
Journal of Global Optimization (2025) 92:837–888
https://doi.org/10.1007/s10898-025-01489-2

MUSE-BB: a decomposition algorithm for nonconvex
two-stage problems using strongmultisection branching

Marco Langiu1,2 ·Manuel Dahmen2 · Dominik Bongartz3 ·
Alexander Mitsos1,2,4

Received: 28 June 2024 / Accepted: 30 March 2025 / Published online: 5 May 2025
© The Author(s) 2025

Abstract
We present MUSE-BB, a branch-and-bound (B&B) based decomposition algorithm for the
deterministic global solution of nonconvex two-stage stochastic programming problems. In
contrast to three recent decomposition algorithms, which solve this type of problem in a
projected form by nesting an inner B&B in an outer B&B on the first-stage variables, we
branch on all variables within a single B&B tree. This results in a higher convergence order
of the lower bounding scheme, avoids repeated consideration of subdomains, inherent to the
nesting of B&B searches, and enables the use of cheaper subproblems. In particular, when
branching on second-stage variables, we employ a multisection variant of strong-branching,
inwhichwe simultaneously consider one candidate variable fromeach scenario for branching.
By our decomposable lower bounding scheme, the resulting subproblems are independent
and can be solved in parallel. We then use strong-branching scores to filter less promising
candidate variables and only generate child nodes corresponding to a multisection involving
the remaining variables by combining the appropriate subproblem results. We prove finite
ε f -convergence, and demonstrate that the lower-bounding scheme of MUSE-BB has at least
first-order convergence under the mild assumption of Lipschitz continuous functions and
relaxations.MUSE-BB is implemented andmade available open source, as an extensionof our
deterministic global solver for mixed-integer nonlinear programs, MAiNGO, with OpenMP-
parallelization of the decomposable subroutines. Numerical results show that MUSE-BB
requires less CPU time than solving the deterministic equivalent using the standard version

B Alexander Mitsos
alexander.mitsos@avt.rwth-aachen.de

Marco Langiu
marco.langiu@rwth-aachen.de

Manuel Dahmen
m.dahmen@fz-juelich.de

Dominik Bongartz
dominik.bongartz@kuleuven.be

1 Process Systems Engineering (AVT.SVT), RWTH Aachen University, 52074 Aachen, Germany

2 Institute of Climate and Energy Systems, Energy Systems Engineering (ICE-1), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany

3 Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium

4 JARA-ENERGY, 52425 Jülich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-025-01489-2&domain=pdf
http://orcid.org/0000-0002-1233-3481
http://orcid.org/0000-0003-2757-5253
http://orcid.org/0000-0003-1790-0235
http://orcid.org/0000-0003-0335-6566

838 Journal of Global Optimization (2025) 92:837–888

of MAiNGO; moreover, the parallelized decomposition allows for further reduction in wall
time.

Keywords Two-stage stochastic programming · Decomposition · Multisection ·
Convergence analysis · Clustering

List of symbols
F Feasible set of an optimization problem
f Objective function
g Generic constraint function vector
h Nonanticipativity constraints
L List of k scenarios for which both sibling subproblems are feasible, the associated

second-stage variable instances will be branched, producing 2k orthant nodes
M Map from scenarios producing exactly one infeasible sibling subproblem to the

sibling n with a feasible subproblem, the associated second-stage variable instances
will be branched, but do not add to the number of orthant nodes generated

N Number, e.g., of first-stage variables (subscript x) or second-stage constraints (sub-
script II)

n Node of the B&B tree
N Set of open nodes of the B&B tree
s Scenario
∇̌ Subgradient
X Domain of x
x First-stage variables
Y Domain of y
y Second-stage variables

Subscripts
• Related to lower bound
I Related to first-stage
II Related to second-stage

Superscripts
• Related to upper bound
cv Convex relaxation
† Related to incumbent
* Related to optimal solution

1 Introduction

A standard formulation for optimization under uncertainty is two-stage stochastic program-
ming [1], typically applied when long-term (“here and now”) decisions are taken prior to
the realization of uncertain scenarios, and then recourse (“wait and see”) decisions are taken
in response to the realized scenario. This paradigm may also be applied in situations where
future events can be expected to occur with a particular frequency, i.e., the scenarios do not
represent an uncertain, but rather time-variable future, as in design and operation problems
in process engineering [2, 3]. In the following we will not distinguish between the two cases
and treat both via “probabilities”.

123

Journal of Global Optimization (2025) 92:837–888 839

1.1 Problem formulation and notation

The overall two-stage problem (TSP) takes the form

f X ,Y :=min
x∈X fI (x) +

∑

s∈S
ws f Ys

II,s (x)

s. t. gI (x) ≤ 0,
TSPX ,Y

whereX � RNx ,Ys � RNy , for each s ∈ S, andY � RNs Ny , such thatX andY:=×s∈S Ys ,
are bounded hyperrectangles, and thus compact sets. The set of considered scenarios S is
assumed to have finite cardinality Ns :=|S| ≥ 1, and each element s ∈ S is assigned a
probability ws ∈ (0, 1],∑s∈S ws = 1. Throughout this work, we omit variable domains
and other parameters in references to optimization problems, if they are irrelevant, e.g., as in
TSP. The limitation to values in (0, 1] makes the sum in the objective a convex combination,
allowing for more concise definitions and proofs. Other weights can be equivalently used via
appropriate scaling and redefinition of the objective.

For each scenario s, the value of second-stage optimal value function f Ys
II,s , also known

as optimal recourse function corresponds to the optimal objective value of the following
recourse problem (RP) for a fixed value of x, and second-stage domain Ys :

f Ys
II,s (x) := min

ys∈Ys
fII,s

(
x, ys

)

s. t. gII,s
(
x, ys

) ≤ 0.
RPYs

s (x)

The decisions that need to be made in the first and second stage are captured by the variable
vectors x and ys , respectively. As a result, the TSPX ,Y and its optimal value f X ,Y are
parameterized by the domains X and Y , whereas RPYs

s (x) and its optimal value f Ys
II,s (x) are

parameterized by fixed first-stage variable values x and the domain Ys . fI : X �→ R and
fII,s : X × Ys �→ R denote the scalar-valued first- and second-stage objective functions,
and gI : X �→ RNI and gII,s : X × Ys �→ RNII the vector-valued first- and second-
stage constraint functions. Note that we assume the number of second-stage variables Ny ,
and second-stage constraints NII, to be equal for all scenarios. This assumption is naturally
satisfied in many applications of two stage problems, e.g., system design and operation.
While the generalization to different numbers Ny,s , and NII,s , for each scenario s does not
pose substantial complication, we only consider the simpler case for ease of exposition.

For conciseness, we aggregate the vectors ys into the overall vector of second-stage
variables y ∈ Y:

y:=
⎛

⎜⎝
y1
...

yNs

⎞

⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎝

y1,1
...

y1,Ny

...

yNs ,Ny

⎞

⎟⎟⎟⎟⎟⎟⎠
(y)

We denominate any scalar element ys,i of y or ys as a second-stage variable and refer to
the collection of elements at the same position i in ys for different values of s as instances
of a second-stage variable. Furthermore, we define the scenario objective functions fs :
X × Ys �→ R

fs(x, ys):= fI (x) + fII,s
(
x, ys

)
(fs)

123

840 Journal of Global Optimization (2025) 92:837–888

and the overall objective function f : X × Y �→ R

f (x, y):= fI (x) +
∑

s∈S
ws fII,s

(
x, ys

)
(f)

=
∑

s∈S
ws

(
fI (x) + fII,s

(
x, ys

))

=
∑

s∈S
ws fs(x, ys),

where the equalities follow from our assumptions on the weights ws .
Using these definitions, TSPX ,Y can be equivalently stated as the following single-stage

optimization problem, also known as the ‘extensive form’ or the ‘deterministic equivalent’:

f X ,Y = min
x∈X
y∈Y

f (x, y)

s. t. gDE(x, y),

DEX ,Y

where the vector-valued constraint function gDE : X ×Y �→ R
NDE

g , groups all NDE
g :=NI +

Ns NII constraints in DE, and is defined as

gDE(x, y) =
⎛

⎜⎝

gDE,1(x, y)
...

gDE,NDE
g

(x, y)

⎞

⎟⎠ :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

gI,1(x)
...

gI,NI(x)

gII,1,1(x, y1)
...

gII,Ns ,NII(x, yNs
)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (gDE)

The two problems TSPX ,Y and DEX ,Y are equivalent in the sense that their globally and
locally optimal solution points and optimal objective values coincide if they exist, whereas
if one of the formulations is infeasible or unbounded, so is the other, see e.g., [2]. We are
interested in the case where all functions in DE may be nonconvex. We limit the theoretical
considerations, implementation, and numerical results to continuous variables. Thus, we do
not explicitly address issues pertaining to discrete variables in the following. The presence
of discrete variables would however not pose substantial complication.

1.2 Literature overview

Solving TSPX ,Y by applying general-purpose branch and bound (B&B) solvers [e.g., [4–8]]
to DEX ,Y is possible, typically amounting to solution of relaxations of DEX n ,Yn

in every
B&Bnode.HereX n ∈ IX andYn ∈ IY , where IX and IY denote the sets of nonempty, compact
interval subsets of X and Y . However, as B&B is intrinsically exponential in the number
of (branched) variables, this approach has worst-case exponential runtime in the number
of scenarios. This has motivated the development of decomposition algorithms capable of
exploiting the special structure of TSP for a more efficient solution. In these algorithms,
multiple independent subproblems are solved instead of instances of DE, which can result in
a reduction of computational time required for the solution, as the subproblems are generally
much smaller and thus cheaper to solve. In the best case, such decomposition algorithms
achieve linear scaling with the number of scenarios Ns , i.e., an arithmetic complexity of

123

Journal of Global Optimization (2025) 92:837–888 841

O(Ns). Furthermore, the subproblems are independent and may thus be solved in parallel,
resulting in significant additional reductions of wall time.

Historically, decomposition strategies have predominantly been developed for certain sub-
classes of TSP, e.g., those restricted to linear functions and either only continuous [e.g., 9,
10] or mixed-integer variables [e.g., 11, 12], or those restricted to convex nonlinear functions
[e.g., Generalized Benders Decomposition (GBD) [13]]. More recently, algorithms address-
ing subclasses of TSP allowing for certain nonconvexities, but imposing additional structural
assumptions have also been proposed [e.g., [14–18]]. In the most general case, any of the
functions in TSP may be nonconvex, and no additional structural assumptions are imposed.
Two algorithm variants addressing this case are proposed by [19], however, both variants con-
sider elements of y which introduce nonconvexity as complicating variables in addition to x.
Thus, in the worst case subproblems have a similar size as the original problem, diminishing
the benefits of decomposition.

