARA
detector was investigated to understand the influence of contributory radionuclides on
EGR over time, and ultimately to better interpret the dependency of EGR on SM variations
(Figure 5). In general, EGRS showed a strong positive correlation with 40K and 214Bi GR
measurements, particularly on the weekly time scale (128 to 256 h, Figure 5a,c). However,
the coherence varied considerably with time. As an example, 40K GR intensity showed
strong correlation with EGRS during summertime and no correlation in wintertime on the
weekly time scale, specifically from November 2023 to March 2024. As discussed earlier,
the variability in SM during wintertime was limited. This likely led to minimal variation
in 40K GR measurements, which in turn may have contributed to the lack of correlation
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between EGRS and 40K during that period. Interestingly, 214Bi GR intensity showed stronger
correlation with EGRS during wintertime, which is also apparent in the daily time series
(Figure 5c). This clearly suggests that 214Bi is an important contributor for EGR variability
during the wintertime (February to March 2023 and November 2023 to March 2024). Given
that 214Bi is a well-known radon progeny, the observed difference seems to be related to
how the near-surface radon concentration was affected by complex soil and atmospheric
processes. Although the time series were filtered for atmospheric radon-washout during
and three hours after rain, it is well known that the near-surface radon concentration is
higher and more variable in wintertime [26,46]. This is related to the reduced vertical
mixing of radon in cold and cloudy daytime atmospheric boundary layers [26]. In addition,
radon can be trapped in the soil during snow and ground frost events due to a substantial
reduction in the diffusion coefficient for frozen soils [47]. Consequently, it may lead to
increased radon exhalation rates from the soil if the temperature suddenly rises after snow
or ground frost melting [48]. In agreement with this, 214Bi GR intensity for the current
study increased sharply following a sudden rise in air temperature, which occurred after a
longer period of temperatures below 0 ◦C (see the time windows right after the ground
frost event from 26 February to 9 March 2023 and the snow event from 11–22 January 2024
in Figure 2b,f). Apart from snow or ground frost events, the soil is generally wet during
wintertime (November 2023 to March 2024 in Figure 2f). Therefore, radon exhalation from
the soil may have been limited after rainfall due to reduced diffusion [49]. As a result,
radon exhalation from the soil could occur with a delay, leading to greater variability in
EGR during wintertime.

3.3. Influence of Confounding Factors on Soil Moisture Estimation

To investigate the influence of confounding factors on SM estimates from EGRG–M′

measurements, we calibrated both the EGRG–M′ and reference 40K GR (peak intensity at
1460 keV) measurements against reference SM using Equation (2) (Figure 6). The mean ρb for
the top 25 cm soil was determined to be 1.2 g cm−3. Using the α-value of 1.11 derived from
GR attenuation theory, we achieved a good fit for 40K GR using a value of 12.90 nSv h−1

for the parameter GRdry. The fitted relationship was used to predict SM from 40K GR
measurements, which resulted in an RMSE of 3.39 vol. %. Becker et al. [15] reported
an RMSE of 4.2 vol. % for estimating SM from 40K full spectral measurements using a
fitted α-value of 0.63. The resulting RMSE values are on par with those reported for other
field-scale soil moisture estimation methods, such as cosmic ray neutron probes with an
RMSE of approximately 3 vol. % [40] and electromagnetic induction with an RMSE of
2–5 vol. % [50,51].

As shown in Akter et al. [24], the variable α needs to be estimated along with the
variable GRdry for EGRG–M′ measurements because they provide a GR response integrated
over a wide energy spectrum. The fitted parameters were GRdry = 99.86 nSv h−1 and α =
0.37 for the present study. The corresponding RMSE for SM estimation using the EGRG–M′

