
Computers and Chemical Engineering 201 (2025) 109240

A
0

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/cace

Sample-efficient reinforcement learning of Koopman eNMPC
Daniel Mayfrank a,b , Mehmet Velioglu a,b , Alexander Mitsos c,a,d , Manuel Dahmen a ,∗

a Forschungszentrum Jülich GmbH, Institute of Climate and Energy Systems, Energy Systems Engineering (ICE-1), Jülich 52425, Germany
b RWTH Aachen University, Aachen 52062, Germany
c JARA-ENERGY, Jülich 52425, Germany
d RWTH Aachen University, Process Systems Engineering (AVT.SVT), Aachen 52074, Germany

A R T I C L E I N F O

Keywords:
Economic model predictive control
Koopman
Model-based reinforcement learning
Policy optimization
Process control
Physics-informed neural networks
Demand response

A B S T R A C T

Reinforcement learning (RL) can be used to tune data-driven (economic) nonlinear model predictive controllers
((e)NMPCs) for optimal performance in a specific control task by optimizing the dynamic model or parameters
in the policy’s objective function or constraints, such as state bounds. However, the sample efficiency of RL
is crucial, and to improve it, we combine a model-based RL algorithm with our published method that turns
Koopman (e)NMPCs into automatically differentiable policies. We apply our approach to an eNMPC case study
of a continuous stirred-tank reactor (CSTR) model from the literature. The approach outperforms benchmark
methods, i.e., data-driven eNMPCs using models based on system identification without further RL tuning
of the resulting policy, and neural network controllers trained with model-based RL, by achieving superior
control performance and higher sample efficiency. Furthermore, utilizing partial prior knowledge about the
system dynamics via physics-informed learning further increases sample efficiency.
1. Introduction

Model predictive control (MPC) and its variants, e.g., economic
nonlinear MPC (eNMPC), rely on dynamic models that (i) are accurate
and (ii) lead to optimal control problems (OCPs) which are solvable
in real-time. In process systems engineering, obtaining mechanistic
models that fulfill these requirements can be difficult due to large
scales, unknown parameters, and nonlinearities (Tang and Daoutidis,
2022). As an alternative to mechanistic models, data-driven approaches
can be employed. These approaches are typically based on system iden-
tification (SI) using either historical operating data or data generated
with a mechanistic model of the physical system (Tang and Daoutidis,
2022).

Alternatively, using reinforcement learning (RL) methods, data-
driven (eN)MPCs can be trained for optimal performance in specific
control tasks (see Fig. 1(a)), which may produce superior control
performance compared to SI (see, e.g., Chen et al. (2019), Gros and
Zanon (2019), Mayfrank et al. (2024b) and Mayfrank et al. (2024a)).
To this end, a differentiable (e)NMPC policy is constructed, wherein
the learnable parameters can be parameters of the dynamic model (see

∗ Corresponding author.
E-mail address: m.dahmen@fz-juelich.de (M. Dahmen).

1 Due to the multitude of ways in which models can be used in RL, the distinction between model-free RL, model-based RL, and other control approaches is not
consistent across the literature. This distinction might be especially confusing in the context of the present work since we study the training of eNMPC policies,
i.e., inherently model-based policies. However, the distinction between model-free and model-based, which is most relevant to our work, is about whether the
training algorithm uses an additional learned model of the environment to train the policy. Please refer to Section 2.1 for the exact definitions that we use in this
work.

Fig. 1(b), e.g., Mayfrank et al. (2024b) and Mayfrank et al. (2024a)), or
other parameters that appear in the objective function or constraints of
the (e)NMPC (Gros and Zanon, 2019; Brandner et al., 2023; Brandner
and Lucia, 2024), e.g., the state bounds (see Fig. 1(c)). The latter ap-
proach optimizes the policy by compensating for model errors, e.g., via
bounds adaptation. Thereby, RL-based training/refinement of a highly
parameterized dynamic model such as an artificial neural network can
be avoided by optimizing few (interpretable) parameters, e.g., parame-
ters that modify the state bounds. Therefore, this approach may lead to
better convergence, compared to RL-based (re)training of the dynamic
model itself. However, even positing good training convergence, the
model-free1 RL algorithms that have so far been used for RL-based
training of (eN)MPCs remain notoriously sample inefficient, essentially
rendering them inapplicable to domains where interacting with the
physical environment (sampling) is expensive (Gopaluni et al., 2020),
e.g., in industrial chemical process control applications.

Model-based RL (MBRL) algorithms are designed to increase the
sample efficiency of RL by concurrently learning a policy and a model
https://doi.org/10.1016/j.compchemeng.2025.109240
Received 25 March 2025; Received in revised form 14 May 2025; Accepted 9 June
vailable online 21 June 2025
098-1354/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/cace
https://www.elsevier.com/locate/cace
https://orcid.org/0009-0000-6275-0614
https://orcid.org/0009-0002-1144-0661
https://orcid.org/0000-0003-0335-6566
https://orcid.org/0000-0003-2757-5253
mailto:m.dahmen@fz-juelich.de
https://doi.org/10.1016/j.compchemeng.2025.109240
https://doi.org/10.1016/j.compchemeng.2025.109240
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2025.109240&domain=pdf
http://creativecommons.org/licenses/by/4.0/

D. Mayfrank et al. Computers and Chemical Engineering 201 (2025) 109240
Fig. 1. (a) Procedure for RL-based training of an (eN)MPC. (b) A differentiable eNMPC
policy parameterized by the parameters 𝜽 of the dynamic model; takes as input the
current state 𝒙𝑡 and computes the optimal control action 𝒖∗𝑡 based on the minimization
of a cost function 𝑓 , subject to inequality constraints 𝒈, and the learnable dynamic
model 𝒉𝜽. (c) Differentiable eNMPC policy with parameterized inequality constraints
𝒈, e.g., state bounds. Training this policy leaves the underlying dynamic model 𝒉
unchanged but adapts the inequality constraints to counteract model-plant mismatch.

of the environment, i.e., a function that allows the prediction of fu-
ture states and rewards from state–action pairs. The seminal Dyna
algorithm (Sutton, 1991) iterates between three steps (see Fig. 2):
(i) The current policy interacts with the real environment to gather
data about the system dynamics. (ii) Using the acquired data, a data-
driven dynamic model of the environment is learned via SI. (iii) The
learned model is used to optimize the policy via any suitable RL
algorithm, e.g., Proximal Policy Optimization (PPO) (Schulman et al.,
2017) or Soft Actor-Critic (Haarnoja et al., 2018). Numerous ‘‘Dyna-
style algorithms’’, i.e., algorithms that follow this basic framework,
have been developed over the years. However, in this framework, the
policy can learn to exploit the errors of the dynamic model, leading
to overly-optimistic simulated results and corresponding policy failures
in the real world (Kurutach et al., 2018). However, recent contribu-
tions (Kurutach et al., 2018; Clavera et al., 2018; Janner et al., 2019)
have showcased ways to counteract this problem based on learning
ensembles of dynamic models, leading to algorithms that can match the
asymptotic control performance of model-free RL on certain problems
while requiring orders of magnitude fewer interactions with the real
environment. Ultimately, to maximize sample efficiency, any Dyna-
style algorithm relies on learning reasonably well-generalizing dynamic
models of the environment with as little data as possible. Therefore,
another intuitive way to improve the performance of Dyna-style al-
gorithms is to incorporate prior knowledge of the dynamics of the
environment into the models, e.g., using physics-informed learning.
Multiple contributions (e.g., Liu and Wang (2021) and Ramesh and
Ravindran (2023)) have shown that using physics-informed neural
networks (PINNs) (Raissi et al., 2019) in Dyna-style algorithms can in-
crease both the sample efficiency and the performance of the resulting
policies.

The adoption of RL algorithms into the process control community
is still in its infancy and has largely been limited to model-free RL (Faria
2
Fig. 2. Dyna-style (Sutton, 1991) model-based RL framework. The three steps are
repeated for a predefined number of steps, or until satisfactory control performance
is reached.

et al., 2022; Dogru et al., 2024). Gopaluni et al. (2020) describe model-
free RL algorithms as insufficiently data-efficient for industrial process
control applications. They identify the unification of model-based and
model-free methods as a research area with tremendous potential to
redefine automation in the process industry. Ponse et al. (2024) provide
a comprehensive review on the applications of RL in the field of
sustainable energy systems control, which is adjacent to process control
and rate model-based methods as ‘‘underexplored’’. Contributions that
did leverage model-based RL methods for process control or energy
systems control used neural network policies that map directly from
states to actions (e.g., Zhang et al. (2021), Gao and Wang (2023) and
Faridi et al. (2024)). On the other hand, numerous contributions have
showcased the potential benefits of RL-based training of (eN)MPCs
for control compared to SI (e.g., Chen et al. (2019), Gros and Zanon
(2019) and Mayfrank et al. (2024b,a)). However, these contributions
used model-free RL algorithms. Due to the substantial benefits of
model-based RL algorithms compared to model-free variants regarding
sample efficiency, it is tempting to examine whether model-based RL
can accelerate RL-based (eN)MPC training, thus making it potentially
feasible in a wider range of applications. Such an analysis has not been
conducted thus far.

In our previous publication (Mayfrank et al., 2024b), we introduced
a method for RL training of (e)NMPCs that utilize data-driven Koopman
surrogate models. That method rests on the availability of a simulated
RL environment based on an accurate mechanistic system model. When
training in a simulated environment, sample efficiency is less critical
than in many potential real-world RL setting, where the agent has to
learn from (costly) interactions with the physical system. In the current
work, we extend the applicability of RL-based training of Koopman
(e)NMPCs to settings where sample efficiency is critical by combining
our previously published approach with the Model-Based Policy Opti-
mization (MBPO) (Janner et al., 2019) algorithm. Moreover, we further
increase the sample efficiency by modifying MBPO to utilize partial
prior knowledge of the dynamics of the controlled system through
physics-informed learning. To our knowledge, this work is the first to
connect RL-based training of (eN)MPCs for task-optimal performance
in specific control tasks to Dyna-style model-based RL.