Three further recent algorithms all employ B&B exclusively on the first-stage variables:
(i) [20] propose a modified Lagrangian relaxation in which so called nonancticipativity con-
straints (cf. Sect. 2) are dualized. The resulting Lagrangian problem is thus still a nonconvex
two-stage problem but exhibits additional structure and can thus be solved in a decomposable
manner using the algorithm proposed by [14, 15]. As a result, only the continuous first-stage
variables need to be branched. (i i) [21] propose another B&B algorithm that obtains lower
bounds in each node via global solutions to separate, but generally nonconvex scenario sub-
problems, resulting from simply dropping the nonanticipativity constraints. (i i i) [22] use
mixed integer linear or convex mixed integer nonlinear relaxations based on DE as lower
bounding problems, which are solved via GBD. Cuts from Lagrangean subproblems are
added to a Benders master problem and cutting planes for convexification are added to the
Benders subproblems. All three algorithms [20–22], solve Ns independent subproblems on
X n × Ys at each B&B node n, where X n ∈ IX . While this implies that the computational
work of the bounding operation scales linearly in Ns , and further, that the subproblems can
be solved in parallel, linear scaling of the overall algorithms with Ns would additionally
require that the number of nodes in the outer B&B search is independent of the number of
scenarios. Note, however, that within a family of problemswith variable number of scenarios,
the quality of the lower bounds can be expected to depend on the number of scenarios. For a
given tolerance, the number of nodes visited by the outer B&B search may therefore depend
on the number of scenarios, despite branching only on x. Of course, a similar argument also
holds for other algorithms that are commonly thought to scale linearly with the number of
scenarios, e.g., classical Lagrangian dualization for convex problems. While such algorithms
are typically much more efficient for solving DE compared to general-purpose B&B, and
empirically do exhibit linear scaling, they have not been rigorously proven to scale linearly
with the number of scenarios in the general case.

1.3 Challenges of existing algorithms

Recently [23] observed that all three algorithms, addressing general nonconvex instances of
TSP [20–22] fall into the category of projection-based decomposition algorithms (PBDAs).
Algorithms in this category directly solve TSPX ,Y (which can be considered a projection
of DEX ,Y onto the X space) by considering only the first-stage variables via second-stage
optimal value functions f Ys

II,s . [24] argue that this approach likely suffers from the cluster
effect, a phenomenon of some spatial B&B algorithms, where a large number of nodes may
need to be visited near approximate global minimizers [25–27]. To avoid this effect, the

123

842 Journal of Global Optimization (2025) 92:837–888

relaxations of both objective and constraints need to have a sufficiently high convergence
order [28]. Note that throughout the article we refer to convergence order in the sense of
Hausdorff, unless stated otherwise. The convergence order of relaxations typically used in
algorithms for (mixed-integer) nonlinear programs has been analyzed in a series of articles
[cf. [28–31]]. [24] show that as a result of performing search in the X domain only, PBDAs
need to construct relaxations of the so-called scenario value functions:

f X ,Ys
s (x):=

{
fI (x) + f Ys

II,s (x) , x ∈ FX ,Ys
s

+∞, otherwise
,

where FX ,Ys
s are the feasible subsets of X in scenario s:

FX ,Ys
s :={x ∈ X | gI (x) ≤ 0, ∃ ys ∈ Ys : gII,s

(
x, ys

) ≤ 0}.

Adopting the convention for theminimumof an infeasible problem to be infinite, theweighted
sum over the scenario value functions is equivalent to the objective of TSP. [24] demonstrate
that only branching on x generally causes f X ,Ys

s to be nonsmooth, which in turn limits the
achievable convergence order. In particular, even the ideal PBDA, which uses the tightest-
possible relaxation for each f X ,Ys

s , i.e., the convex envelope, generally has a convergence
order below 1, and only achieves first-order convergence if all f X ,Ys

s are Lipschitz. On the
other hand, they show that this ideal relaxation has second-order convergence if f X ,Ys

s are
twice continuously differentiable, and furthermore, that the algorithm of [22] is equivalent
to using this ideal relaxation, if optimal dual multipliers λ∗

s are used. Note that in general,
generating convex envelopes of arbitrary f X ,Ys

s (via optimal dual multipliers or otherwise) is
prohibitively expensive. Furthermore, even for convex f , gI and gII,s , and even in the absence

of discrete variables, the f X ,Ys
s are not guaranteed to be smooth, but rather only lower semi-

continuous [cf., e.g., Theorem 35, Chapter 3 of 1]. In summary, using PBDAs, i.e., branching
on x only, limits convergence order to below one in general. As a result [24] state that PBDAs
are expected to suffer from clustering, and suggest to search for alternative decomposition
approaches, rather than for better relaxations in PBDAs. While a higher convergence order
can certainly be advantageous, we point out that this conclusion might be overly pessimistic,
as the occurrence of clustering is determined by the interplay of both convergence order, and
growth order of the objective and constraint functions [also see 28].

Nevertheless, the three aforementioned PBDAs [20–22] may potentially have further
issues. First, for each node n with domain X n ∈ IX , visited by the outer B&B algorithm
searching on X , an inner algorithm searches on X n ×Ys during the solution of the subprob-
lems. The consideration of x in both levels will therefore result in repeated consideration
of the same domain, constituting a duplication of work. Second, in the general case, where
there are nonconvexities in the second stage (through nonconvex objectives or constraints,
or integer variables), the lower bounding subproblems must at least occasionally be solved
globally to guarantee convergence. In addition, [20] and [21] also solve their upper bound-
ing problems globally, while [22] do not explicitly state whether their solutions are local or
global. Finally, the nesting of these expensive bounding routines in an outer B&B algorithm,
bears resemblance to early ideas for solving general mixed-integer nonlinear programming
problems, which considered branching on the integer variables and globally solving a con-
tinuous nonconvex problem in each node. However, such ideas have been abandoned since
nested exponential approaches are considered computationally unfavorable [32].

123

Journal of Global Optimization (2025) 92:837–888 843

1.4 A new decomposition algorithm for TSP

To improve convergence orders of the relaxations, and to avoid duplication of work and the
nesting of expensive search routines, we propose an alternative decomposition algorithm
for TSP. Similar to solving DE via a classical B&B algorithm, we explicitly branch on
first- and second-stage variables, however, we still make use of the structure inherent to
TSP to obtain decomposable bounding subproblems for each scenario. We call our proposed
algorithm MUSE-BB, as it combines classical scenario decomposition with multisection
[33] in a B&B algorithm. Efficient branching on multiple instances of a particular second-
stage variable is made possible by the fact that bounding subproblems for each scenario are
independent of second-stage variable instances from other scenarios:While branching a node
on Ns second-stage variables results in 2Ns child nodes, only 2 Ns independent subproblems
need to be solved to update their lower bounds. Each child node can then be generated by
combining bounds and variable domains from Ns out of the 2 Ns independent subproblems.
To limit memory requirements as well as the number of generated child nodes with poor
lower bounds, we filter the Ns candidate bisections based on strong-branching scores, and
allow for selecting a further subset of these bisections, ensuring an upper limit on the total
number of generated child nodes.

Like classical B&B algorithms, MUSE-BB searches the full variable space. Thus in the
worst-case, its runtime is expected to be exponential in Ns . However, the combination of
decomposition with multisection allows for a more efficient exploration of the search space
than with classical algorithms. Moreover, we analyze the convergence order of the lower
bounding scheme used inMUSE-BB.We show that while this convergence order is generally
lower than in classical B&B algorithms, it is at least as high as in PBDAs, and can be
strictly larger when the scenario value functions f X ,Ys

s are not Lipschitz. In particular we
show that the lower bounding scheme of MUSE-BB is (at least) first-order convergent if
all functions and convex relaxations are Lipschitz. While our lower bounding scheme is
generally not second-order convergent, we discuss a possible extension ofMUSE-BB, whose
lower bounding scheme achieves second-order convergence at unconstrained minimizers by
dualizing nonanticipativity constraints instead of dropping them. Overall, the results indicate
that MUSE-BB and its extension at least partially avoid issues with the cluster effect.

The remainder of the article is structured as follows: Sect. 2 gives a brief review of the
decomposable bounding subproblems used in scenario decomposition algorithms for TSP.
In Sect. 3 wemotivate the use of multisection branching of second-stage variables. Following
this, we outline two alternative variants of multisection that allow for efficient incorporation
of decomposable bounding problems in a B&B algorithm, branching on both x and y. Sec-
tion4 presents theMUSE-BB algorithm, incorporating one variant ofmultisection branching.
It includes implementation details followed by a formal statement of the MUSE-BB algo-
rithm and subroutines. In Sect. 5 we present convergence results for both our lower bounding
problems, and the overall algorithm. We show that under mild conditions MUSE-BB con-
verges to an ε f -optimal solution in finite time for any ε f > 0. Section6 presents the results
of computational experiments on a small test problem, highlighting the effect of different
parameters on MUSE-BB, and Sect. 7 summarizes the results and gives an outlook on future
work.

123

844 Journal of Global Optimization (2025) 92:837–888

2 Decomposable bounding subproblems for TSP

In this section we review how bounds on TSP can be obtained from separate subproblems
for each scenario. Since this approach trivially enables both parallelization and linear scaling
of the computational work for bounding with Ns , its variants are the basis of many existing
decomposition algorithms, as well as for MUSE-BB. The principal idea for decomposable
bounding routines is that first-stage variables are complicating, because they appear in the
objectives and constraints of all scenarios. Therefore, the problem can be decoupled by
scenario, by either introducing independent copies of x, or fixing its value. As shown in the
following, these two cases result in subproblems which respectively provide lower and upper
bounds on the optimal objective value f X ,Y of TSPX ,Y .

An equivalent representation of DEX ,Y and thus TSPX ,Y is the lifting obtained by intro-
ducing a copy xs of x for each scenario s and enforcing the equality of these copies, resulting
in the following nonanticipativity problem.

f X ,Y = min
xs∈X
y∈Y

∑

s∈S
ws fs(xs, ys)

s. t.
∑

s∈S
Hsxs = 0

gI (xs) ≤ 0 ∀s ∈ S
gII,s

(
xs, ys

) ≤ 0 ∀s ∈ S.