measurements was 6.90 vol. %. This result is consistent with the findings of Akter et al. [24]
where values for α ranged between 0.2 and 0.3 and the RMSE value ranged between 7
and 9 vol. %. The increased uncertainty in SM predictions from EGRG–M′ measurements
relative to reference 40K GR (1460 keV) measurements can be attributed to the influence of
confounding factors, as discussed below.
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Figure 5. The results of the WTC analysis showing correlation between different types of gamma
radiation (GR) measurements obtained from the SARA detector across different time frequencies.
Each subplot includes the WTC plot (left) and corresponding daily time series (right) for the following
pairs: (a) EGRS and 40K, (b) EGRS and 214Bi, and (c) 40K and 214Bi measurements. WTC, wavelet
transform coherence; EGRS, environmental gamma radiation obtained from the SARA detector;
40K, GR from 40K radionuclide measured by the SARA detector; 214Bi, GR from 214Bi radionuclide
measured by the SARA detector. The orientation of the red arrows indicates how two time series
are related in time and frequency: right-pointing arrows indicate positive correlation, left-pointing
arrows indicate negative correlation, straight up- or down-pointing arrows indicate a phase shift of
−90◦ or +90◦, respectively, and diagonal arrows indicate intermediate phase differences between two
time series. The color spectrum shows correlation strength, with blue indicating weak and yellow
indicating strong correlation.
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Figure 6. Comparison of the accuracy of SM estimation obtained from EGRG–M′ and 40K measure-
ments. SM, soil moisture; EGRG–M′ , corrected environmental gamma radiation measured by the
MIRA detector; 40K, gamma radiation from 40K radionuclide measured by the SARA detector; α,
the effective ratio of gamma-ray mass attenuation coefficients for water and solid phases. The dark
green datapoints represent the period with fresh biomass and the light green datapoints represent the
period with dry biomass.

One of the possible factors affecting the accuracy of the soil water content measure-
ments from GR measurements is aboveground biomass [15,27]. Figure 6 shows that 40K
GR measurements in the presence of biomass are consistently lower for a given SM. This
indicates that aboveground biomass causes additional attenuation of GR signal. However,
the additional attenuation of 40K GR signal was not clearly evident during the period with
dry biomass. This is attributed to the size of hydrogen pool in fresh and dry biomass. The
winter wheat canopy contains ~80% water during the growth stage, which significantly
decreases as the plant matures and is reduced to 30–40% at maturity [52]. Therefore, the
higher hydrogen content in fresh biomass caused greater attenuation of the 40K GR signal
compared to dry biomass. This finding is in agreement with Baldoncini et al. [27], who col-
lected tomato plant samples at four different maturity stages using a destructive sampling
method. They estimated biomass water content through gravimetric analysis and applied
a linear fit to represent biomass water content throughout the entire growing season. Based
on this, they developed a biomass correction factor for 40K GR measurements by modeling
biomass water content of the tomato plant as an equivalent water layer above the soil
surface and performing Monte Carlo simulations with a progressively increasing water
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layer thickness. Becker et al. [15] also used the same method but they additionally consid-
ered dry biomass to calculate the biomass-equivalent water layer above the soil surface
to account for the presence of maize and soybean during the measurement period. The
presence of biomass attenuated the signal more strongly in case of EGRG–M′ measurements
as compared to the 40K GR measurements. Consequently, excluding the period with fresh
biomass from the analysis led to a substantial improvement in the SM predictions from
EGRG–M′ (RMSE reduced from 6.90 to 4.93 vol. %) (Figure A6). This stronger effect on
EGRG–M′ is likely due to the considerable fraction of GR with low energy measured by the
MIRA detector, as also indicated by the low value of α = 0.37 as compared to α = 1.11 for
40K GR measurements. Based on the results presented in this study, it can be concluded
that low-energy GR is more strongly attenuated by biomass as compared to high-energy
GR. Both biomass water content and dry biomass are required to understand the shielding
effect of biomass on EGRG–M′ measurements.