In this work, we choose the MBPO algorithm (Janner et al., 2019),
since it is a state-of-the-art Dyna-style RL algorithm. Many model-
based RL algorithms exist and it is impossible to know a priori which
algorithm will perform best in a specific task (Wang et al., 2019).
While MBPO is one of the most promising algorithms available, our
approach should be compatible with any Dyna-style algorithm that does
not require a specific policy architecture.

We test our proposed method on an eNMPC case study (Mayfrank
et al., 2024b) based on a continuous stirred-tank reactor (CSTR) model
from Flores-Tlacuahuac and Grossmann (2006). We assess the perfor-
mance of our approach by comparing it to that of (i) Koopman eNMPCs
trained iteratively via SI and (ii) neural network policies trained using
(physics-informed) MBPO. We find that through the combination of

D. Mayfrank et al.

R

A

f
f
i
f
o
e
c
t
p
m

m

e
M
i

f
c

a
D

m
m
b

m
s
m
s
M

u
l
r
r

e

p

p
p
R

a
↦

𝒛

m

t

‖

t

t

Computers and Chemical Engineering 201 (2025) 109240
iterative SI of the Koopman model that is utilized in the eNMPC and
L-based adaptation of the state bounds in the eNMPC via the MBPO

algorithm, our method outperforms the benchmarks for this case study.
dditionally, we find that physics-informed learning of the model

ensemble that is used in MBPO offers benefits for sample efficiency
and that it can prevent policy degradation during training. These
indings confirm our expectation that model-based RL can be success-
ully integrated with training data-driven (eN)MPCs. Thus, our work
s a step toward making RL-based training of predictive controllers
easible for complex real-world control problems where no simulator
f the environment is available a priori and interactions with the real
nvironment are expensive, making sample efficiency absolutely cru-
ial. Considering the previously mentioned contributions showcasing
he advantages of RL compared to pure SI when learning data-driven
redictive controllers, our work, therefore, shows an avenue toward
ore capable and efficient predictive controllers.

The remainder of this paper is structured as follows: Section 2
provides the theoretical background to our work and presents our

ethod. Section 3 presents the results of the numerical experiments
that we conducted on a simulated case study. Section 4 draws final
conclusions and discusses promising directions for future research.

2. Method

Section 2.1 introduces notation and definitions for policy optimiza-
tion using RL and provides a brief explanation of the MBPO algo-
rithm (Janner et al., 2019). Section 2.2 explains how we set up differ-
entiable Koopman (e)NMPCs that are trainable using RL. Subsequently,
we present our method for sample-efficient learning of task-optimal
Koopman (e)NMPCs for control (Section 2.3).

2.1. Model-based policy optimization

RL is a framework for learning how to map situations to actions
in order to maximize a numerical reward signal (Sutton and Barto,
2018). In contrast to supervised learning tasks where learning is based
on labeled data sets, RL is based on sequential feedback from trial and
rror actuation of an environment. The environment is represented by a
arkov Decision Process (MDP) with associated states 𝒙𝑡 ∈ R𝑛, control

nputs 𝒖𝑡 ∈ R𝑚, a transition function  ∶ R𝑛 × R𝑚 → R𝑛,

𝒙𝑡+1 =  (𝒙𝑡, 𝒖𝑡), (1)

and a scalar reward function  ∶ R𝑛 × R𝑚 → R,

𝑟𝑡+1 = (𝒙𝑡+1, 𝒖𝑡). (2)

The goal of RL is to maximize the (discounted) sum of expected
uture rewards. For applications with continuous action spaces, actor-
ritic RL methods (see, e.g., Fujimoto et al. (2018), Schulman et al.

(2017) and Haarnoja et al. (2018)) that optimize parameterized poli-
cies 𝝅𝜽(𝒖𝑡|𝒙𝑡) ∶R𝑛 ↦ R𝑚 directly mapping from states to (probability
distributions over) actions, are most suitable (Sutton and Barto, 2018).

The Model-Based Policy Optimization (MBPO) (Janner et al., 2019)
lgorithm is a state-of-the-art Dyna-style RL algorithm. As any other
yna-style algorithm, it iterates between the following three steps (see

Fig. 2): (i) collect experience in the real environment, (ii) learn a
odel of the environment, (iii) train the policy using the environment
odel and a suitable model-free RL algorithm. Building upon the work

y Kurutach et al. (2018), MBPO aims to overcome the critical problem
of model exploitation by learning an ensemble of models and choosing
one of the models at random for each environment step when training
the policy (Fig. 2, third step). Ideally, learning a model ensemble

aintains an adequate level of uncertainty in the policy optimization
tep, thus preventing overfitting the policy to the errors of a specific
odel. However, model errors still compound over multiple simulated

teps, causing problems in policy learning for long-horizon tasks. In
Janner et al. (2019) address this issue by introducing two
BPO,

3
modifications compared to the standard Dyna framework: (i) Instead of
sing simulated rollouts with 𝑙 discrete time steps corresponding to the
ength of episodes in the real environment, they shorten the simulated
ollouts to a length of 𝑘 ≪ 𝑙 steps. (ii) The initial state of each simulated
ollout is determined by randomly sampling from the experience  (cf.

Fig. 2) instead of sampling from the initial state distribution of the real
nvironment. Thus, every state that was encountered by the policy in

the real environment can serve as an initial state in a simulated rollout.
These modifications disentangle the length of simulated rollouts during
olicy training from the episode length in the original task. Janner

et al. (2019) showed that in multiple continuous control benchmark
roblems, MBPO vastly improves sample efficiency while producing
olicies of similar performance compared to state-of-the-art model-free
L algorithms (e.g., Schulman et al. (2017) and Haarnoja et al. (2018)).

2.2. Differentiable Koopman (e)NMPC

In Mayfrank et al. (2024b), we introduce a method for constructing
utomatically differentiable stochastic (e)NMPC policies 𝝅𝜽(𝒖𝑡|𝒙𝑡) ∶R𝑛

R𝑚 from Koopman models of the form proposed by Korda and Mezić
(2018). Such models are of the form

𝒛0 = 𝝍𝜽(𝒙0), (3a)

𝑡+1 = 𝑨𝜽𝒛𝑡 + 𝑩𝜽𝒖𝑡, (3b)

𝒙̂𝑡 = 𝑪𝜽𝒛𝑡, (3c)

where 𝒛𝑡 ∈ R𝑁 is the vector of Koopman states and 𝒙̂𝑡 ∈ R𝑛 is the
odel prediction of the system state at time step 𝑡. The model has the

following components: 𝝍𝜽 ∶R𝑛 ↦ R𝑁 , where typically 𝑁 ≫ 𝑛, defines
he nonlinear state observation function that transforms the initial

condition 𝒙0 into the Koopman space. 𝑨𝜽 ∈ R𝑁×𝑁 and 𝑩𝜽 ∈ R𝑁×𝑚

linearly advance the Koopman state vector forward in time. 𝑪𝜽 ∈ R𝑛×𝑁

linearly maps a prediction of the Koopman state to a prediction of the
system state.

Given a data set describing the dynamics of some system, such
models can be trained via SI by minimizing the sum of three loss
functions (Lusch et al., 2018; Mayfrank et al., 2024b). These loss terms
correspond to the requirements that the Koopman model needs to
fulfill: (i) reconstructing states passed through the autoencoder, (ii)
predicting the evolution of the lifted Koopman state, and (iii) predicting
the evolution of the system states. The associated loss terms are:

‖𝑪𝜽𝝍𝜽(𝒙𝑡) − 𝒙𝑡‖, (4a)

𝑨𝜽𝝍𝜽(𝒙𝑡) + 𝑩𝜽𝒖𝑡 − 𝝍𝜽(𝒙𝑡+1)‖, (4b)

‖𝑪𝜽(𝑨𝜽𝝍𝜽(𝒙𝑡) + 𝑩𝜽𝒖𝑡) − 𝒙𝑡+1‖ (4c)

In Mayfrank et al. (2024b), we aim to optimize a Koopman model
for optimal performance as part of an (e)NMPC in a specific control
ask. However, as noted in Section 1, in RL-based training of an

(eN)MPC, it may be beneficial to keep an imperfect model unchanged
and instead optimize a small number of parameters in the objective
function or inequality constraints which compensate for model er-
rors. To be able to differentiate between different kinds of learnable
parameters of the Koopman-eNMPC policy, we therefore rename the
parameters: In the following, 𝜽K refers to the parameters of the Koop-
man model, which appear as 𝜽 in Eq. (3). Additionally, we introduce
the parameters 𝜽B, which modify the state bounds of the eNMPC. Both
ypes of parameters influence the behavior of the policy, i.e., 𝜽 =
[𝜽⊺K,𝜽

⊺
B]

⊺ and 𝝅𝜽(𝒖𝑡|𝒙𝑡) ∶R𝑛 ↦ R𝑚.
Integrating the idea of state bound adaptation into the differentiable

Koopman (e)NMPC framework (Mayfrank et al., 2024b) is straightfor-
ward. Given an (e)NMPC horizon of 𝑡𝑓 + 1 steps with the corresponding
sets T+1 = {𝑡,… , 𝑡+𝑡𝑓 } and T = {𝑡,… , 𝑡+𝑡𝑓 − 1}, a convex OCP is solved
to obtain the optimal action 𝒖∗𝑡 :

min
(𝒖)

∑

𝛷(𝑪𝜽K𝒛𝑡, 𝒖𝑡) +𝑀𝒔⊺𝑡 𝒔𝑡, (5a)

𝑡 𝑡∈T 𝑡∈T+1

D. Mayfrank et al. Computers and Chemical Engineering 201 (2025) 109240
s.t. 𝒛𝑡+1 = 𝑨𝜽K𝒛𝑡 + 𝑩𝜽K𝒖𝑡 ∀𝑡 ∈ T, (5b)

𝒈(𝑪𝜽K𝒛𝑡, 𝒖𝑡, 𝒔𝑡,𝜽B) ≤ 𝟎 ∀𝑡 ∈ T+1 (5c)

𝛷 is a convex function representing the stage cost of the objective
function, and 𝒈 are convex inequality constraint functions that can also
include bounds on control and state variables. In the latter case, slack
variables 𝒔𝑡 are added to the state bounds to ensure the feasibility of
the OCPs. The use of slack variables is penalized quadratically with a
penalty factor 𝑀 . Using PyTorch (Paszke et al., 2019) and cvxpylay-
ers (Agrawal et al., 2019), the output 𝒖𝑡 of the policy is automatically
differentiable with respect to 𝒙𝑡, 𝜽K, and 𝜽B.