DEX ,Y
NAC

In DENAC, the first set of constraints enforces equality of all xs , thus, the coupling is moved
to these so called nonanticipativity constraints (NACs), where Hs are appropriately shaped,
sparse matrices. For simplicity, we assume the following, specific form of the NACs, also
used, e.g., in [22]:

x1 − xs = 0 ∀s ∈ S\{1}. (NACs)

Due to the linearity of theNACs, dualizing themwith Ns −1multiplier vectorsπ s ∈ RNx , s ∈
S\{1} removes the coupling, as it allows to define the vector λ:=(λ1, . . . ,λNs), consisting
of scenario-specific multiplier subvectors

λ1:= −
∑

s∈S\{1}
π s/ws,

λs :=π s/ws s ∈ S\{1}.
Note that inherently,

∑

s∈S
wsλs = 0. (1)

The resulting dualization gives rise to the Lagrangian relaxation

f X ,Y
LR (λ) :=min

xs∈X
y∈Y

∑

s∈S
ws

[
fs(xs, ys) + λs

ᵀxs
]

s. t. gI (xs) ≤ 0 ∀s ∈ S
gII,s

(
xs, ys

) ≤ 0 ∀s ∈ S.

LRX ,Y

By weak duality, the value f X ,Y
LR (λ) provides a lower bound to f X ,Y for any λ satisfying

Eq. (1) [cf. e.g., 34]. Furthermore, this bound can be obtained by solving the Ns separate

123

Journal of Global Optimization (2025) 92:837–888 845

Lagrangian subproblems

f X ,Ys
LSP,s (λs) := min

xs∈X
ys∈Ys

fs(xs, ys) + λs
ᵀxs

s. t. gI (xs) ≤ 0

gII,s
(
xs, ys

) ≤ 0,

LSPX ,Ys
s

and calculating the Lagrangian relaxation based lower bound as

f X ,Y
LR (λ) :=

∑

s∈S
ws f X ,Ys

LSP,s (λs) ≤ f X ,Y . (LRLB)

The best such bound is obtained by solving the Lagrangian dual, which can be written as

f X ,Y
LR

(
λ∗) := max

λ∈RNs Nx∑
s∈S λs=0

f X ,Ys
LSP,s (λs) . LX ,Y

It can be shown that if the sets FX ,Ys
s have a nonempty intersection, the resulting bound

corresponds to the minimum of the weighted sum of convex envelopes of scenario value
functions, [24], i.e:

f X ,Y
LR

(
λ∗) = min

x∈X
∑

s∈S
ws conv f X ,Ys

s (x) .

In that sense f X ,Y
LR

(
λ∗) constitutes the best bound obtainable via convex relaxation in the

framework of scenario decomposition. Unfortunately, obtaining optimal dual multipliers
λ∗ is both computationally expensive and numerically challenging [35]. We therefore only
consider the implications of updating the dual multipliers in Sect. 5, whereas in the remainder
of this work, we focus on the simpler case, also considered by [21], where all multipliers are
fixed to zero. In that case, the scenario relaxation of DEX ,Y consists of Ns scenario problems
of the form

f X ,Ys
SP,s := min

xs∈X
ys∈Ys

fs(xs, ys)

s. t. gI (xs) ≤ 0

gII,s
(
xs, ys

) ≤ 0.

SPX ,Ys
s

In Sect. 4.1 wewill introduce further subproblems, obtained from additional relaxations of
SPs . To distinguish the different optimal objective values, we use corresponding subscripts.
The globally optimal objective values f X ,Ys

SP,s of problems SPX ,Ys
s can be used to obtain a

lower bound f X ,Y
SP on the optimal objective value f X ,Y of DEX ,Y , i.e.,

f X ,Y
SP :=

∑

s∈S
ws f X ,Ys

SP,s ≤ f X ,Y . (SPLB)

While the resulting first-stage solutions obtained for each scenario will generally differ from
each other, the bound can be made arbitrarily tight by exhaustive branching on x. PBDAs
like [20–22] use this fact: while they branch on xs and ys during the global solution of the
subproblems SPs , the outer B&B search only requires branching on x to ensure convergence.
As shown by [24], however, the convergence order of such lower bounding schemes is

123

846 Journal of Global Optimization (2025) 92:837–888

inherently limited due to the nonsmoothness of f Ys
II,s (x), incurred by projection, also cf. TSP

and Sect. 1.
Upper bounds on f X ,Y can generally be obtained by evaluating any feasible point. Fixing

x to an arbitrary point x̃ ∈ X that is feasible with respect to gI, gives rise to Ns instances
of RPs . If each of these problems has at least one feasible point ỹs , the function values
fII,s

(
x̃, ỹs

)
provide an upper bound on f Ys

II,s (̃x), and thus the upper bounding function f ,
defined as

f (̃x, ỹ):= fI (̃x) +
∑

s∈S
ws fII,s (̃x, ỹs) ≥ f X ,Y (UB)

provides an upper bound on the optimal objective value f X ,Y . Thus, given a candidate for x̃,
values for ỹs can be obtained by local or global solutions of RP

Ys
s (̃x). Candidates proposed

in the literature are commonly based on the individual solutions x∗
s from the lower bounding

subproblems. A common candidate is the (ws-weighted) average x̃ = xavg = ∑
s∈S ws x∗

s
[20–22]. However, since the feasible set of TSPX ,Y is generally nonconvex, this point may
be infeasible. An alternative candidate that is at least guaranteed to be feasible with respect
to gI, and gII,srep , is x̃ = x∗

srep , such that srep is a representative scenario for which x∗
srep is

closest to xavg with respect to the relative Euclidean distance, i.e,

srep ∈ argmin
s∈S

Nx∑

i=1

(
xavgi − x∗

s,i

x i − xi

)2

, (srep)

where xi , and xi denote the original lower and upper bounds of xi [22]. Note that while x∗
srep

is trivially feasible in srep, it is generally not in other scenarios. Furthermore, if a candidate
x∗

srep does happen to be feasible, there is no guarantee that local solutions to the corresponding
instances of RPs are found.

As with any spatial B&B method, in the general nonconvex case, a guarantee to find
a feasible point allowing for termination is only given if the feasible set of DEX ,Y has
a nonempty interior at a global minimizer, also compare with the analysis for single-stage
programs in [36]. Furthermore, Example 3.1 in [36], where upper bounds are obtained simply
from feasible lower bounding solutions, shows that evenwhen the interior is nonempty, certain
combinations of problem instances, branching and node selection rules can lead to sequences
of lower bounding solutions that never include a feasible point. In such cases, an adaption of
the tested candidates, such as the approach proposed by [36]may be necessary. Unfortunately
such approaches may not address the more general situation of an empty interior, e.g., due
to the presence of equality constraints, although there are approaches that produce upper
bounds without guaranteeing to find feasible points [37]. On the other hand, feasible, and
even (approximately) globally optimal solutions can often be produced relatively easily for
many applications. Because of this, we neither implement the methods presented in [36]
in MUSE-BB, nor analyze this issue further. Instead we follow the common approach to
perform upper bounding via local solutions from candidate points, and concentrate this work
on the issues pertaining to lower bounding.

In summary, by solving instances of the separable subproblems SPX ,Ys
s and RPYs

s (̃x), we
can bound the desired optimal solution value of the original problem DEX ,Y from below and
above:

f X ,Y
SP ≤ f X ,Y ≤ f (̃x, ỹ).

Assuming that arbitrarily good feasible points are found during the successive partitioning of
the variable domains, the bounds can be tightened until some satisfactory accuracy ε f > 0

123

Journal of Global Optimization (2025) 92:837–888 847

is reached. The upper bound f then serves as an ε-optimal solution to problem DEX ,Y . In
the following section we present a special branching scheme that efficiently combines the
decomposable subproblems with partitioning of both X and Y .

3 Multisection branching for decomposable bounding schemes

To avoid several issues associated with the nested branching of PBDAs (cf. Sect. 1), we
propose to combine decomposable bounding schemes with explicit branching of both first-
and second-stage variables. As argued below, standard branching of individual variables
would eliminate some of the benefits of decomposable bounding schemes. We therefore
propose a special branching scheme that either partitions a single first-stage variable or
multiple second-stage variable instances in each iteration. To refer to the partition elements
containing the lower/upper part of a branched variable domain, we say the respective variable
was branched down/up.

We first present the concept of multisection as used in the MUSE-BB in Sect. 3.1. Fol-
lowing this, in Sect. 3.2 we outline an alternative idea that may be seen as a hybrid between
the variant presented in Sect. 3.1, and existing PBDAs.

3.1 Multisection in MUSE-BB

In a B&B algorithm for TSP using separable lower and upper bounding problems, branching
on elements of x and y has different implications for the resulting nodes: each node n is
characterized by the domains X n ⊂ X and Yn ⊂ Y , where Yn :=×s∈S Yn

s ;Yn
s ⊂ Ys .

To obtain a lower bound on n, variants of the Ns subproblems SP
X n ,Yn

s
s are solved. While

branching on an element of x bisects X n into two subdomains, e.g., X d and X u , which
generally results in changed bound contributions from all subproblems (compare cases a and
b in Fig. 1), branching on an element of y, e.g., ys,i , only bisects the second-stage variable
domain Yn

s of the associated scenario s (compare cases b and c in Fig. 1). Thus, if we were
to only branch on ys,i , each of the two resulting child nodes would have Ns − 1 unchanged
subproblems with respect to n. An example for this situation is given by the case c of Fig. 1.

In the parallel setting, where at least two subproblems can be solved simultaneously, this
implies that standard branching on second-stage variables leaves some processing capacity
unused. In other words, we could only exploit the parallelizable solution of subproblems
when processing nodes obtained from branching on first-stage variables.