In addition to biomass, detector-specific characteristics, such as measured energy
range and energy sensitivity, may also have contributed to the higher uncertainty in SM
predictions from the EGRG–M′ measurements. For example, we obtained more accurate
SM estimates using EGR measurements from the SARA detector (EGRS) compared to
that of the MIRA detector. In particular, the calibrated α value shifted from 0.37 to 0.53
and the RMSE reduced from 6.90 to 4.32 vol. % when EGRS measurements were used
instead of EGRG–M′ measurements (Figures 6 and A7). The more advanced SARA detector
provides EGR measurements within the energy range of 500–3000 keV. Therefore, the EGRs

measurements of this detector were free from noise related to high-energy gamma rays
(>3000 keV). Moreover, SARA provides a more reliable response in the energy range of
typical natural soil radionuclides, since the system was calibrated using a 40K source (see
Figure A1). On the other hand, the MIRA detector measured a considerable amount of
low-energy gamma rays (<500 keV) and was also affected by high-energy gamma rays
(>3000 keV). Thus, SM can be estimated with a 2.6 vol. % lower prediction uncertainty
using EGRS measurements than EGRG–M′ measurements.

Gamma radiation emitted from the radionuclide 214Bi can be used as proxy for
radon. The WTC analysis revealed a correlation between 214Bi and EGRG–M′ measure-
ments throughout the entire investigation period, which may also explain the lower SM
prediction accuracy from EGRG–M′ measurements compared to 40K GR measurements.
Whereas the SM estimates from 40K measurements are hardly affected by radon-induced
GR as only one energy channel (1460 keV) was used for the analysis, and GR from both
40K and 214Bi are embedded in the EGRG–M′ measurements. The WTC analysis showed
that the 214Bi signal explained part of the EGRG–M′ variations during wintertime. There-
fore, we assume that radon-induced noise influenced EGRG–M′ measurements and is also
partly responsible for the increased uncertainty in SM predictions. It should be noted
that this radon-induced noise influenced the MIRA detector more compared to the SARA
detector. As discussed earlier, the MIRA detector is more sensitive to high-energy GR
(>1000 keV) where 214Bi emits gamma rays (1700–2200 keV, [53]). The higher magnitude
of EGRG–M′ measurements during wintertime relative to EGRS measurements (Figure 3d)
also supports this finding. Consequently, the scattering of the data was more prominent for
EGRG–M′ measurements compared to the EGRS measurements during wintertime when
214Bi made a high contribution to EGR (see the datapoints representing 25–40 vol. % SM in
Figures 6 and A7).

Lastly, the higher uncertainty in the EGRG–M′ -based model can also be partially at-
tributed to the calibrated α parameter in comparison to the 40K GR-based model where the
α parameter is known. In the low-energy range, the α value changes sharply with small
variations in gamma-ray energy which is not the case in the high-energy range (see Figure
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S1 in Akter et al. [24]). For example, the α values corresponding to gamma-ray energies of
30, 40, and 50 keV are 0.37, 0.53, and 0.67, respectively, while for high-energy gamma rays
(>500 keV), the α value is approximately 1.11 [39]. In the present study, the sensitivity of
the α parameter also influences the RMSE of the EGRG–M′ -based SM prediction model, as
the RMSE shifts from 6.90 to 5.63 vol. % when the calibrated α parameter changes from
0.37 to 0.50.