2.3. Physics-informed MBPO of Koopman models for control

This section describes our general framework for sample-efficient
learning of task-optimal Koopman (e)NMPC policies. A more in-depth
description of the implementation details of our method when applied
to our specific case study is provided in Section 3.2.

Our method iterates between the three typical Dyna steps and is vi-
sualized in Fig. 3. First, the Koopman (e)NMPC policy interacts with the
environment for a predefined number of steps to gather data  about
the system dynamics. To ensure exploration, we sample the (otherwise
deterministic) action 𝒖𝑡 from a normal distribution 𝒖𝑡 ∼  (𝒖∗𝑡 ,𝝈

2).
We assume that the reward function of the environment is known.
Thus, rewards 𝑟𝑡 do not need to be recorded in . In the very first
iteration of the overall algorithm the Koopman model is still randomly
initialized and the eNMPC outputs will, therefore, not be meaningful.
Therefore, in the data sampling step of the first MBPO iteration, we
randomly sample the actions 𝒖𝑡 from a uniform distribution over the
action space. Likewise, any other controller type, e.g., a PID controller,
may be used in the first MBPO iteration, although the quality of the
resulting training data will be influenced by how diverse the control
actions produced by the controller are.

Second, an ensemble of 𝑛 data-driven dynamic models, i.e., neural
networks (NNs), is learned based on  via SI to approximate the
dynamics of the environment (c.f. Eq. (1)). If (incomplete) physics
knowledge is available, it is possible to train PINNs (Raissi et al., 2019).
Throughout this work, each ensemble member 𝑵 𝑵 𝑖,𝝎𝑖∀𝑖 ∈ {1, 2,… , 𝑛}
is a PINN parameterized by 𝝎𝑖. Furthermore, we fit the parameters
𝜽K of the Koopman model to  via SI. Note that we do not use a
physics-informed training method for the Koopman model. Physics-
informed training of the Koopman model would, in principle, also be
possible. However, the representational capacity of the Koopman model
is limited because it is used as part of the real-time eNMPC policy
and physics-informed training would necessitate using some of that
representational capacity to predict outputs that are not necessary for
the eNMPC application, i.e., the a priori unknown physics terms (see
Fig. 5). Since the behavior of the overall Koopman eNMPC policy is
optimized with respect to the physics-informed NN ensemble anyway
(see Fig. 3(a), step three), and to keep our method as simple as possible,
we decided against a physics-informed system identification approach
for the Koopman model. In fitting the PINN ensemble and the Koopman
model, we follow standard SI practices, such as splitting  into a
training data set and a validation data set used for early stopping and
normalizing the inputs and outputs of the models. We refer the reader
to Mayfrank et al. (2024b) for a detailed description of how Koopman
models in the form proposed by Korda and Mezić (2018) (Eq. (3)) can
be trained using system identification.

The third step is based upon our previously published method
(Mayfrank et al., 2024b) on viewing Koopman (e)NMPC policies as
automatically differentiable policies (Fig. 3(b)): Using the ensemble in
conjunction with the known reward function as a simulator of the envi-
ronment, we train the Koopman (e)NMPC for task-optimal performance
by optimizing the parameters 𝜽B via the Proximal Policy Optimization
(PPO) algorithm (Schulman et al., 2017). During policy optimization
using PPO, one of the 𝑛 PINNs is chosen randomly for each step in
4
Fig. 3. Using MBPO to train a task-optimal Koopman (e)NMPC controller. (a) The
training algorithm. The following three steps are executed in a loop until a stopping
criterion is reached: First, the Koopman (e)NMPC interacts with the environment to
gather data about the dynamics. Second, all data collected up to the current step is
used to fit the Koopman model (parameters 𝜽K) and the PINN ensemble (parameters
𝝎𝑖∀𝑖 ∈ {1, 2,… , 𝑛}). Third, a surrogate RL environment is constructed using the NN
ensemble and the Koopman (e)NMPC is optimized by tuning the parameters 𝜽B, i.e., the
state bounds. (b) The automatically differentiable Koopman (e)NMPC whose behavior
is defined by the parameters of the Koopman model (𝜽K) and the parameters modifying
the state bounds (𝜽B). The parameters are color-coded to match the colors of the
corresponding optimization steps in Fig. 3(a).

the simulated environment. The critic is a feedforward neural network
parameterized by 𝝓. We use the approach described by Kurutach et al.
(2018) to determine when to stop the policy optimization and return
to the first step (data sampling): In regular intervals, the performance
of the policy is evaluated separately on all 𝑛 learned models. Once the
ratio of models under which the policy improves drops below a certain
threshold for too many consecutive PPO iterations, we terminate the
policy optimization and return to the data sampling step. A more
detailed description of the termination criterion for policy optimization
is given in Section 3.2.4. The overall learning process can continue
for a predefined number of steps in the real environment or until a
satisfactory performance is achieved.

We emphasize that the behavior of the resulting (e)NMPC is defined
by 𝜽K and 𝜽B and that both parameter types are optimized in each
iteration of the overall algorithm (Fig. 3): In the SI step, 𝜽K is trained
to maximize the agreement of the Koopman model to , i.e., all data
available at the time. Then, the policy optimization step optimizes
𝜽B, i.e., the state bounds, using PPO and simulated interactions with
the PINN ensemble. Please note that the policy optimization step does
not necessarily result in a tightening of the state bounds: Depending
on (i) the disagreement between the Koopman model and the PINN

D. Mayfrank et al.

p

a
i

d

t

T
t

c

𝑇

e
t
c
p
e
i
b
a
t

S

M
A

d

Computers and Chemical Engineering 201 (2025) 109240
Table 1
CSTR model parameters (Flores-Tlacuahuac and Grossmann, 2006; Du et al., 2015). All
arameters except the reaction constant 𝑘 are dimensionless.

Symbol Value

Volume 𝑉 20
Eeaction constant 𝑘 300 1

h
Activation energy 𝑁 5
Feed temperature 𝑇𝑓 0.3947
Heat transfer coefficient 𝛼𝑐 1.95 ⋅ 10−4

Coolant temperature 𝑇𝑐 0.3816

ensemble, and (ii) the reward function specified by the user, it may lead
to tightened or relaxed bounds. Therefore, if a sensible reward function
is specified, the policy optimization step should not be detrimental to
the economic performance of the overall policy.

Intuitive justification for our approach: The policy optimization step
optimizes the Koopman (e)NMPC policy using a surrogate RL envi-
ronment. This environment is based on an ensemble of PINNs learned
via SI using the same data as the Koopman model. In the following,
we provide three rationales for why such an approach offers benefits
compared to simply learning a Koopman model via SI and using it
inside an (e)NMPC policy without further RL-based optimization of the
policy: (i) The PINN ensemble captures the epistemic uncertainty of
the learned dynamics (Janner et al., 2019), i.e., the uncertainty that
rises from insufficient amounts of data. Through RL, the (e)NMPC
s forced to behave in a way that is robust with respect to every

ensemble member. Without RL, a single learned Koopman model would
define the (e)NMPC behavior, which increases the risk of policy failures
ue to epistemic uncertainty. (ii) The representational capacity of the

Koopman model that is utilized in the (e)NMPC is limited since the
resulting OCPs (Eq. (5)) have to be solved in real-time. Thus, given
sufficiently complex system dynamics, the Koopman model might not
be able to accurately capture the system dynamics everywhere. In con-
trast, the representational capacity of the PINN ensemble members has
a much higher limit since the ensemble models are not used in online
optimization. RL tuning of 𝜽B can, therefore, help to compensate for the
limitations of (e)NMPC that stem from a limited representational capac-
ity of the utilized Koopman model. (iii) Using RL, the (e)NMPC can be
tuned to the requirements of a specific control problem. Specifically,
by weighting different parts of the reward function of the simulated RL
environment, RL offers a way to tune the behavior of the policy, e.g., to
prioritize cost savings or constraint satisfaction.

3. Numerical experiments

3.1. Case study description

We demonstrate our method on a demand response case study
(Mayfrank et al., 2024b) based on a benchmark continuous stirred-
ank reactor (CSTR) model (Flores-Tlacuahuac and Grossmann, 2006;

Du et al., 2015). The following case study description is based on
(Mayfrank et al., 2024b), where a more detailed explanation can be
found. The states 𝒙 of the model are the dimensionless product con-
centration 𝑐 and the dimensionless reactor temperature 𝑇 . The control
inputs 𝒖 are the production rate 𝜌

[

1
h

]

and the coolant flow rate 𝐹
[

1
h

]

.
wo nonlinear ordinary differential equations define the dynamics of
he system:

𝑐̇(𝑡) = (1 − 𝑐(𝑡))
𝜌(𝑡)
𝑉

− 𝑐(𝑡)𝑘𝑒−
𝑁
𝑇 (𝑡) , (6a)

𝑇̇ (𝑡) = (𝑇𝑓 − 𝑇 (𝑡))
𝜌(𝑡)
𝑉

+ 𝑐(𝑡)𝑘𝑒−
𝑁
𝑇 (𝑡) − 𝐹 (𝑡)𝛼𝑐 (𝑇 (𝑡) − 𝑇𝑐) (6b)

Table 1 lists all parameters appearing in Eq. (6).
For the training of the PINN ensemble in the SI step (see Fig. 3(a)),

we assume that the concentration and temperature changes due to
5
Table 2
Lower (lb) and upper (ub) bounds of system states and control inputs and steady-state
(ss) values used to evaluate the economic benefit of flexible production in eNMPC.