To enable parallelism when processing nodes produced from second-stage branching,
we can branch on all Ns instances of a particular second-stage variable, instead of a single
one. Note that such a multisection is equivalent to Ns sequential bisections, i.e., it splits the
original node into 2Ns child nodes instead of two, also see the cases d) through g) of Fig. 1.
Multisection has previously been used in different B&B algorithms for general nonlinear
problems.Mostly this was in the form of branching the domain of a single variable at multiple
points (also called ‘multisplitting’) [38–40], but there are also examples of usingmultisection
in the present sense, i.e., branching once on multiple variables [33]. While these works
showed that multisplitting and multisection can result in better computational performance
than bisection, the considered B&B algorithms used standard bounding procedures and thus
needed to process all of the resulting nodes individually. In contrast, when solving TSP,
the use of separable bounding subproblems such as SPn

s allows us to generate bounds for
the exponential number of nodes resulting from multisection without explicitly processing

123

848 Journal of Global Optimization (2025) 92:837–888

Fig. 1 Implications of branching in scenario decomposition. We consider nodes from solving an instance of
DEwith Nx = Ny = 1, and Ns = 2. In this case, each node corresponds to a 3Ddomain (bottom) and updating
the lower bounds requires solving two bounding subproblems on a 2D domain (top). These subproblems can
be considered projections on the X × Y1 and X × Y2 faces of the node domain (dark and light blue colors,
respectively). b: Branching the node from a on x affects both subproblem domains. c: Branching the node
from b on a single instance of y, here y1, only affects the associated subproblem domain, while the subproblem
for the second scenario remains unchanged. d through g: Alternatively to c, branching on all instances of y
simultaneously results in four nodes instead of two. However, out of the eight subproblems associated with
these nodes only four are distinct. When processing two complementary nodes, e.g., node d (where both y1
and y2 are branched down), and node e (where both y1 and y2 are branched up), all distinct subproblems are
solved. Thus, explicitly processing the remaining nodes, i.e., f and g in our example, is unnecessary. Instead,
bounds for these nodes can be generated by combining the results from the subproblems solved for d and e.
(Color figure online)

each one individually: for each scenario s, branching on the associated second-stage variable
instance bisects the domain Yn

s into two subdomains, Yd
s , and Yu

s . Combining these new
domains with the unchanged domain X n therefore results in two different subproblems (i.e.,

SP
X n ,Yd

s
s , and SP

X n ,Yu
s

s) per scenario, i.e., multisection of second-stage variables only results
in 2 Ns distinct subproblems. Each child node simply corresponds to one of the possible
combinations of selecting one of the two subproblems for each scenario. This means that to
update lower bounds on all 2Ns child nodes, only the 2 Ns distinct subproblems need to be
solved. Note that this can be achieved by processing any two of the 2Ns nodes that contain
complementary subproblems. One such choice consists of the pair of nodes resulting from
branching all instances of the selected second-stage variable down, or up. In the following
we respectively call these two nodes the lower and upper sibling nodes.

In summary, if a first-stage variable is selected for branching, we perform standard bisec-
tion resulting in two child nodes, whereas if a second-stage variable is selected, we instead
perform multisection branching of all associated variable instances for different scenarios,
resulting in 2Ns nodes. In both cases, only two nodes need to be processed after branch-
ing a given node n: after first-stage branching, these two nodes are simply the child nodes
with domains (X d ,Yn) and (X u,Yn). After second-stage branching, we process the sibling
nodes, with domains (X n,Yd) and (X n,Yu), where Yd :=×s∈S Yd

s and Yu :=×s∈S Yu
s .

While theoretically one could generate 2Ns nodes after each second-stage branching, this
poses several issues in an actual implementation. To address this, it is possible to filter the
candidate bisections contributing to the final multisection, i.e., to keep only a “promising”
subset and thus produce a small number of high quality nodes. The process we use for this
will be presented in Sect. 4.4.

123

Journal of Global Optimization (2025) 92:837–888 849

We point out that while the proposed multisection procedure may appear to avoid a com-
putational cost for node processing that is exponential in Ns , this is only true at the level of
an individual iteration. Whereas the cost for generating the child nodes from multisection
branching is indeed linear in Ns , their number, and thus the overall computational cost for
further processing is still exponential in Ns . In the following, we outline an alternative use
of our multisection idea that may avoid this exponential scaling but bears resemblance to
PBDAs. While we do not pursue this idea further in the present work, we believe it to be
fruitful for future research.

3.2 Projectedmultisection

The only conceivable path to avoid exponential scalingwith Ns in the context ofmultisection-
based second-stage branching is to avoid the explicit generation of the resulting child nodes.
One approach for this is tomaintain information related to second-stage variable domains and
objective bounds at the subproblem level, without combining this information from different
scenarios into individual B&B nodes. One can still compute a lower bound related to the
first-stage domain by combining the lowest lower bounds from each scenario. Furthermore
this bound can be refined by further partitioning of the resulting subproblem domains and
organizing the resulting subproblem nodes in a separate B&B tree for each scenario. Similar
to PBDAs, this results in ‘nested’ B&B trees: The outer tree contains nodes based on first-
stage domains, each of which maintains a state of progress for the search in the second-stage
domains and associated lower bounds in Ns separate second-stage trees.

In contrast to existing PBDAs, branching of first- and second-stage variables is carried
out exclusively in the outer and inner trees, respectively. This not only avoids duplication
of first-stage variables, but also the exhaustive exploration of the second-stage trees in each
iteration, since their state is passed on to child nodes from branching on first-stage variables
in the outer tree.

The number of nodes in the outer tree is exponential in Nx . In the worst case, each such
outer node is associated to Ns full second-stage trees, the size of which is exponential in Ny .
Thus a total of NsaNx bNy nodes may need to be processed, i.e., it appears that this approach
would avoid the exponential scaling with Ns and indeed scale linearly with Ns .

While this linear scaling appears promising, avoiding the generation of nodes from explicit
combinations of subproblem data results in lower bounds based on the lowest lower bounds
from the second-stage trees. Since thismay be seen as a ‘projection’ of bounding information,
it is unclear whether this approach can be considered a full-space or rather a projected search.
We suspect the convergence order of this approach to be limited aswith PBDAs, and therefore
focus the remainder of this work on the previously presented idea.

4 Proposed algorithm

We now present the spatial multisection B&B algorithm MUSE-BB for the solution of
TSPX ,Y . Algorithm 1 presents a formal statement of MUSE-BB; the relevant subroutines
will be presented in the following. For conciseness, we assume throughout this section that
given a node n, we have access to its domains X n and Yn , and lower bound f n , as well as
the domainsX n

s and Yn
s , and lower bounds f n

s
of the corresponding subproblems. Under this

assumption, it suffices to provide nodes to the subroutines instead of all associated data. If a
node n can be fathomed by infeasibility, we set its lower bound f n to ∞.

123

850 Journal of Global Optimization (2025) 92:837–888

Algorithm 1:MUSE-BB

Input : Instance of TSPX ,Y , tolerance ε f , maximum number of effective bisections kmax,
strong-branching threshold η

Output: Incumbent point (x†, y†), incumbent objective value f , certificate f

1 n ← X × Y; f n ← −∞;N ← {n}; f ← ∞;Msib ← empty Map;
2 while N �= ∅ do // there are nodes to be processed
3 n ← select a node and remove fromN ;
4 if n ∈ Msib then // do a “sibling iteration”

// n is the previously processed parent node, re-entered into N
as a placeholder for the sibling nodes

5 (d, u) ← Msib[n] ; // recover the sibling nodes to be processed
// see Subroutine 3 in Section 4.3

6 (f n , f
n
, xn , yn) ← processSiblings(n, d, u);

7 if f
n

< f then (x†, y†, f) ← (xn , yn , f
n
);

8 if f n < f then
// see Subroutine 4 in Section 4.4

9 (M,L) ← filteredMultiSection(n, d, u);

10 foreach i ∈ {0, . . . , 2|L| − 1} do
// see Subroutine 5 in Section 4.4

11 o ← generateOrthantNode(i, n, d, u,M,L);
// see Subroutine 1 in Section 4.3

12 if f o < f then branchNode(o);
13 end
14 end
15 else // do a “normal iteration”

// see Subroutine 2 in Section 4.3

16 (f n , f
n
, xn , yn) ← processNode(n);

17 if f
n

< f then (x†, y†, f) ← (xn , yn , f
n
);

// see Subroutine 1 in Section 4.3

18 if f n < f then branchNode(n);
19 end
20 f ← minn∈N f n ; // update lowest lower bound

21 if f + ε f > f then return (x†, y†, f , f);
22 end
23 return (x†, y†, f , f);

On a high level, MUSE-BB only differs from a standard B&B algorithm in the use of
different kinds of iterations for nodes obtained from branching on first- and second-stage
variables. In both cases, the bounds of unprocessed nodes are updated, and the nodes are
either fathomed (by infeasibility or value dominance, i.e., f n ≥ f) or branched.

Each iteration begins with the selection of a node n from a list of nodes N (Line 3
in Algorithm 1). The selected node is either an unprocessed node (the root node or one
of the two child nodes obtained from standard bisection of a first-stage variable) which is
processed via a “normal iteration”, similar as in a standard B&B algorithm (Lines 15–18),
or it is a placeholder for two unprocessed sibling nodes that will be addressed via a special
“sibling iteration” (Lines 4–14). In the latter case, n is the parent of the sibling nodes that
was processed and multisected, (i.e., branched on Ns second-stage variables as presented
in Sect. 3) in a previous iteration. In that case, there is an entry in Msib, mapping n to the
sibling nodes d and u (Lines 4 and 5), which are processed together, using some of the bound
and domain information from their parent, n (Line 6). During this step we also search for

123

Journal of Global Optimization (2025) 92:837–888 851

an upper bound within the domain of the parent node. If possible, we use such a bound to
update the best known upper bound (Line 7) and if this does not allow the parent node to
be fathomed (Line 8), we use the results from the sibling iteration to generate processed
child nodes whose number is exponential in the number of branched variables. However,
instead of using all Ns bisections of the original multisection, we filter them, selecting only a
subset for the final multisection (Line 9, also see Sect. 4.4). We only consider branching via
partitioning of the original domain through hyperplanes, orthogonal to the branched variable
dimensions. Because of this and the related concept of an orthant, i.e., the intersection of
k mutually orthogonal half-spaces in k-dimensional Euclidean space, we refer to the nodes
resulting from the filtered multisection as “orthant nodes” in the following. The map M
and the list L, returned from the filtered multisection, determine the subproblem data (from
n, d, or u) to be used for a particular orthant node o. The number k of orthant nodes to be
generated is determined by the length of L (Line 10). As the orthant nodes are already in a
processed state, we immediately branch them, provided they cannot be fathomed (Line 12).

In the course of the algorithm, unprocessed nodes are either fathomed or branched, until
the lower and upper bounds converge to ε f optimality (Line 21) or the list N is exhausted
(Line 23, possibly indicating infeasibility of TSPX ,Y). On termination, MUSE-BB either
provides an incumbent (x†, y†), with an associated objective value f = f (x†, y†) that is at
most ε f larger than the global lower bound f , or a certificate of infeasibility (f = ∞).