4. Conclusions
In this study, we compared the accuracy of soil moisture (SM) estimates derived from

environmental gamma radiation measured by a low-cost Geiger–Mueller (G–M) counter-
based detector (EGRG–M′ ) and gamma radiation from the decay of 40K measured by a co-
located gamma spectrometer. For a better understanding of confounding factors responsible
for higher SM prediction error and better interpretation of EGRG–M′ measurements, we also
analyzed EGRS (comparable to EGRG–M′ but derived for spectral measurements) and GR
from 214Bi (as a proxy for radon-induced noise). Wavelet coherence analysis on daily GR
time series revealed that EGRG–M′ measurements captured distinct changes in terrestrial
radiation related to SM variability during summertime. The weak correlation between
these two variables in wintertime was attributed to soil processes (i.e., wet soil with limited
SM variability) and the influence of radon-induced noise in GR measurements. This factor
was related to higher near-surface radon concentrations, driven by reduced vertical mixing
in the atmosphere as well as variable exhalation from the soil, to which EGRG–M′ was
more sensitive. Another confounding factor, biomass hydrogen content, also affected the
EGRG–M′ measurements. The reference 40K GR measurements were not influenced by
radon-induced noise, and less affected by biomass compared to EGRG–M′ measurements.
Consequently, we achieved a good fit to the data using the theoretically derived value of
1.11 for the α parameter in estimating SM from the 40K GR measurements. The resulting
R2 was 0.88 and the RMSE for predicting SM was 3.4 vol. %. In future studies, it will be
explored whether biomass corrections can further improve this accuracy. On the other
hand, the higher influence of confounding factors on the EGRG–M′ measurements resulted
in a higher prediction error of 6.9 vol. % (increase of 3.5 vol. %). To improve accuracy,
radon-induced noise, detector-specific energy sensitivity, and biomass effects should be
addressed. However, this can be challenging in the context of utilizing bulk EGR data from
operational radioactivity monitoring networks for large-scale SM monitoring. However,
an additional correction for bulk EGR data to account for GR attenuation by biomass
following the approach of Baldoncini et al. [27] and Becker et al. [15] may be feasible,
provided biomass hydrogen content data are available from field measurements or satellite
observations. This will be explored in a follow-up study. In summary, this study enhanced
our understanding of how confounding factors influence bulk EGR measurements in the
context of SM estimation, and to what extent this leads to reduced prediction accuracy.
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Abbreviations
The following abbreviations are used in this manuscript:

SM Soil moisture
GR Gamma radiation
SCR Secondary cosmic radiation
EGR Environmental gamma radiation
EGRG–M Environmental gamma radiation measured by the MIRA detector (Geiger–Mueller)

EGRG–M′
Environmental gamma radiation measured by the MIRA detector after correcting
for the short-term SCR variability

EGRS Environmental gamma radiation measured by the SARA detector (spectrometer)
40K GR Gamma radiation from 40K radionuclide measured by the SARA detector
214Bi GR Gamma radiation from 214Bi radionuclide measured by the SARA detector
WTC Wavelet transform coherence

α
The effective ratio of gamma-ray mass attenuation coefficients for water and
solid phases

Appendix A

Figure A1. The energy sensitivity of the (a) MIRA and (b) SARA gamma radiation (GR) detectors.
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Figure A2. Daily cycles of 40K GR measurements can be observed throughout the whole summer
period which depend on temperature. 40K GR, gamma radiation from 40K radionuclide measured by
the SARA detector.

 

Figure A3. Daily cycles of EGRS measurements can be observed on certain days with clear skies
in summer which depend on temperature. EGRS, environmental gamma radiation measurements
obtained from the SARA detector.

Figure A4. The daily measurement consistency between the MIRA and SARA detectors. EGRG–M,
environmental gamma radiation measured by the MIRA detector; EGRS, environmental gamma radi-
ation measured by the SARA detector; r, Pearson correlation coefficient, b, slope of the regression line.
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Figure A5. The daily measurement consistency between the MIRA and SARA detectors after correct-
ing for short-term secondary cosmic radiation (SCR) variability. EGRG-M′ , corrected environmental
gamma radiation measured by the MIRA detector; EGRS, environmental gamma radiation measured
by the SARA detector; r, Pearson correlation coefficient; b, slope of the regression line.

Figure A6. Comparison of the accuracy of SM estimation obtained from EGRG–M′ and 40K measure-
ments during the period without fresh biomass. SM, soil moisture; EGRG–M′ , corrected environmental
gamma radiation measured by the MIRA detector; 40K, gamma radiation from 40K radionuclide
measured by the SARA detector; α, the effective ratio of gamma-ray mass attenuation coefficients for
water and solid phases.
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Figure A7. Soil moisture estimation from EGRS measurements. EGRS, environmental gamma
radiation measured by the SARA detector; α, the effective ratio of gamma-ray mass attenuation
coefficients for water and solid phases. The dark green datapoints represent the period with fresh
biomass and the light green datapoints represent the period with dry biomass.
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