Variable lb ub ss

𝑐 0.1231 0.1504 0.1367
𝑇 0.6 0.8 0.7293
𝜌 0.8 1

ℎ
1.2 1

ℎ
1.0 1

ℎ
𝐹 0.0 1

ℎ
700.0 1

ℎ
390.0 1

ℎ

inlet/outlet flows and cooling are known. However, we assume that the
onstitutive expression for the reaction in Eqs. (6) is unknown. Thus,

the physics equations for the PINN are

𝑐̇(𝑡) = (1 − 𝑐(𝑡))
𝜌(𝑡)
𝑉

− 𝑅(𝑡), (7a)

̇ (𝑡) = (𝑇𝑓 − 𝑇 (𝑡))
𝜌(𝑡)
𝑉

+ 𝑅(𝑡) − 𝐹 (𝑡)𝛼𝑐 (𝑇 (𝑡) − 𝑇𝑐), (7b)

with the unknown and unmeasured reaction rate 𝑅(𝑡) = 𝑐(𝑡)𝑘𝑒−
𝑁
𝑇 (𝑡) .

The goal is to minimize production costs. To enable flexible op-
ration taking advantage of electricity price fluctuations, we assume
he existence of a product storage with filling level 𝑙 and a maximum
apacity of six hours of steady-state production. Given electricity price
redictions, the controller aims to minimize production costs while
nsuring that a steady product demand is met and adhering to bounds
mposed on the system states. Production costs can be influenced
y altering the process cooling as the electric power consumption is
ssumed to be proportional to the coolant flow rate 𝐹 . Table 2 presents
he state bounds and the steady-state values of the model (see Eq. (6)).

Matching the hourly structure of the day-ahead electricity market, we
choose control steps of length 𝛥𝑡ctrl = 1 h. We use historic day-ahead
electricity prices from the Austrian market (Open Power System Data,
2020). During training, we use the prices from March 29, 2015 to
March 25, 2018. For the final evaluation of the trained policies, we
use the prices from March 26, 2018 to September 30, 2018.

3.2. Implementation details

This subsection explains the implementation details of our method
(Section 2.3) when it is applied to this case study. Section 3.2.1
presents our architecture choices for the agent and the dynamic mod-
els. Thereafter, three subsections address the iterative three-step ap-
proach of our method, i.e., data sampling (Section 3.2.2), system
identification (Section 3.2.3), and policy optimization (Section 3.2.4).
ection 3.2.5 briefly describes alternative methods for learning a con-

troller, e.g., learning a neural network policy via (physics-informed)
BPO, which we use to rate the performance of our proposed method.
ll training code including the hyperparameters that were used to

obtain the results presented in Section 3.3 is available online.2

3.2.1. Model architecture
As in Mayfrank et al. (2024b), we choose a latent space dimen-

sionality of eight for the Koopman model that is part of the eNMPC
policy. Since the CSTR model has two states and two control inputs
(see Eq. (6)), this means that 𝑨𝜽K ∈ R8×8,𝑩𝜽K ∈ R8×2,𝑪𝜽K ∈ R2×8

(see Eq. (3)). The encoder 𝝍𝜽K ∶R
2 ↦ R8 is a multilayer perceptron

(MLP) with two hidden layers (four and six neurons, respectively) and
hyperbolic tangent activation functions.

RL-based training of (e)NMPC controllers requires solving and dif-
ferentiating through many OCP instances. Since the number of vari-
ables in an OCP grows linearly with the number of time steps, RL
training of (e)NMPCs is computationally challenging given long pre-
iction horizons. To balance control performance and computational

2 https://jugit.fz-juelich.de/iek-10/public/optimization/pi-
mbpo4koopmanenmpc.

https://jugit.fz-juelich.de/iek-10/public/optimization/pi-mbpo4koopmanenmpc
https://jugit.fz-juelich.de/iek-10/public/optimization/pi-mbpo4koopmanenmpc

D. Mayfrank et al. Computers and Chemical Engineering 201 (2025) 109240
tractability, we determine an effective eNMPC prediction horizon by
repeatedly solving eNMPC problems using the mechanistic CSTR model
while varying the prediction horizon. We select a horizon 𝑡𝑓 of nine
hours, as longer horizons do not produce substantial performance gains
in the mechanistic eNMPC. Thus, T+1 = {𝑡,… , 𝑡 + 9} and T = {𝑡,… , 𝑡 +
8} (see Eq. (5)). Analogous to our earlier work on model-free RL of
Koopman eNMPCs (Mayfrank et al., 2024b), given a prediction for the
evolution of the electricity prices 𝒑eNMPC = (𝑝𝑡)𝑡∈T+1 , the policy aims to
minimize the production cost while satisfying the bounds of the states
and the product storage. To that end it first calculates the initial latent
state 𝒛0 by passing the initial state 𝒙0 = (𝑐0, 𝑇0)⊤ through the encoder,
i.e., 𝒛0 = 𝝍𝜽K (𝒙0). Then, the following OCP is solved:

min
(𝜌𝑡 ,𝐹𝑡)𝑡∈T

∑

𝑡∈T+1

(𝐹𝑡𝑝𝑡𝛥𝑡ctrl +𝑀𝒔⊺𝑡 𝒔𝑡), (8a)

s.t. 𝒛𝑡+1 = 𝑨𝜽K𝒛𝑡 + 𝑩𝜽K𝒖𝑡 ∀𝑡 ∈ T, (8b)

𝑙𝑡+1 = 𝑙𝑡 + (𝜌𝑡 − 𝜌ss)𝛥𝑡ctrl ∀𝑡 ∈ T, (8c)

𝒙𝑡 = 𝑪𝜽K𝒛𝑡 ∀𝑡 ∈ T+1, (8d)

𝒙𝑡 − 𝒔𝒙,𝑡 + 𝜽B,𝒙 ≤ 𝒙𝑡 ≤ 𝒙̄𝑡 + 𝒔𝒙,𝑡 + 𝜽B,𝒙̄ ∀𝑡 ∈ T+1, (8e)

0 − 𝑠𝑙 ,𝑡 + 𝜃B,𝑙 ≤ 𝑙𝑡 ≤ 6.0 + 𝑠𝑙 ,𝑡 + 𝜃B,𝑙 ∀𝑡 ∈ T+1, (8f)

𝒔𝑡 =
(

𝒔𝒙,𝑡
𝑠𝑙 ,𝑡

)

∀𝑡 ∈ T+1, (8g)

𝟎 ≤ 𝒔𝑡 ∀𝑡 ∈ T+1, (8h)

𝒖𝑡 ≤ 𝒖𝑡 ≤ 𝒖̄𝑡 ∀𝑡 ∈ T (8i)

Note that 𝜽B appears only in the constraints regarding the state bounds
of the CSTR (Eq. (8e)) and the storage level (Eq. (8f)), i.e., 𝜽B merely
serves to tighten or relax those bounds.

We use a NN with parameters 𝝓 as the critic in the policy optimiza-
tion step. The architecture of the critic is shown in Fig. 4. It has four
separate input layers for (i) 𝒙𝑡, (ii) 𝑙𝑡, (iii) a two-element vector that
includes the electricity price at the current time step and the difference
between the highest and the lowest electricity price in the current MPC
prediction horizon, i.e., 𝛥(𝒑eNMPC) = max𝑡∈T+1 (𝑝𝑡) − min𝑡∈T+1 (𝑝𝑡), and
(iv) a vector of all electricity prices in the current MPC prediction
horizon. Each of those input layers is followed by two equally sized
hidden layers, with 24, 8, 8, and 24 neurons, respectively. The output of
all second hidden layers is then concatenated and passed through two
fully connected layers, each of size 64 neurons. The output layer has a
single neuron for the value of the current state. Except the output layer,
which does not have an activation function, all layers have hyperbolic
tangent activation functions. We pick such an architecture since it
yielded substantially better results than fully connected architectures
of similar overall size in preliminary testing.

In the policy optimization step, we use an ensemble of 𝑛 = 10 PINNs
to model the dynamics of the real environment. Each PINN 𝑵 𝑵 𝑖,𝝎𝑖∀𝑖 ∈
{1, 2,… , 10} has five separate input features that are concatenated to
a single input layer (i) the PINN time 𝜏, (ii) two initial states 𝑐0, 𝑇0,
and (iii) two control inputs 𝜌, 𝐹 . Here, the PINN time is chosen to be
𝜏 ∈ [0, 𝛥𝑡ctrl] such that the PINN can be trained with constant control
inputs and the PINN time domain matches the size of a control step.
The input layer is followed by two equal-sized hidden layers with 32
neurons each. The output layer consists of three output features: two
for the differential states 𝒙 = [𝑐 , 𝑇]⊺ and one for the algebraic state
𝒚 = [𝑅]. A schematic of the PINN architecture is shown in Fig. 5.
Further details on the PINN modeling approach used throughout this
paper can be found in Velioglu et al. (2025).

At the beginning of a training run, we initialize 𝜽B with zeros,
i.e., our initial guess is that the bounds do not need to be adapted.
The learnable parameters of the PINN models (𝝎) are initialized with
the Xavier normal distribution (Glorot and Bengio, 2010) since we ob-
served that it leads to better performance for PINNs in our preliminary
studies. All other learnable parameters (𝜽 ,𝝓) are initialized randomly
K

6
Fig. 4. Critic architecture. As for the policy, the system states are scaled so that the
feasible range is in [−1,1], whereas the product storage and the electricity prices are
left unscaled.

using the default PyTorch (Paszke et al., 2019) parameter initialization
method.

For the purpose of data-driven modeling, we rescale the system
states and control inputs (see Table 2) linearly so that the lower and
upper bounds of each variable correspond to −1.0 and 1.0, respectively.

3.2.2. Data sampling
Each iteration of the MBPO algorithm (Janner et al., 2019) starts

with the current policy interacting with the environment to gather data
about the system dynamics (first step in Fig. 3(a)). This data is then
added to the data set . We gradually increase the number of steps
that the policy takes at each MBPO iteration: In the first 10 iterations,
we let the policy take 20 steps in each iteration, i.e., until  contains
200 steps. Then, until up to 500 overall steps, we increase the number
of steps taken at each iteration to 50. Finally, we increase this number
to 250 steps per iteration until we reach an overall number of 2500
steps in . Here, we terminate each training run.