We implement MUSE-BB as an extension of our deterministic global optimization solver
and open-source project MAiNGO [6]. In Sects. 4.1–4.2 we detail how lower bounding and
range reduction schemes available in MAiNGO are adapted to subproblems from Sect. 2
to obtain the decomposable bounding schemes used in the processing subroutines. Since
node processing comprises the main computational work, the respective subroutines are
parallelized in our implementation. The main theoretical results we present in Sect. 5 do
not depend on the presented bounding schemes, i.e., alternative ones may be employed
analogously. Next, we discuss the branching of first- and second-stage variables (Subroutine
1) via standard bisection and the multisection from Sect. 3, and detail how the resulting
nodes are respectively processed in “normal” and “sibling iterations” (Subroutines 2 and 3)
in Sect. 4.3. Finally, we present the subroutines for the filtered multisection and orthant node
generation in Sect. 4.4.

4.1 Lower and upper bounding

Our deterministic global solver MAiNGO [6] employs a general-purpose B&B algorithm
with lower bounding problems obtained via McCormick-based relaxation techniques [30,
41–45]. When solving TSP via equivalence to DE, we generate and solve such relaxations
based on DEX n ,Yn

for each node n. In the following, we abbreviate DEX n ,Yn
as DEn .

PBDAs like [21], on the other hand, only branch on the first-stage variables and solve
Ns subproblems SPX

n ,Ys
s (or variants thereof) in each node. To ensure convergence, the

three reviewed algorithms [20–22] at least occasionally solve these subproblems to global
optimality. This generally also requires branching on xs and ys , albeit not in the outer
algorithm.

InMUSE-BBwe also generate lower bounds based on SPs , however, we partition both the

X and Y domains in the same B&B tree and thus consider subproblems based on SP
X n ,Yn

s
s

(abbreviated as SPn
s in the following) instead of SPX

n ,Ys
s . In contrast to PBDAs, the explicit

partitioning of theY domain, renders global solution of subproblems unnecessary for conver-
gence. We therefore further relax the subproblems SPn

s , resulting in cheaper lower bounding

123

852 Journal of Global Optimization (2025) 92:837–888

problems. In particular, we make use of the available relaxation techniques in MAiNGO to
construct the following McCormick based convex relaxations of SPn

s :

f n
MC,s := min

xs∈X n

ys∈Yn
s

f cv,ns (xs, ys)

s. t. gcv,nI (xs) ≤ 0

gcv,nII,s (xs, ys) ≤ 0,

MCn
s

where f cv,ns , gcv,nI , and gcv,nII,s are the McCormick based convex relaxations of the functions
fs, gI, and gII,s , onX n ×Yn

s , respectively [41, 42, 45]. These problems are further linearized
based on subtangents at one or more linearization points [cf. 46]. By default (and in all
experiments in Sect. 6) we only linearize at the midpoint of the node domain. The resulting
lower bounding problems take the form:

f n
LP,s := min

xs∈X n

ys∈Yn
s

v∈R

v

s. t. subn
fs

(
xs, ys

) ≤ v

subn
gI

(xs) ≤ 0

subn
gII,s

(
xs, ys

) ≤ 0

LPn
s

Here, subn
φ are subtangents of the convex relaxation of the function φ at the center of the

domain of node n, i.e.,

subn
φ(•):=φcv,n(m•) + ∇̌φcv,n(m•)ᵀ(• − m•) (subtangent)

where the superscript ‘cv,n’ denotes the corresponding convex relaxation, m• denotes the
midpoint of either X n or X n × Yn

s (depending on the passed variables), and ∇̌ denotes a
subgradient, i.e., ∇̌φcv,n(m•) ∈ ∂φcv,n(m•), where ∂φcv,n(m•) is the subdifferential of φcv,n

at m•. Since f n
LP,s are valid lower bounds on the globally optimal objective values f

X n ,Yn
s

SP,s
of SPn

s , they provide a valid lower bound for node n, i.e:

f n
LP:=

∑

s∈S
ws f n

LP,s ≤ f n
SP ≤ f X

n ,Yn
. (LPLBn)

Evidently this bound is generally weaker than the one obtained via global solution (see
SPLB), but it is also much cheaper to compute.

For upper bounding, we solve instances of the form RP
Yn

s
s (̃xn) (abbreviated as RPn

s in the
following), instead of RPYs

s (̃xn) as in PBDAs. Furthermore, in contrast to [20] and [21] who
solve their upper bounding problems globally, we again aim to reduce computational cost by
solvingRPn

s locally.Weobtain x̃n from the lower bounding solution corresponding to srep (see
Sect. 2). If the corresponding local solutions of RPn

s result in a feasible ỹn = (̃ y1, . . . , ỹNs
),

the corresponding objective values fII,s
(
x̃n, ỹn

s

) ≥ f
Yn

s
II,s (̃xn) can be aggregated to a globally

valid upper bound f
n
, via the upper bounding function (UB), i.e:

f
n := f (̃xn, ỹn) ≥ f X ,Y (UBn)

If f
n
is smaller than the previously best upper bound f , the incumbent (x†, y†) and f are

updated with (̃xn , ỹn) and f
n
, respectively.

123

Journal of Global Optimization (2025) 92:837–888 853

4.2 Range reduction

In this section we discuss decomposable range reduction routines for tightening variable
bounds in B&B algorithms for TSP. We first consider two general points, namely, how the
NACs can enable fathoming by infeasibility after application of these routines, and how
dominance rules give rise to scenario-specific objective cuts. We then present the specific
routines employed in MUSE-BB. While range reduction is not necessary from a theoretical
standpoint, it can improve the efficiency of the algorithm by reducing the search domain.

Based on decomposable bounding problems such as SPn
s or LPn

s , one can obtain decom-
posable range reduction routines by applying reduction techniques to the subproblems instead
of the full problem DEn . Standard techniques for feasibility-based reductions can be applied.
As will be discussed in the following, however, optimality-based reductions require modified
upper bounds instead of objective values of points, feasible in the subproblems. In both cases,
the independence of subproblems allows for parallel updates of the bounds for the variables
(xs , ys) of each scenario s.

After each round of range reduction, the NACs can be used to tighten the first-stage
variable bounds. More explicitly, if X n

s denotes the tightened first-stage variable domain for
node n and scenario s after any of the presented decomposable range reduction routines, a
valid reduction of the overall domain X n is evidently given by the intersection X n ′:

X n ′:=
⋂

s∈S
X n

s (X n
s aggregation)

In particular, if X n ′ is empty, node n can be fathomed by infeasibility.
If an upper bound f is known, dominance rules can be used to derive objective cuts

for range reduction routines. Since in a decomposable bounding scheme objective values
obtainable in any particular node n are limited from below by the local lower bound f n

SP,
all nodes for which f n

SP > f holds can be fathomed by dominance. To derive a scenario-
specific cutoff based on a given value of f , we rewrite the dominance condition in terms of
scenario-specific lower bounds. Using (SPLB), a node is dominated if

∑

s∈S
ws f

X n ,Yn
s

SP,s > f .

Note that replacing any f
X n ,Yn

s
SP,s by a smaller value (say f n

SP,s
) results in an even stronger

condition, that implies the above. Thus for any particular scenario s, the node is dominated
if

f n
SP,s

>

f − ∑
s′∈S\{s}

ws′ f n
SP,s′

ws
=: f

n
s (s-domination)

The above approach is a slight generalization to the scenario-specific upper bounds proposed
by [47] for the ‘primal problems’ in their decomposition method. In particular, any valid
lower bounds f n

SP,s
can be used. In MUSE-BB we use the maximum of f n

LP,s and an interval

arithmetic based lower bound based on the objective of SPn
s .

MAiNGO implements three range reduction techniques: constraint propagation [CP, cf.
e.g. 48], optimization-based bounds tightening [OBBT, cf. e.g. 49], duality-based bounds
tightening and probing [both referred to as DBBT in the following, cf. e.g. 50].

CP essentially refers to the inverse propagation of feasible intervals of the constraint val-
ues, i.e., (−∞, 0] in our case, to the variables [48]. This allows to determine conservative

123

854 Journal of Global Optimization (2025) 92:837–888

variable ranges for which the constraints can be fulfilled and thus enables domain reduc-
tion by intersecting the variable domains with these valid ranges. Thus, applying CP to the
subproblems SPn

s instead of DEn directly gives a decomposable routine.
The OBBT procedure consists of minimizing or maximizing a selected variable v subject

to the (relaxed) constraints of the original problem [49]. In our case, we consider scenario-
specific OBBT-problems, based on the lower bounding subproblems LPn

s , i.e., they take the
form:

v\v =min \max
xs∈X n

ys∈Yn
s

v

s. t. subn
fs

(
xs, ys

) ≤ f
n
s

subn
gI

(xs) ≤ 0

subn
gII,s

(
xs, ys

) ≤ 0

OBBTn
s,v

While no finite upper bound f is known, the first constraint is dropped. For each iteration, we
initially consider all variables for OBBT, and apply a variant of the trivial filtering heuristic
from [49] after each pass. Similar OBBT based problems have been proposed, e.g., by [20,
21, 51] for their respective algorithms.

DBBT uses objective bounds and duality information from the node subproblems that are
typically solved in spatial B&B algorithms [50] to tighten variable domains. In our case, if
all subproblems LPn

s are feasible, the solutions (̃xs , ỹs), associated reduced cost multipliers
(rx,s, r y,s), and lower bounds f n

LP,s are available. If in addition a finite upper bound f is

known, we can compute scenario-specific f
n
s values from s-domination and perform DBBT.

For variables v for which the solution value v∗ corresponds to the respective lower or upper
bound, the complementary bound may be tightened:

if v∗ = v, set v = min

(
v, v + f

n
s − f n

LP,s

r

)

if v∗ = v, set v = max

(
v, v + f

n
s − f n

LP,s

r

) (DBBT)

where r is the corresponding entry in rx,s or r y,s , which must be positive in the first case
and negative in the second one. For variables for which the solution lies between the bounds,
two probing variants of LPn

s can be solved: in these probing LPs, the variable is temporarily
fixed to one of its bounds and DBBT is applied based on the new reduced cost multipliers
and optimal objective values. As probing is relatively expensive, it is deactivated by default
(and in all experiments of Sect. 6).

Since each subproblem contains only part of the information of DEn , the presented range-
reduction routines will generally be less effective than their full space counterparts. Thus,
the use of parallelized range reduction needs to result in sufficiently large reductions of wall
time to warrant the looser variable bounds. In comparison to the solution time of a lower
bounding problem, CP is computationally very cheap, whichmakes its decomposable variant
less appealing. Nevertheless it must be used when processing sibling nodes obtained from
multisection branching (cf. Sect. 3), as the resulting domains are needed for the generation
of orthant nodes, also see Subroutine 5 in Sect. 4. OBBT on the other hand is a relatively
expensive procedure. This typically causes OBBT to dominate the computational work done
per iteration and thus makes a decomposable OBBT variant more appealing. Finally, the

123

Journal of Global Optimization (2025) 92:837–888 855

Subroutine 1: branchNode(n)
1 v ← select a variable from (x, y) maximizing largest relative domain width × branching priority;
2 if v ∈ {

xi , | i ∈ {1, · · · , Nx }} then // v corresponds to some xi
3 (d, u) ← bisect n along the domain of v;
4 N ← N ∪ {d, u};
5 else // v corresponds to ys′,i for some s′
6 i ← index for which v = ys′,i ;
7 d ← n; u ← n; // Initialize d and u as copies of n

foreach s ∈ S do // branch d/u down/up on all instances of v

8 v ← ys,i ;
9 d ← lower half of bisecting d along the domain of v;

10 u ← upper half of bisecting u along the domain of v;
11 end

// Since n, d, and u all share the same lower bound, the former is
re-entered into N and the latter two are stored in Msib

12 N ← N ∪ {n};
13 Msib[n] ← (d, u);
14 end

use of decomposable lower bounding problems inherently requires the use of decomposable
DBBT, as duality information necessary for a full space variant is not available.

4.3 Branching and node processing

In this section,wepresent the branching andprocessing routines ofAlgorithm1. InSubroutine
1, we first present how processed nodes are branched, as this determines the kind of iteration
that will be performed for the child nodes. Following this, we present the processing of nodes
obtained from first- and second-stage branching in Subroutines 2 and 3.

Any processed node n that is not fathomed is branched on either a first-stage variable or
on multiple second-stage variable instances, as outlined in Subroutine 1. For this, we select
some first- or second-stage variable v, maximizing the product of relative domain width
(i.e., current over original interval width) and branching priority (assumed to be nonzero), to
ensure exhaustive partitioning. If v is an element of x, i.e., v = xi , we bisect the associated
domain X n

i = [xi , xi] at some branching point xbi , and add the two resulting nodes with the
lower and upper part of the original domain (i.e., [xi , xbi] and [xbi , xi]) to the list of open
nodes (Lines 3 and 4 in Subroutine 1). In MUSE-BB, xbi always corresponds to the center of
the interval, i.e., 0.5 (xi + xi).

If instead, v is an element of y, i.e., v = ys′,i , for some s′, we perform the proposed
multisection branching. As pointed out in Sect. 3, the child nodes of this multisection can
subsequently be generated from the results of two complementary nodes. Therefore we only
need to generate the lower and upper sibling node at this point. Taking the example from
Fig. 1:multisecting a parent node p, corresponding to nodeb) in Fig. 1, results in sibling nodes
d , and u, corresponding to nodes d), and e), respectively, which we create by branching all
Ns instances of the selected second-stage variable ys,i down / up (Lines 6–11).

For a practical algorithm, we need to limit the number of nodes that will be generated in
the sibling iterations, as will be outlined in Sect. 4.4. This is done via a filtered multisection
which requires domain and bound data from the parent node n aswell as the sibling nodes.We
therefore return the parent node to the list of open nodes and create the mapping n �→ (d, u)

123

856 Journal of Global Optimization (2025) 92:837–888

Subroutine 2: processNode(n)
1 do CP based on DEn ; fathom by dominance or infeasibility;
2 do OBBT based on LPn

s ; fathom by dominance; apply X n
s aggregation, fathom by infeasibility ;

3 solve LPn
s and set f n

s
← f n

LP,s ∀s ∈ S, use LPLBn , set f n ← f n
LP, fathom by dominance or

infeasibility ;
4 x̃n ← solution of LPn

s with s = srep;

5 (̃ yn
s , f

n
s) ← solution and objective value of RPn

s ∀s ∈ S, update (̃ yn , f
n
) via UBn , fathom by

dominance ;
6 do DBBT based on LPn

s , fathom by dominance;

7 return (f n , f
n
, x̃n , ỹn)

in Msib (Lines 12 and 13). When the node n is selected a second time in Algorithm 1, this
is detected via a lookup in Msib and we perform a sibling iteration instead.

For the root node and all nodes resulting from first-stage branching, we do a “normal
iteration”, i.e., the respective node is processed as specified in Subroutine 2, and either
fathomed, or branched as specified in Subroutine 1. The only difference of Subroutine 2
with respect to a standard B&B algorithm is the possible use of decomposable bounding and
range reduction routines from Sect. 4.1 and 4.2. In our implementation, we solve scenario
subproblems for OBBT (Line 2 of Subroutine 2), lower and upper bounding (Lines 3 and 5),
and DBBT (Line 6) in parallel, while the computationally cheap CP (Line 1) is done using
the full problem, DEn . To generate a candidate solution x̃n for upper bounding (Line 4), we
use a representative scenario srep as outlined in Sect. 2.

With sibling nodes, obtained from second-stage branching, we do a “sibling iteration”.
Before we give the formal statement of the combined processing of siblings in Subroutine
3, we recall that child nodes from multisection can be generated by combining the results
from different subproblems of both siblings (cf. Sect. 3). In contrast to Subroutine 2, the use
of decomposable range reduction and bounding routines is thus mandatory in Subroutine
3. Moreover, we cannot perform X n

s aggregation after doing range reduction routines on
n ∈ {d, u}, because the resulting tightening would only be valid for the respective sibling
node. However, we can first propagate results form range reduction of both siblings to the
parent node p, whose multi section resulted in d and u, and then back to the siblings: let X d

s ,
X u

s and Yd
s , Yu

s denote the tightened variable domains obtained after applying some range
reduction to the subproblems of d and u for scenario s. Then the unions of the first- and
second-stage domains are a valid tightening of the corresponding domains from the parent
node p, i.e:

X p
s ← conv

(
X d

s ∪ X u
s

)

Y p
s ← conv

(
Yd

s ∪ Yu
s

) (parent s-domain tightening)

Here, the use of the convex hull of the unions is purely for ease of implementation, as it
ensures the resulting domains are representable as hyperrectangles. Once we have applied
parent s-domain tightening for all scenarios, we can use the resultingX p

s forX p
s aggregation.

Intersecting the resulting X p ′ with X d
s and X u

s results in a valid tightening of the sibling
domains:

X d
s

′ ← X d
s ∩ X p ′

X u
s

′ ← X u
s ∩ X p ′ (sibling s-domain tightening)

123

Journal of Global Optimization (2025) 92:837–888 857

Subroutine 3: processSiblings(p, d, u)

1 foreach s ∈ S do
2 foreach n ∈ {d, u} do
3 CP based on SPn

s ; fathom by dominance or infeasibility
4 end
5 apply parent s-domain tightening; fathom by infeasibility;
6 end
7 apply X p

s aggregation, apply sibling s-domain tightening ∀s ∈ S, fathom by infeasibility;
8 foreach s ∈ S do
9 foreach n ∈ {d, u} do

10 OBBT based on LPn
s ; fathom by dominance

11 end
12 apply parent s-domain tightening; fathom by infeasibility;
13 end
14 apply X p

s aggregation, apply sibling s-domain tightening ∀s ∈ S, fathom by infeasibility;
15 foreach s ∈ S do
16 foreach n ∈ {d, u} do
17 solve LPn

s , set f n
s

← f n
LP,s , and fathom by infeasibility

18 end
19 check for s-domination; fathom by dominance;
20 end
21 foreach s ∈ S do
22 foreach n ∈ {d, u} do
23 do DBBT based on LPn

s ; fathom by dominance
24 end
25 apply parent s-domain tightening; fathom by infeasibility;
26 end
27 apply X p

s aggregation, apply sibling s-domain tightening ∀s ∈ S, fathom by infeasibility;
28 x̃ p ← solution of LPn

s with s from a variant of srep that considers all feasible scenarios for n ∈ {d, u};
29 foreach s ∈ S do
30 (̃ yp

s , f
p
s) ← solution and objective value of RPp

s , check for s-domination; fathom by dominance;
31 end
32 update (̃ yp, f

p
) via UBp ;

33 return (f p, f
p
, x̃ p, ỹp)

With this in place we can now review Subroutine 3. For each scenario, we execute the
range reduction and lower bounding routines for the corresponding subproblem of both
siblings. Any of these routines may indicate that either d or u can be fathomed because
the subproblem for some scenario s is dominated or infeasible. However, the results from
the remaining subproblems of the fathomable sibling can still be combined with the results
of the subproblem for s from the other sibling to generate child nodes. Thus we continue
the sibling iteration as long as for each scenario there is at least one feasible, undominated
subproblem from either sibling. For lower bounding (Lines 15–20 in Subroutine 3) we solve
the subproblems LPn

s , using the associated domains after CP (Lines 1–6) and OBBT (Lines
8–13). Following this, we perform DBBT (Lines 21–26). We perform all range reduction
(Lines 1–6, Lines 8–13, and Lines 21–26), as well as bounding (Lines 15–20, and Lines 29–
31) in parallel. Based on the final variable domains and objective bounds, we can generate
processed orthant nodes as detailed in Sect. 4.4. In analogy to Subroutine 2, we could solve
one upper bounding problem for each such orthant node, however, this would result in an
exponential number of upper bounding problems. Instead, we choose to solve only a single

set of upper bounding problems RPY
p
s

s (̃x p) (Lines 29–31 in Subroutine 3), using the Y p
s

123

858 Journal of Global Optimization (2025) 92:837–888

domains, resulting from parent s-domain tightening after DBBT. We select x̃n to be one of
the first-stage solutions of the feasible subproblems of both siblings, based on a representative
scenario srep, that takes into account the subproblems of both siblings.

4.4 Filteredmultisection

In this section we present a filtered multisection that addresses issues pertaining to the inher-
ently exponential number of child nodes resulting from multisection branching, as presented
in Sect. 3. After motivating this filteredmultisection we give a formal statement in Subroutine
4. Following this, we comment on the possibility of adapting a related approach used in [21],
for branching on first-stage variables. Finally we present the generation of orthant nodes in
Subroutine 5.