In each MBPO iteration, we start the data sampling step by resetting
the environment, i.e., we set the system states to their steady-state
values, we randomly initialize the storage filling level between one
and two hours of steady-state production, and we sample a series of
electricity prices for the current episode. An episode ends given one
of two conditions: (i) the episode reaches its maximum number of 167
steps, i.e., one week of uninterrupted closed-loop operation, or (ii) a
constraint violation occurs in one of the states, where the distance of
the variable from the violated bound is bigger than the feasible interval
of the associated state (see Table 2). Upon termination of an episode,
the environment resets and a new episode starts. All state transitions
are added to . Data sampling continues until the desired number
of steps in the environment in the current MBPO iteration has been
reached.

To enable early stopping in the SI step (see Section 3.2.3), we split
 into a training and a validation data set, i.e.,  = (train,val). In the
first MBPO iteration, the data from the first episode is added to train,
and the data from the second episode to val. Thereafter, at the start of
each episode, we randomly determine whether the data of this episode
will be added to train (with a chance of 75%) or val (25% chance).

In the data sampling step of the first MBPO iteration, the policy
still has randomly initialized parameters 𝜽K. Herein, we, therefore, ran-
domly sample the actions 𝒖𝑡 from a uniform distribution over the action
space. In all subsequent MBPO iterations, we sample the action 𝒖𝑡 from
a normal distribution 𝒖𝑡 ∼  (𝒖∗𝑡 ,𝝈

2), where 𝒖∗𝑡 is the deterministic
output of the policy. At the start of each new episode, 𝝈 is randomly
sampled from a uniform distribution between 0.0 and 0.1.

D. Mayfrank et al. Computers and Chemical Engineering 201 (2025) 109240
Fig. 5. General schematic of the PINN models used in the CSTR case study.
lu
The PINN requires two additional data sets for training: (i) A physics
data set physics is used to calculate the physics residuals. It contains
unlabeled data, i.e., no output observations from the environment are
needed. We sample |physics| = 2000 collocation points for the PINN
inputs using the lower and upper bounds specified in Table 2 for the
initial states and controls, and 𝜏 ∈ [0, 𝛥𝑡ctrl = 1 h] for the PINN time.
(ii) An initial state data set init is used to teach the PINN to match
the initial state at 𝑡 = 𝑡0. Although this data set is labeled, the output
states are identical to the initial states. Thus, no interaction with the
environment is required to assemble init. We sample |init| = 100 data
points for the state and control variables within the bounds specified in
Table 2. Both physics and init are generated uniquely for each PINN
model 𝑵 𝑵 𝑖,𝝎𝑖∀𝑖 ∈ {1, 2,… , 10} in the ensemble but remain unchanged
throughout the training. We use Latin Hypercube Sampling (LHS) (Iman
et al., 1981) to ensure coverage of the PINN input domain.

3.2.3. System identification
In the SI step (second step in Fig. 3(a)), we fit the trainable param-

eters of the Koopman model (𝜽K) and of the model ensemble (𝝎𝑖∀𝑖 ∈
{1, 2,… , 10}) to the data in train.

For the Koopman model, we use the Adam optimizer (Kingma and
Ba, 2014) with a learning rate of 10−4 and a mini-batch size of 64
samples. We choose a maximum number of 5000 epochs; however, we
stop SI early if the sum of Eqs. (4a)–(4c) with respect to val does not
reach a new minimum for 25 consecutive epochs.

The PINN models in the ensemble are trained by minimizing the
following loss function, where 𝑛 is the number of states:

𝑀 𝑆 𝐸total = 𝑀 𝑆 𝐸physics + 𝜆1𝑀 𝑆 𝐸data + 𝜆2𝑀 𝑆 𝐸init, (9a)

with 𝑀 𝑆 𝐸data = 1
𝑛|train|

|train|
∑

𝑗=1
(𝒙̂(𝜏𝑗) − 𝒙(𝜏𝑗))2, (9b)

𝑀 𝑆 𝐸physics =
1

𝑛|physics|

|physics|
∑

𝑗=1

(̇̂𝒙(𝜏𝑗) − 𝒇 (𝒙̂(𝜏𝑗), 𝒚̂(𝜏𝑗), 𝒖𝑗)
)2 , (9c)

𝑀 𝑆 𝐸init =
1

𝑛|init|

|init|
∑

𝑗=1
(𝒙̂𝑗 (0) − 𝒙𝑗 (0))2 (9d)

Here, 𝑀 𝑆 𝐸data corresponds to the loss term for measurement data,
𝑀 𝑆 𝐸physics corresponds to the physics regularization loss stemming
from (incomplete) physics knowledge on system dynamics (c.f. Eq. (7)),
and 𝑀 𝑆 𝐸init corresponds to a loss term that ensures that the predic-
tions at 𝜏 = 0 are consistent with the initial states. 𝜆1 and 𝜆2 denote
the weights of the measurement data and initial condition loss terms.

The PINN models are trained in a two-stage manner, similar to Veliog
et al. (2025). In the first stage, we use the Adam optimizer (Kingma
7
and Ba, 2014) for 1000 epochs, with a learning rate of 10−3 and a
mini-batch size of 64 samples. Here, we use inverse Dirichlet weight-
ing (Maddu et al., 2022) to obtain the weights 𝜆1, 𝜆2 in Eq. (9a)
dynamically. In the second stage, we use the LBFG-S optimizer (Liu
and Nocedal, 1989) with a full batch for a maximum number of 300
epochs; however, we stop early if the loss in Eq. (9) with respect to
val does not reach a new minimum for 25 consecutive epochs. Note
that in the second stage, we fix the weights 𝜆1, 𝜆2 according to the last
value attained in the first stage. At each MBPO iteration, the trainable
parameters of the model ensemble (𝝎𝑖 ∀ 𝑖 ∈ {1, 2,… , 10}) have a 1∕3
chance of resetting to prevent getting stuck in a sub-optimal local
minimum over many consecutive iterations.

3.2.4. Policy optimization
The policy optimization step (third step in Fig. 3(a)) adjusts the

parameters 𝜽B toward task-optimal performance of the eNMPC policy,
given the Koopman model that was identified through SI. Using the
PINN ensemble, we construct a data-driven surrogate RL environment.
In each step taken in this surrogate environment, one of the PINNs is
chosen randomly as an approximation of the state transition function
(Eq. (1)) by evaluating it at 𝜏 = 𝛥𝑡ctrl. As is typical practice in
MBPO (Janner et al., 2019), we shorten episodes in the surrogate
environment (to a maximum of eight steps) to prevent compounding
prediction errors of the PINNs from negatively influencing the policy
optimization. As in the data sampling step (see Section 3.2.2), we still
terminate an episode earlier whenever an outsized constraint violation
occurs. Whenever an episode ends and the surrogate environment
resets, we randomly sample the state of the CSTR from all states in
train, thus decoupling the length of simulated episodes from the state
values that can be reached during an episode.

To incentivize the desired controller behavior, we choose a re-
ward that promotes cost savings compared to steady-state production
while punishing constraint violations. The overall reward at each step
(Eq. (2)) is calculated via

𝑟𝑡 = 𝛼 ⋅ 𝑟cost
𝑡 − 𝑟con,rel

𝑡 − 𝑟con,bool
𝑡 + 1. (10)

Herein, 𝑟cost
𝑡 incentivizes the minimization of the production costs

by giving positive rewards if the costs are lower than those of a
steady-state production regime:

𝑟cost
𝑡 = (𝐹ss − 𝐹𝑡−1) ⋅ 𝑝𝑡−1 ⋅ 𝛥𝑡ctrl

Constraint violations are penalized twofold: 𝑟con,rel
𝑡 penalizes constraint

violations quadratically, i.e., 𝑟con,rel
𝑡 ≥ 0, and 𝑟con,rel

𝑡 = 0 if no constraint
violation occurs at 𝑡. 𝑟con,bool

𝑡 imposes an additional small constant
penalty whenever a constraint violation occurs, irrespective of the
magnitude of the violation, i.e., 𝑟con,bool = 0.1 if there is a constraint
𝑡

D. Mayfrank et al.

r
r
n
e

r

P
w
W
o
a

t
f
l

7
b

h
p
t
d
o

d
f

c
f

W
t

o
a
g
a

n
r

t
v

p

u
S
5
w
s
t
r

c
a
v
R

t
t
t
a
i
p
s

Computers and Chemical Engineering 201 (2025) 109240
violation, and 𝑟con,bool
𝑡 = 0 otherwise. At every step, we add a constant

eward of 1 to ensure that the sum of rewards of an episode keeps
ising as long as the episode continues, i.e., we give a reward for
ot producing a constraint violation that is large enough to cause an
nvironment reset. 𝛼 = 5 ⋅ 10−6 is a hyperparameter used to balance

the influence of 𝑟cost
𝑡 compared to all other components of the overall

eward.
We use our previously published method for automatic differenti-

ation of Koopman (e)NMPCs (Mayfrank et al., 2024b) in conjunction
with the Stable-Baselines3 (Raffin et al., 2021) implementation of the
PPO algorithm (Schulman et al., 2017) for policy optimization. In each
PO iteration, we sample 2048 steps in the surrogate environment, and
e set the batch size for the policy and critic updates to 256 samples.
e use the Adam optimizer (Kingma and Ba, 2014) with a learning rate

f 10−3, and we clip the gradient norms of the policy and the critic to
 maximum of 0.5.

As explained in Section 2.3, we do not terminate the policy op-
imization step after a predefined number of PPO iterations. Instead,
ollowing the idea of Kurutach et al. (2018), we implement the fol-
owing performance-based stopping criterion: After every five iterations

of the PPO algorithm, we evaluate the performance of the policy
separately on all 10 learned models. To this end, we set up 10 validation
environments corresponding to the 10 learned models. In each of these
environments, only the corresponding model is used to represent the
transition function (Eq. (1)). Then, we compute the ratio of validation
environments in which the policy improves by running the policy for
five episodes in each environment. Specifically, we check the ratio of
validation environments in which the policy has reached a new highest
average reward in the last 25 PPO iterations. When this ratio falls below
0%, we terminate policy optimization. Then, the next MBPO iteration
egins with the data sampling step, or the overall training process stops

if we have already reached 2500 steps in the real environment.