The ability to generate 2Ns bounded child nodes by processing and recombining the results
from just two sibling nodes may seem attractive, however, handling an exponential number
of nodes for arbitrary Ns can quickly become an issue in practice. Consider for instance a
simple problem with Nx = Ny = 1; simply storing the variable bounds of child nodes from
a single second-stage branching as 8 byte double values requires 16 (1+ Ns) 2Ns bytes, e.g.,
more than two terabytes of memory for Ns = 32. At least in principle, we could avoid this
memory issue by generating the nodes on demand in later iterations, however, doing this in
an appropriate order, e.g., by increasing lower bound would require additional computations.
More importantly, it is possible that for some of the bisections neither of the two subproblems
improves the lower bound of the parent node significantly. This can result in a large number
of nodes with weak objective bounds that all need to be processed separately, slowing down
the algorithm.

To address this issue, we can select a subset of the Ns bisection candidates that allows for
a significant increase of the lower bound or reduction of the overall domain size, compared
to the parent node. We then revert the original multisection in favor of a second, filtered
multisection, comprising only the variable instances corresponding to the selected bisection
candidates. For this, we use Subroutine 4, which will be presented in the following. Note that
each bisection candidate corresponds to a particular scenario s, a branched variable instance
ys,i , and two associated sibling subproblems with complementary domains for ys,i . For each
bisection candidate we get one of three results:

Case 1) Both subproblems are infeasible, this immediately implies infeasibility of the parent
node p.

Case 2) Exactly one subproblem is infeasible, only the domain of the feasible subproblem
can contribute to the generation of feasible orthant nodes, i.e., selecting this bisection
candidate does not increase their number.

Case 3) Both subproblems are feasible, selecting this bisection candidate doubles the result-
ing number of orthant nodes.

Since Case (1) is already addressed by the fathoming rules in Subroutine 3, Subroutine 4
only needs to address Cases (2) and (3). We select all bisection candidates from Case (2)
(Lines 4–7 in Subroutine 4), as they effectively result in a domain reduction, without affecting
the number of generated nodes. The feasible subproblems associated with these bisection
candidates are stored in the map M. The remaining bisection candidates, corresponding to
Case (3), are collected in L (Line 9).

As the number k ≤ Ns of bisection candidates selected from Case (3) determines the
resulting number of child nodes, we call k the “effective number of bisections”. To determine
which bisection candidates should be selected, we use a heuristic based on strong-branching

123

Journal of Global Optimization (2025) 92:837–888 859

Subroutine 4: filteredMultiSection(p, d, u)

1 M ← empty map; /* mapping s with single feasible subproblem to
the corresponding sibling */

2 L ← empty list; /* containing s for which both sibling subproblems
are feasible */

3 foreach s ∈ S do
4 if f d

s
= ∞ then

5 M[s] = u; // variable corresponding to s will be branched
6 else if f u

s
= ∞ then

7 M[s] = d; // variable corresponding to s will be branched
8 else
9 append s to L; /* variable corresponding to s might be

branched (see Lines 16–17) */
10 end
11 end
12 σmax = maxs∈L σs ;

13 if σmax ≤ ε2σ then
14 replace σs and σmax with scores based on relative widths of variable domains
15 end
16 delete all s for which σs ≤ ησmax from L;
17 delete all but the kmax best entries from L;
18 return (M, L);

scores [52, 53]: given sibling nodes d and u obtained from the parent node p, each bisection
candidate, i.e., each scenario s, is assigned a strong-branching score σs . For this, we employ
the default scoring function of SCIP, proposed in [54], which is calculated as

σs :=max(f d
s

− f p
s
, εσ)max(f u

s
− f p

s
, εσ) (σs)

Here the constant εσ ensures a nonnegative score for cases where only one sibling improves
upon the parent bound.

We only keep scenarios from L with a score of at least ησmax, where η ∈ (0, 1] and σmax

is the largest of the scores Lines 12 and 15. Additionally, a maximum number of effective
bisections kmax is imposed to ensure that the filtered multisection produces at most 2kmax

child nodes (Line 17). If all scores are smaller than ε2σ , we instead rank and select bisection
candidates based on relative widths of the associated variable domains (Lines 12 and 15).
This ensures exhaustive partitioning in the limit, necessary for the convergence ofMUSE-BB,
also see Lemma 1 and Corollary 3 in Sect. 5. A visualization of the proposed multisection
branching procedure is given in Fig. 2.

The use of strong-branching scores in Subroutine 4 suggests a relation between filtered
multisection and standard strong-branching, where alternative bisections of a set of Nv

variables are considered.While standard strong-branching requires processing 2 Nv full nodes
to select a single bisection, i.e., generate 2 child nodes, we only process 2 Ns subproblems
(equivalent to 2 full nodes) and may generate an exponential number of nodes in each filtered
multisection. Nevertheless, standard strong-branching might also be useful in MUSE-BB, as
indicated by its use in the related algorithm of [21] for the selection of first-stage variables:
in each iteration, the authors consider all elements of x via strong-branching, solving LP
relaxations of the associated instances of DEn for the 2 Nx child nodes. For the two nodes
of the selected bisection, they then perform the global solution of the subproblems SPs ,
required for the convergence of their algorithm. While a similar approach could also be

123

860 Journal of Global Optimization (2025) 92:837–888

Fig. 2 Example for multisection branching and filtered multisection. In the original multisection (left) the
parent node p is branched on all second stage variable instances ys,i for a given variable index i . Instead
of generating all 2Ns nodes, we only generate the leftmost and rightmost node, corresponding to branching
all variable instances down (d) or up (u), respectively. We process these sibling nodes (blue) by solving the
resulting subproblems (squares). In the example, the subproblem for s = 2 of d is infeasible (red) while all
other subproblems are feasible (green). Right: based on the subproblem results, we perform a second, filtered
multisection of p, involving a subset k of the original Ns bisection candidates (right). This can be interpreted
as generating a new tree of k sequential bisections: we keep all bisections producing exactly one feasible
subproblem (here only the bisection of y2,i), as they do not increase the total number of child nodes. For the
bisections resulting in two feasible subproblems, we consider the bound improvement w.r.t. the corresponding
subproblems of p to compute the associated strong-branching scores σs . The bisection candidates are then
filtered based on the values of σs and the algorithm parameters η and kmax. We reject bisections for which
improvement is considered insufficient, i.e., those with σs < ησmax, for a threshold η ∈ (0, 1]. The remaining
ones are sorted by descending strong-branching score, resulting in an ordering of the associated scenarios (i.e.,
s1, ..., sk). Of these bisections we keep at most kmax. Finally, we generate the corresponding 2k orthant nodes
(green) using appropriate combinations of domains and bounds from the feasible sibling subproblems. (Color
figure online)

adopted inMUSE-BB,wedonot require expensive global bounding routines for convergence;
hence solving full-space LP relaxations based on DEn is relatively expensive in our case.
Alternatively we could solve the decomposable LP relaxations LPn

s , and aggregate the strong-
branching scores σs , e.g., via a ws-weighted sum. As pointed out above, this would require
to process 2 Nx nodes instead of just 2. Due to the importance of first-stage branching for
TSP (also see Sect. 6), this effort may in fact be warranted, however, we do not consider this
idea further here, and instead branch only on individual first-stage variables as indicated in
Subroutine 1.

The map M, and list L, returned by Subroutine 4 are used within Subroutine 5 for the
generation of individual orthant nodes. For this, we collect the appropriate variable domains
and subproblem objective values for each orthant from one of the siblings or the parent node
(Lines 16–18 in Subroutine 5). For each scenario s, the respective node is determined, based
on whether the associated bisection was selected (s ∈ M or s ∈ L) or not (Lines 4–15).
If s is in the map M, we only use the data from the feasible subproblem of the associated
sibling node (Lines 4 and 5). If instead, the scenario is in L, appropriate subproblem data is
taken based on the orthant index i (cf. Line 10 of Algorithm 1) to determine the sibling node
from which to use data (Lines 6–12 in Subroutine 5). Otherwise the bisection is rejected,
i.e., we use the data from the parent (Line 14). Note that the latter case does not imply that
the solution of the associated subproblems was in vain, as it may still result in tightened
variable bounds due to parent s-domain tightening (Lines 5, 12 and 25 in Subroutine 3).

123

Journal of Global Optimization (2025) 92:837–888 861

Subroutine 5: generateOrthantNode(i, p, d, u,M,L)
1 b ← vector of |L| bits, representing i ;
2 X o ← X p ;
3 foreach s ∈ S do
4 if s ∈ M then

// use data from the feasible subproblem of bisection s
5 n ← M[s];
6 else if s ∈ L then

// use data from the sibling subproblem corresponding to
orthant id i

7 j ← position of s in L;
8 if b j = 0 then
9 n ← d;

10 else
11 n ← u
12 end
13 else

// use parent data (bisection s was filtered in Lines 16–17 of
Subroutine 4)

14 n ← p;
15 end
16 X o ← X o ∩ X n

s ;
17 Yo

s ← Yn
s ;

18 f o
s

← f n
s
;

19 end
20 Yo ←×s∈S Yo

s ;
21 f o ← ∑

s∈S ws f o
s
;

22 if X o = ∅ or f o > f then f o = ∞;
23 return o;

Once data for all scenarios has been collected, we aggregate the overall second-stage domain
and scenario-weighted lower bound (Lines 20 and 21). Finally we test whether the orthant
node is infeasible or dominated and return it (Line 22).

5 Theoretical results

In this sectionwe present convergence results for the lower bounding schemes used inMUSE-
BB, and highlight the connection to the convergence of the algorithm itself. When applied to
the domains of individual B&B nodes, the lower bounding problems presented in Sect. 4.1
give rise to different lower bounding schemes (LBSs). Their quality is determined by their
underestimation of the true optimal value, and their capacity to quickly detect infeasible
subdomains. In the following we analyze the asymptotic behavior of these two qualities for
LBSs relevant to MUSE-BB, as the size of B&B nodes diminishes. In particular, we consider
the LBSs based on: (i) dropping or dualizing the NACs, corresponding to the subproblems
SPn

s , or LSP
n
s , respectively, (ii) the McCormick relaxations of subproblems from (i), and

(iii) the linear programming relaxations, resulting from subtangent relaxation of subprob-
lems from (ii). Formally, the asymptotic behavior of a LBS for a sequence of descendant
nodes is quantified by the convergence order [55]. We first introduce additional notation and
definitions related to this convergence order in Sect. 5.1, and then present conditions under
which different LBSs achieve first- and second-order convergence, respectively in Sects. 5.2

123

862 Journal of Global Optimization (2025) 92:837–888

and 5.3. As a result of the first-order convergence, we show that MUSE-BB guarantees finite
termination with an ε f -optimal solution in Sect. 5.2. In Sect. 5.3 we analyze an extension of
MUSE-BB in which the NACs are dualized instead of dropped. We show that employing
this dualization within MUSE-BB is equivalent to adding the terms λs

ᵀxs , to the objective
function relaxations in the subproblems LPn

s , and performing dual iterations to update the
multipliers λs . Provided optimal multipliers λ∗

s are obtained, we show that this results in
stronger convergence properties, with implications for the so-called cluster effect [25, 26].
In particular, while theoretical results of [28] indicate that the current implementation of
MUSE-BB may mitigate clustering around typical constrained minimizers, mitigating clus-
tering around typical unconstrained minimizers may require an extension such as the one
presented in Sect. 5.3.