3.2.5. Ablation and benchmark variants
To evaluate the performance of our proposed method and to analyze

ow different components of the method contribute to the overall
erformance, we compare the performance of the following controller
ypes. To avoid unnecessary repetition, we focus our description on the
ifferences compared to the main method, e.g., unless explicitly stated
therwise, all variants use MBPO (Janner et al., 2019).

1. SIKoopPIRLBounds (main contribution): Our method, outlined in
Section 2.3 with implementation details explained in Sections
3.2.1–3.2.4. The name refers to the iterative process of SI of a
Koopman model, followed by physics-informed (PI) RL of the
bounds in the eNMPC.

2. SIKoopRLBounds: Here, we train the model ensemble without as-
suming any prior physics knowledge. Each model in this en-
semble is a vanilla NN. We train the models by minimizing
the discrete-time L2 prediction loss, i.e., given , we minimize
‖𝑵 𝑵 𝑖,𝝎𝑖 (𝒙𝑡, 𝒖𝑡) −𝒙𝑡+1‖ for each 𝑖 ∈ {1, 2,… , 10}. The architecture
of the models is identical to that of the PINN models (see Fig. 5),
except that we remove the time 𝜏 from the inputs and the
reaction rate 𝑅 from the outputs.

3. SIKoop: This variant can be thought of as adaptive Koopman eN-
MPC. Compared to SIKoopPIRLBounds, we keep the data sampling
step and the iterative SI of the Koopman model unchanged, but
we omit any further (model-based) policy optimization.

4. PIRLMLP: Here, we use a neural network policy in form of an
MLP instead of a Koopman eNMPC. This policy has the same
architecture as the critic described in Section 3.2.1 (Fig. 4),
except that its output layer has a size of two, corresponding to
the two-dimensional action space of the environment.

5. RLMLP: Same as PIRLMLP but without physics-informed model
training.
 T

8
3.3. Results

For each type of controller, we repeat the training ten times using
ifferent fixed seeds in every training run. We train each controller type
or 2500 steps in the real environment as specified in Section 3.2. After

every full MBPO iteration, we save the agent and the model ensemble
for testing purposes.

We test each controller by running it without exploration noise,
i.e., 𝒖𝑡 = 𝒖∗𝑡 , for 10 one-week-long episodes (168 steps in each episode)
using electricity price trajectories that were not used during training.
Each test is performed using the same 10 electricity price trajectories,
ensuring comparable results between the tests. The aggregated results
of these tests can be viewed in Fig. 6. Fig. 7 shows some randomly
hosen control trajectories which were part of these tests. Since our
ocus is on sample efficiency rather than final policy performance, we

show control performance at different numbers of environment steps.
e randomly select one training run for each of the depicted controller

ypes and show its control performance in Fig. 7. Therein, we randomly
select one of the 10 test electricity price trajectories and show the first
48 time steps of that test episode for each controller type.

To evaluate the performance of the controllers, we analyze the
btained rewards (since this is the metric that is maximized by MBPO),
nd the two metrics which we are primarily interested in and which to-
ether produce the reward (see Eq. (10)), i.e., the constraint violations
nd the economic performance. Throughout this section, we report

economic performance via the economic cost incurred relative to the
ominal production cost, i.e., we report the total cost incurred by the
espective controller divided by the cost of steady-state production at

nominal rate given the same electricity price trajectory. Fig. 6(a) shows
hat SIKoopPIRLBounds and SIKoopRLBounds(i) reach the highest reward
alues and that they do so with (ii) exceptional sample efficiency

and (iii) low variance (see also Fig. 6(b)) across different training
runs. PIRLMLP and RLMLP also achieve low performance variance across
training runs, albeit with lower sample efficiency and at a lower
erformance level (when measured in average rewards) compared to

SIKoopPIRLBounds and SIKoopRLBounds. SIKoop performs worse, not con-
verging to high and stable rewards within the given budget of 2500
environment steps.

A direct comparison of the physics-informed vs. the purely data-
driven variants shows a small but consistent benefit resulting from the
tilization of partial physics knowledge in training the model ensemble:
IKoopPIRLBounds performs better than SIKoopRLBounds between 200 and
00 environment steps. Thereafter, both variants perform comparably
ell. The two MLP controller variants, PIRLMLP and RLMLP, show

imilar sample efficiency. Still, the PINN ensemble seems to benefit
he stability of the learning once relatively high rewards have been
eached.

Looking at Fig. 6(c), we can see that initially (up to around 1000
steps) SIKoopPIRLBounds and SIKoopRLBounds are best at avoiding con-
straint violations. In particular, SIKoopPIRLBounds quickly learns to avoid
constraint violations. Both variants continue to make relatively steady
progress in this regard up until the end of the training runs. The MLP
ontrollers initially cause many constraint violations, however, after
round 1000 environment steps they have learned to avoid constraint
iolations almost perfectly. Toward the end of the training, some of the
LMLP controllers seem to loose this capability partially. SIKoop struggles

with constraint satisfaction across the full length of all training runs.
Fig. 6(d) shows that, when looking at the economic performance,

here is a clear difference between the Koopman eNMPC-based con-
rollers and the MLP controllers: After around 750 environment steps,
he Koopman eNMPC-based controllers all produce average costs of
round 91% to 93% of nominal production costs. After that, no big
mprovement happens. The MLP controllers incur substantially higher
roduction costs (between 96% and 102% after 750 environment
teps); however, they keep improving until the end of the training.

hus, it is possible that their economic performance would eventually

D. Mayfrank et al.

s
t

i

r
t
f
c
S
r
s
𝑐
p

Computers and Chemical Engineering 201 (2025) 109240
Fig. 6. Performance metrics for different controller types. Each line represents the mean metric across 10 test episodes, averaged over 10 controllers trained with different random
eeds. Shaded areas denote one standard deviation from the mean, shown in a single direction (toward worse performance) for clarity. We add a point marker for each controller
ype to indicate the value obtained by the controller that achieved the highest average reward over the 10 test episodes.
S
b

l
d
s

m
r
t
e

become comparable to that of the Koopman eNMPC-based controllers
f given a higher training budget.

The control trajectories in Fig. 7 align with the findings derived
thus far from Fig. 6. All controllers show an intuitive inverse relation-
ship between electricity prices and coolant flow rate 𝐹 , although this
elationship is noticeably weaker for PIRLMLP and RLMLP. Moreover,
he MLP controllers do not utilize the full range of the control inputs
requently. These observations match the lower cost savings of the MLP
ontrollers. Regarding the evolution of the product concentration 𝑐,
IKoopPIRLBounds and SIKoopRLBounds effectively utilize the full feasible
ange without violating bounds. In contrast, SIKoop causes minor con-
traint violations. PIRLMLP and RLMLP avoid violations by maintaining
well within bounds but sacrifice process flexibility, limiting economic
erformance.

The sample efficiency of MBPO is foremost dependent on how
many interactions with the real environment are needed until the
model ensemble becomes an accurate surrogate of the real environ-
ment. Compared to purely data-driven models, PINNs can thrive in
settings where few training data are available (Raissi et al., 2019).
Here, we aim to confirm that the generally improved performance
of the physics-informed variants (SIKoopPIRLBounds, PIRLMLP) compared
to their non-physics-informed counterparts (SIKoopRLBounds, RLMLP) is
indeed due to the PINNs becoming accurate predictors of the real

system behavior more quickly than the vanilla NNs. We randomly pick t

9
one of the test trajectories produced by a fully trained SIKoopPIRLBounds
controller. Then, we randomly pick one of the SIKoopPIRLBounds and
IKoopRLBounds training runs. We test the ensembles that were produced
y the chosen training runs after 20, 500, and 2500 environment steps.

Fig. 8 shows the results of these tests. It is evident from Figs. 8(a)
and 8(d) that the data from 20 steps is not sufficient to reliably
earn accurate models. However, the predictions of the PINN ensemble
iverge less strongly than those of the vanilla NN ensemble. After 500
teps in the real environment (Figs. 8(b) and 8(e)), all but one of the

PINNs provide highly accurate predictions, whereas the predictions
of the vanilla NN ensemble look comparable to those of the PINN
ensemble after 20 steps. After 2500 steps, all members of the PINN
ensemble provide accurate predictions over the full 168-step horizon
of the test episode. Most members of the vanilla NN ensemble also
remain accurate over the full episode; however, some still diverge from
the true trajectory after some time. Note that (i) during MBPO policy
optimization (see Section 3.2.4), model predictions are chained only up
to eight times and that (ii) for each prediction, a different ensemble

ember is randomly chosen. Thus, MBPO is relatively robust with
espect to compounding model errors. This explains why one can expect
o obtain good control performance well before one can expect the
nsemble to converge to accurate closed-loop predictions over a long
ime horizon (cf. Figs. 6 and 8).

D. Mayfrank et al.

b

S
t
m

t
i

Computers and Chemical Engineering 201 (2025) 109240
Fig. 7. Control trajectory comparison. The bounds of each variable (see Table 2) are used for scaling to the [−1, 1] range. We omit the temperature 𝑇 since it never reaches its
ounds in any of the test episodes.
F
t

As explained in Section 3.2, in training the SIKoopPIRLBounds and
IKoopRLBounds controllers, 𝜽K are trained only via SI, whereas 𝜽B are
rained only via PPO using imagined policy rollouts using the learned
odel ensemble. This means that besides their good performance (see

Fig. 6), the SIKoopPIRLBounds and SIKoopRLBounds controllers have an-
other valuable property: the (very few) parameters 𝜽B that are used
o optimize the controller for task-optimal control performance are
ntuitively interpretable. Each parameter in 𝜽 modifies one of the
B

10
bounds in the OCPs of the eNMPC (see Eq. (8)), i.e., the lower and
upper bounds of 𝑐, 𝑇 , and the storage level. Fig. 9 shows the evolution
of 𝜽B during the SIKoopPIRLBounds and SIKoopRLBounds training runs.
or both variants and across all trained eNMPCs, the bounds of 𝑐 are
ightened (see Figs. 9(a) and 9(b)), thus decreasing the likelihood of

constraint violations. Figs. 9(c) and 9(d), which depict the adaptation
of the bounds of 𝑇 , are less conclusive. Here, the observed adaptations
to the bounds are smaller than those observed for 𝑐. Furthermore, the

D. Mayfrank et al.

Fig. 8. Comparison of closed-loop prediction results of a PINN ensemble and a vanilla NN ensemble after different numbers of data sampling steps in the real environment
(Fig. 3(a), first step). The bounds of each variable (see Table 2) are used for scaling to the [−1, 1] range. The red line depicts the true trajectory of 𝑐 and 𝑇 . Each blue line
corresponds to the closed-loop prediction of one ensemble member. Predictions are chained over the full horizon (168 steps) of the episode.

Fig. 9. Evolution of the parameters 𝜽B during training. Lines depict the average of the respective parameter over 10 training runs; the shaded regions depict one standard deviation
across the different training runs. The adaptation of the bounds is performed with respect to the scaled 𝑐 and 𝑇 variables (both variables scaled to the [−1,1] range using their
bounds given in Table 2). We leave the product storage in its original [0,6] range.

Computers and Chemical Engineering 201 (2025) 109240

11

D. Mayfrank et al.

(
m
b

i
d
𝑇

i
s
e
g
i
i
t
p

T

o
I

(
e
i
t
i
r
t
(
T
i
c
t
c
b

(

b

i
t
s
i
C

Computers and Chemical Engineering 201 (2025) 109240
directions of the adaptations do not align across all training instances.
Since in our controller tests, the bounds of 𝑐 were violated frequently
see Fig. 7), whereas no violations of the 𝑇 bounds were observed, it
akes intuitive sense that optimizing 𝜽B leads to a tightening of the 𝑐

ounds and a less decisive adaptation of the 𝑇 bounds. Fig. 9(f) shows
that a small but consistent back-off from the lower bound of the storage
s learned. The adaptation of the upper bound of the storage is less
ecisive (see Fig. 9(e)). This is not surprising since, like the bounds of
, the upper storage bound is not violated by any of the controllers

during training.

4. Conclusion

We present a method that aims to increase the sample efficiency of
RL-based training of data-driven (e)NMPCs for specific control tasks.
To that end, we combine our previously published approach (Mayfrank
et al., 2024b) for turning Koopman (e)NMPCs into automatically differ-
entiable policies that can be trained using RL methods with a physics-
nformed version of the MBPO algorithm (Janner et al., 2019), a
tate-of-the-art Dyna-style model-based RL algorithm. Our method it-
rates between three steps (see Fig. 3(a)): First, the Koopman (e)NMPC
athers data about the system dynamics by interacting with the phys-
cal system. Second, the Koopman model that is used in the (e)NMPC
s fitted to the data via SI. Furthermore, an ensemble of NNs is fitted
o the data. If (partial) knowledge of the system dynamics is available,
hysics-informed training can be utilized to increase the accuracy of

the NN ensemble. Third, a surrogate environment is constructed using
the NN ensemble to simulate the dynamics of the environment. In
conjunction with the PPO algorithm (Schulman et al., 2017), this
surrogate environment is used to optimize the Koopman (e)NMPC by
adapting the variable bounds that are imposed in the OCPs of the
(e)NMPC.

We validate our method using a demand response case study
(Mayfrank et al., 2024b) based on a benchmark CSTR model (Flores-

lacuahuac and Grossmann, 2006). The case study involves nonlinear
dynamics and hard constraints on system variables; however, due to
its small scale it is far less complex than many real-world systems. We
compare the performance of our method to that of Koopman eNMPCs
trained solely via iterative SI and to NN policies trained via (physics-
informed) model-based RL. We find that our method (see Section 2.3)
utperforms all other tested approaches when applied to our case study:
t reaches higher rewards and does so with better sample efficiency

and lower variance between differently seeded training instances, re-
sulting in improved economic performance and constraint satisfaction
compared to the benchmark methods.

Although our method for the training of task-optimal Koopman
(e)NMPCs achieves excellent sample efficiency in our case study, the
training process incurs a high computational cost. This cost is mainly
driven by the policy optimization step (see Fig. 3(a)), which involves
i) numerous interactions of the controller with the learned surrogate
nvironment and (ii) differentiating through the OPCs of the (e)NMPC
n order to execute policy gradient updates. However, these compu-
ationally intensive steps of our approach do not need to be executed
n real-time. The only step where computations need to be done in
eal-time is the data sampling step (see Fig. 3(a)). However, while
his step involves inference of the current version of the Koopman
e)NMPC, it does not involve backpropagation and parameter updates.
he computational burden of merely evaluating a Koopman (e)NMPC

s relatively low since it is predominantly driven by the need to solve a
onvex OCP. Therefore, we assume that our method should be scalable
o large systems. Our approach could offer concrete benefits for the
ontrol of various real-world systems where mechanistic models cannot
e used for predictive control. Future work should, therefore, validate

our method on case studies matching the scale and complexity of

challenging real-world control problems.

12
Recent works aim to improve upon the MBPO algorithm (e.g.,
Frauenknecht et al. (2024)) and Dyna-style model-based RL in general
e.g., Frauenknecht et al. (2025)). These methods do not require a

specific policy architecture. Therefore, they do not interfere with our
approach and could be combined with our method for potentially
even better performance. Another avenue of possible future research
is combining our method with approaches for learning disturbance
estimators for offset-free Koopman MPC (e.g., Son et al. (2021, 2022)):
Instead of learning modifications to the state bounds, a task-optimal
disturbance estimator could be learned to estimate the disagreement
etween the Koopman model and the PINN ensemble.

CRediT authorship contribution statement

Daniel Mayfrank: Writing – review & editing, Writing – origi-
nal draft, Visualization, Software, Methodology, Investigation, Con-
ceptualization. Mehmet Velioglu: Writing – review & editing, Writ-
ng – original draft, Software, Methodology, Investigation, Concep-
ualization. Alexander Mitsos: Writing – review & editing, Supervi-
ion, Funding acquisition, Conceptualization. Manuel Dahmen: Writ-
ng – review & editing, Supervision, Methodology, Funding acquisition,
onceptualization.

Nomenclature

Abbreviations

NN Neural network
CSTR Continuous stirred-tank reactor
DAE Differential–algebraic equation
(e)(N)MPC (Economic) (nonlinear) model

Predictive control
MBPO Model-based policy optimization
MDP Markov decision process
MLP Multilayer perceptron
MSE Mean squared error
OCP Optimal control problem
PDE Partial differential equation
PINN Physics-informed neural network
PPO Proximal policy optimization
RHS Right-hand side of equation
RL Reinforcement learning
SI System identification

Greek symbols

𝛼 Reward calculation hyperparameter
𝜽 Learnable parameters of controller
𝜆 PINN loss weight hyperparameter
𝝁 Expected value for action selection
𝝅 Policy
𝜌 CSTR production rate
𝝈 Standard deviation for action selection
𝜏 PINN time
𝝓 Learnable parameters of critic
𝛷 MPC stage cost
𝝍 Encoder MLP
𝝎 Learnable parameters of dynamic model

D. Mayfrank et al.

w

m
o

c
i

i

Computers and Chemical Engineering 201 (2025) 109240
Latin symbols

𝑨 Autoregressive part of Koopman
dynamics matrix

𝑩 External input part of Koopman
dynamics matrix

𝑐 CSTR product concentration
𝑪 Decoder matrix of Koopman model
 State transition database
𝐹 CSTR coolant flow rate
𝒈 Inequality constraints
𝒉 Equality constraints
𝑙 Storage filling level
𝑚 Control input dimensionality
𝑀 Penalty factor for slack variables
𝑛 State dimensionality
𝑁 Koopman state dimensionality
 Normal distribution
𝑵 𝑵 Neural network function representation
𝑝 Electricity price
𝑟 Reward
𝑅 Reaction rate
𝒔 Slack variables
𝑡 Time
𝑇 CSTR temperature
T Set of discrete time steps
𝒖 Control variables
𝒙 System state variables
𝒛 Koopman state variables

Subscripts

ss Steady-state
𝑡 Discrete time step

Superscripts

̇ Time derivative
∗ Indicates optimality
̂ Denotes model prediction

Declaration of generative AI and AI-assisted technologies in the
riting process

During the preparation of this work Daniel Mayfrank used Gram-
arly in order to correct grammar and spelling and to improve style

f writing. After using this tool, all authors reviewed and edited the
content as needed and take full responsibility for the content of the
publication.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Acknowledgments

This work was performed as part of the Helmholtz School for Data
Science in Life, Earth and Energy (HDS-LEE) and received funding from
the Helmholtz Association of German Research Centres.

Part of this work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation), Germany – 466656378 –
within the Priority Programme ‘‘SPP 2331:Machine Learning in Chem-
cal Engineering’’.
13
Data availability

Data sharing not applicable to this article.

References

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., Kolter, J.Z., 2019.
Differentiable convex optimization layers. Adv. Neural Inf. Process. Syst. 32,
9558–9570.

Brandner, D., Lucia, S., 2024. Reinforced model predictive control via trust-region
quasi-Newton policy optimization. arXiv preprint arXiv:2405.17983.

Brandner, D., Talis, T., Esche, E., Repke, J.-U., Lucia, S., 2023. Reinforcement learning
combined with model predictive control to optimally operate a flash separation
unit. In: Computer Aided Chemical Engineering. Vol. 52, Elsevier, pp. 595–600.

Chen, B., Cai, Z., Bergés, M., 2019. Gnu-RL: A precocial reinforcement learning solution
for building HVAC control using a differentiable MPC policy. In: Proceedings of the
6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities,
and Transportation. pp. 316–325.

Clavera, I., Rothfuss, J., Schulman, J., Fujita, Y., Asfour, T., Abbeel, P., 2018. Model-
based reinforcement learning via meta-policy optimization. In: Conference on Robot
Learning. pp. 617–629.

Dogru, O., Xie, J., Prakash, O., Chiplunkar, R., Soesanto, J.F., Chen, H., Velswamy, K.,
Ibrahim, F., Huang, B., 2024. Reinforcement learning in process industries: Review
and perspective. IEEE CAA J. Autom. Sin. 11 (2), 283–300.

Du, J., Park, J., Harjunkoski, I., Baldea, M., 2015. A time scale-bridging approach for
integrating production scheduling and process control. Comput. Chem. Eng. 79,
59–69.

Faria, R.d.R., Capron, B.D.O., Secchi, A.R., de Souza, Jr., M.B., 2022. Where reinforce-
ment learning meets process control: Review and guidelines. Processes 10 (11),
2311.

Faridi, I.K., Tsotsas, E., Kharaghani, A., 2024. Advancing process control in fluidized
bed biomass gasification using model-based deep reinforcement learning. Processes
12 (2), 254.

Flores-Tlacuahuac, A., Grossmann, I.E., 2006. Simultaneous cyclic scheduling and
control of a multiproduct CSTR. Ind. Eng. Chem. Res. 45 (20), 6698–6712.

Frauenknecht, B., Eisele, A., Subhasish, D., Solowjow, F., Trimpe, S., 2024. Trust the
model where it trusts itself–model-based actor-critic with uncertainty-aware rollout
adaption. arXiv preprint arXiv:2405.19014.

Frauenknecht, B., Subhasish, D., Solowjow, F., Trimpe, S., 2025. On rollouts in
model-based reinforcement learning. arXiv preprint arXiv:2501.16918.

Fujimoto, S., Hoof, H., Meger, D., 2018. Addressing function approximation error
in actor-critic methods. In: International Conference on Machine Learning. pp.
1587–1596.

Gao, C., Wang, D., 2023. Comparative study of model-based and model-free rein-
forcement learning control performance in HVAC systems. J. Build. Eng. 74,
106852.

Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedfor-
ward neural networks. In: Teh, Y.W., Titterington, M. (Eds.), Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics. In:
Proceedings of Machine Learning Research, Vol. 9, PMLR, pp. 249–256.

Gopaluni, R.B., Tulsyan, A., Chachuat, B., Huang, B., Lee, J.M., Amjad, F.,
Damarla, S.K., Kim, J.W., Lawrence, N.P., 2020. Modern machine learning tools
for monitoring and control of industrial processes: A survey. IFAC- Pap. 53 (2),
218–229.

Gros, S., Zanon, M., 2019. Data-driven economic NMPC using reinforcement learning.
IEEE Trans. Autom. Control 65 (2), 636–648.

Haarnoja, T., Zhou, A., Abbeel, P., Levine, S., 2018. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stockholm,
Sweden, July (2018) 10-15. In: Proceedings of Machine Learning Research, Vol.
80, PMLR, pp. 1856–1865.

Iman, R.L., Helton, J.C., Campbell, J.E., 1981. An approach to sensitivity analysis of
computer models: Part I—Introduction, input variable selection and preliminary
variable assessment. J. Qual. Technol. 13 (3), 174–183.

Janner, M., Fu, J., Zhang, M., Levine, S., 2019. When to trust your model: Model-based
policy optimization. Adv. Neural Inf. Process. Syst. 32, 12498–12509.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Korda, M., Mezić, I., 2018. Linear predictors for nonlinear dynamical systems: Koopman
operator meets model predictive control. Automatica 93, 149–160.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., Abbeel, P., 2018. Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592.

Liu, D.C., Nocedal, J., 1989. On the limited memory BFGS method for large scale
optimization. Math. Program. 45 (1–3), 503–528.

Liu, X.-Y., Wang, J.-X., 2021. Physics-informed dyna-style model-based deep re-
inforcement learning for dynamic control. Proc. R. Soc. A 477 (2255),
20210618.

http://refhub.elsevier.com/S0098-1354(25)00244-3/sb1
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb1
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb1
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb1
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb1
http://arxiv.org/abs/2405.17983
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb3
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb3
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb3
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb3
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb3
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb4
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb4
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb4
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb4
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb4
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb4
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb4
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb5
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb5
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb5
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb5
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb5
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb6
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb6
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb6
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb6
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb6
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb7
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb7
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb7
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb7
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb7
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb8
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb8
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb8
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb8
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb8
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb9
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb9
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb9
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb9
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb9
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb10
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb10
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb10
http://arxiv.org/abs/2405.19014
http://arxiv.org/abs/2501.16918
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb13
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb13
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb13
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb13
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb13
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb14
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb14
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb14
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb14
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb14
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb15
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb15
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb15
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb15
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb15
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb15
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb15
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb16
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb16
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb16
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb16
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb16
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb16
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb16
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb17
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb17
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb17
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb18
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb18
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb18
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb18
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb18
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb18
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb18
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb18
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb18
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb19
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb19
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb19
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb19
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb19
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb20
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb20
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb20
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb22
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb22
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb22
http://arxiv.org/abs/1802.10592
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb24
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb24
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb24
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb25
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb25
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb25
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb25
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb25

D. Mayfrank et al. Computers and Chemical Engineering 201 (2025) 109240
Lusch, B., Kutz, J.N., Brunton, S.L., 2018. Deep learning for universal linear embeddings
of nonlinear dynamics. Nat. Commun. 9 (1), 1–10.

Maddu, S., Sturm, D., Müller, C.L., Sbalzarini, I.F., 2022. Inverse Dirichlet weighting
enables reliable training of physics informed neural networks. Mach. Learn.: Sci.
Technol. 3 (1), 015026.

Mayfrank, D., Ahn, N.Y., Mitsos, A., Dahmen, M., 2024a. Task-optimal data-driven
surrogate models for eNMPC via differentiable simulation and optimization. arXiv
preprint arXiv:2403.14425.

Mayfrank, D., Mitsos, A., Dahmen, M., 2024b. End-to-end reinforcement learning of
koopman models for economic nonlinear model predictive control. Comput. Chem.
Eng. 190, 108824.

Open Power System Data, 2020. Open power system data. https://data.open-power-
system-data.org/time_series/ (Accessed 29 August 2022).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al., 2019. Pytorch: An imperative style,
high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32,
8024–8035.

Ponse, K., Kleuker, F., Fejér, M., Serra-Gómez, Á., Plaat, A., Moerland, T., 2024.
Reinforcement learning for sustainable energy: A survey. arXiv preprint arXiv:
2407.18597.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N., 2021. Stable-
baselines 3, Reliable reinforcement learning implementations. J. Mach. Learn. Res.
22 (268), 1–8.

Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. J. Comput. Phys. 378, 686–707.
14
Ramesh, A., Ravindran, B., 2023. Physics-informed model-based reinforcement learning.
In: Matni, N., Morari, M., Pappas, G.J. (Eds.), Learning for Dynamics and Control
Conference, L4DC 2023 15-16 2023, Philadelphia, PA, USA. In: Proceedings of
Machine Learning Research, volume 211, PMLR, pp. 26–37.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Son, S.H., Choi, H.-K., Kwon, J.S.-I., 2021. Application of offset-free Koopman-based
model predictive control to a batch pulp digester. AIChE J. 67 (9), e17301.

Son, S.H., Narasingam, A., Kwon, J.S.-I., 2022. Development of offset-free Koopman
Lyapunov-based model predictive control and mathematical analysis for zero
steady-state offset condition considering influence of Lyapunov constraints on
equilibrium point. J. Process Control 118, 26–36.

Sutton, R.S., 1991. Dyna, an integrated architecture for learning, planning, and reacting.
ACM Sigart Bull. 2 (4), 160–163.

Sutton, R.S., Barto, A.G., 2018. Reinforcement Learning: An Introduction. MIT Press.
Tang, W., Daoutidis, P., 2022. Data-driven control: Overview and perspectives. In: 2022

American Control Conference. ACC, IEEE, pp. 1048–1064.
Velioglu, M., Zhai, S., Rupprecht, S., Mitsos, A., Jupke, A., Dahmen, M., 2025. Physics-

informed neural networks for dynamic process operations with limited physical
knowledge and data. Comput. Chem. Eng. 192, 108899.

Wang, T., Bao, X., Clavera, I., Hoang, J., Wen, Y., Langlois, E., Zhang, S., Zhang, G.,
Abbeel, P., Ba, J., 2019. Benchmarking model-based reinforcement learning. arXiv
preprint arXiv:1907.02057.

Zhang, W., Cao, X., Yao, Y., An, Z., Xiao, X., Luo, D., 2021. Robust model-based
reinforcement learning for autonomous greenhouse control. In: Asian Conference
on Machine Learning. PMLR, pp. 1208–1223.

http://refhub.elsevier.com/S0098-1354(25)00244-3/sb26
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb26
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb26
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb27
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb27
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb27
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb27
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb27
http://arxiv.org/abs/2403.14425
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb29
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb29
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb29
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb29
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb29
https://data.open-power-system-data.org/time_series/
https://data.open-power-system-data.org/time_series/
https://data.open-power-system-data.org/time_series/
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb31
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb31
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb31
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb31
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb31
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb31
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb31
http://arxiv.org/abs/2407.18597
http://arxiv.org/abs/2407.18597
http://arxiv.org/abs/2407.18597
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb33
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb33
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb33
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb33
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb33
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb34
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb34
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb34
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb34
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb34
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb35
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb35
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb35
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb35
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb35
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb35
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb35
http://arxiv.org/abs/1707.06347
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb37
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb37
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb37
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb38
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb38
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb38
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb38
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb38
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb38
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb38
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb39
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb39
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb39
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb40
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb41
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb41
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb41
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb42
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb42
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb42
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb42
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb42
http://arxiv.org/abs/1907.02057
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb44
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb44
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb44
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb44
http://refhub.elsevier.com/S0098-1354(25)00244-3/sb44

	Sample-efficient reinforcement learning of Koopman eNMPC
	Introduction
	Method
	Model-Based Policy Optimization
	Differentiable Koopman (e)NMPC
	Physics-informed MBPO of Koopman models for control

	Numerical experiments
	Case study description
	Implementation details
	Model architecture
	Data sampling
	System identification
	Policy optimization
	Ablation and benchmark variants

	Results

	Conclusion
	CRediT authorship contribution statement
	Nomenclature
	Abbreviations
	Greek Symbols
	Latin Symbols
	Subscripts
	Superscripts

	Declaration of generative AI and AI-assisted technologies in the writing process
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