Before we give the formal definition of a LBS and the associated convergence order, we
highlight the impact of the quality of lower bounds via two examples. For this we define the
width of an interval.

Definition 1 (width of a multidimensional interval) A measure for the width of a multidi-
mensional interval V =×i∈{1,...,m}

[
vi , vi

] ⊂ Rm is given by:

W (V) := max
i∈{1,...,m}

(
vi − vi

)

As shown by [28], the occurrence of clustering is related to the convergence order of the LBS,
which in turn is defined in terms of the ‘size of B&B nodes’, i.e., the width of the domain of
branched variables, measured by Definition 1 [also see 55]. In algorithms like PBDAs, this
node size is given by W (X n), whereas in algorithms like MUSE-BB it is given by the width
of the overall variable domain, i.e., W (Zn). While MUSE-BB will of course require more
branching than PBDAs to reach a given node size, the LBSs used in MUSE-BB may achieve
a higher convergence order than the scheme SPX

n ,Ys
s , used in PBDAs.

The following example illustrates this situation for LBSs based on SPs , i.e., the simplest
scenario relaxation, corresponding to dropping the NACs from DEX ,Y

NAC: while the scheme

SPX
n ,Ys

s , where only X is partitioned, results in an absolute optimality gap that diminishes

with
√
W (X n), the gap produced by the scheme SP

X n ,Yn
s

s , which additionally partitions Y ,
diminishes with W (Zn).

Example 1 Consider the following instance of DEX ,Y with Nx = Ny = 1, Ns = 2 and an
original domain with X = Y1 = Y2 = [0, 2]. Take

w1 f1(x1, y1) = −y1; gII,1(x1, y1) = −x1 + y21

w2 f2(x1, y2) = 2 y2; gII,2(x2, y2) = x2 − y22

The objectives imply that at the optimum zDE
n = (xDE

n

1 , yDE
n

1 , yDE
n

2) of DEn , yDE
n

1
is maximized and yDE

n

2 is minimized. For any feasible node n with Zn = [xn, xn] ×
[yn

1
, yn

1] × [yn
2
, yn

2], the bounds and constraints imply yDE
n

1 ≤ min{√xDE
n
, yn

1} and

yDE
n

2 ≥ max{√xDE
n
, yn

2
}. We have yDE1 = yDE2 = √

xDE on the original domain, and thus

f (xDE, yDE1 , yDE2) = √
xDE, which is minimized at zDE = (xDE, yDE1 , yDE2) = (0, 0, 0),

with objective value 0.
Now consider the lower bounds generated by lower bounding schemes based on SPs

on any nested sequence of nodes converging to the optimum zDE. Since all nodes in such
sequences satisfy xn = yn

s
= 0, the optimal solutions of the associated instance of SPs

123

Journal of Global Optimization (2025) 92:837–888 863

satisfy ySP
n

1 = min{√xn, yn
1} and ySP

n

2 = max{√xn, yn
2
} = 0, and thus from the constraint

gII,2, we have xSP
n

2 = ySP
n

2 = 0.

In SPX
n ,Ys

s , only x is branched, and thewidth of a node n corresponds to W n = W (X n) =
xn , while W

(Yn
s

) = yn
s = 2 remains constant. Since xn < 2, we have: ySP

n

1 = √
W n , and

thus f n
DE − f n

SP = √
W n .

In SP
X n ,Yn

s
s , both x and ys are branched, and the width of a node n corresponds to W n =

W (Zn). For a given width W n , the largest value for f n′
DE − f n′

SP over all nodes n′ with
W

(
Zn′) = W n will be produced by the node n with xn = yn

s = W n . Once W n < 1, we

have that
√

W n > W n , and thus ySP
n

1 = W n , and f n
DE − f n

SP = W n .

While Example 1 shows that for certain problems the schemeSPX
n ,Ys

s will produceweaker

bounds than SP
X n ,Yn

s
s for a given node width, the following example demonstrates that this

is not always the case, i.e., both LBSs may produce absolute optimality gaps that diminish
linearly (and not better) with the node width.

Example 2 Take Example 1, but change the constraints to

gII,1(x1, y1) = −x1 + y1; gII,2(x2, y2) = x2 − y2.

which implies that yDE1 = yDE2 = xDE on the original domain, and thus f (xDE, yDE1 , yDE2) =
xDE. This is again minimized at zDE = (xDE, yDE1 , yDE2) = (0, 0, 0), with objective value 0.

Now for both SPX
n ,Ys

s , and SP
X n ,Yn

s
s , it is easy to see that xSP

n

2 = ySP
n

2 = 0, and xSP
n

1 =
ySP

n

1 = W n , resulting in f n
DE − f n

SP = W n , i.e., an optimality gap that decreases exactly
linearly with the node width.

As we shall see in Sect. 5.1, β-order convergence of a LBS requires that the optimality
gap decreases proportionally to (W n)β , with β > 0, i.e., a higher value of β is associated
with a better quality of the LBS. [24] showed that the convergence orders below one of
LBSs used in PBDAs are inherent to the projection resulting from running a B&B in the X
space only. In particular, even LBSs based on the ideal relaxation, i.e., on convex envelopes
of the scenario value functions f X

n ,Ys
s may have less than first-order convergence, unless

f X
n ,Ys

s is Lipschitz, which is not guaranteed in general. In contrast, we show in Sect. 5.2 that

the scheme SPn
s = SP

X n ,Yn
s

s , obtained by simply dropping the NACs, has at least first-order
convergence under the much milder assumption that the objective and constraint functions
of DE are Lipschitz. If additionally, the used convex relaxations are Lipschitz, subsequent
convex and linear relaxations used in MUSE-BB preserve this first-order convergence.

As demonstrated by Examples 1 and 2, the convergence order may still be as low as
one, despite branching on second-stage variables. In Sect. 5.3 we show that this limitation is
inherent to dropping the NACs, and that dualizing them instead results in a LBS that is as
least as strong as the presented one, but additionally guarantees second-order convergence
at unconstrained minimizers.

Despite this promising outlook for MUSE-BB, we need to point out that the seemingly
superior convergence order of LBSs for MUSE-BB compared to that of PBDAs may be
relativized by the fact that the occurrence of clustering is not exclusively determined by
convergence order, but also by the local growth order of objective and constraint functions, see
[28]. Even if for a given problem, a LBS forMUSE-BB has a higher convergence order than a
comparable scheme for a PBDA, the lower ordermight still be sufficient tomitigate clustering
in PBDAs. This is because by operating in the projected space, the relevant growth order for

123

864 Journal of Global Optimization (2025) 92:837–888

PBDAs is that of of the scenario value functions f X ,Ys
s , whichmay also be reduced compared

that of the original objective functions fs . In Example 1, e.g., we have f X ,Y1
1 (x) = √

x , and

thus a growth order of 1/2, matching the convergence order of the scheme SPX
n ,Ys

s , indicating
that clustering might still be avoided, despite the reduced convergence order. Conditions for
which PBDAs or algorithms like MUSE-BB will show superior performance are thus not
immediately clear from the present analysis.

5.1 Preliminaries

To avoid the so-called cluster effect [25–27] where a B&B algorithm visits a large num-
ber of nodes near approximate global minimizers, LBSs need to exhibit a sufficiently large
convergence order. Early works on clustering [25–27] focused on clustering around uncon-
strained minimizers, where the convergence order of LBSs is equivalent to the convergence
order of the relaxations used for the objective function. Around constrained minimizers, on
the other hand, one additionally needs to consider the effect of relaxing the feasible set,
leading to an extended notion of convergence order [28, 55], which additionally depends
on the convergence orders of the relaxations used for the constraint functions. In B&B for
general nonlinear programming problems, relaxations of objective and constraints are typi-
cally generated by convex relaxation methods. In [29] we therefore analyzed the convergence
order of McCormick [41], α-BB [56], and convex hull relaxations. Convergence orders for
(further) relaxation through polyhedral outer approximation were investigated by [57–59].
While [28] consider a classical LBS for general nonlinear programming problems based on
convex relaxation, their conclusions are not dependent on this type of LBS. [55] present a
more general definition of a LBS, and give conditions under which convex and Lagrangian
relaxations with appropriate convergence orders result in first- and second-order convergent
LBS.

In preparation for Definition 4, where we use an extended notion of convergence order of
a LBS in the sense of [55], we introduce additional nomenclature and definitions. For each
B&B node n and the corresponding subproblem domains Zn

s :=X n × Yn
s , we introduce the

scenario-specific feasible sets

Fn
s :={(x, ys) ∈ Zn

s : gI (x) ≤ 0, gII,s
(
x, ys

) ≤ 0}.
Similarly, for the overall domains Zn :=X n × Yn , associated with each node n, we express
the feasible set of DEn = DEX n ,Yn

as

Fn :={(x, y) ∈ Zn : (x, ys) ∈ Fn
s ∀s ∈ S}.

Furthermore, since we branch on both x and y, the distinction between them becomes irrele-
vant inmany parts of the following analysis. For conciseness, we therefore aggregate the first-
and second-stage variables, i.e., we introduce the notation (x, y) = (x, y1, . . . , yNs

)=:z ∈
Zn ⊂ RNz , and (x, ys)=:zs ∈ Zn

s ⊂ RNz,s , where, Nz :=Nx + Ns Ny and Nz,s :=Nx + Ny .

Definition 2 (distance between two sets)Ameasure for the distance of two setsZ1,Z2,⊂ Rm

is given by:
d (Z1,Z2) := inf

z1∈Z1
z2∈Z2

‖z1 − z2‖

Throughout this text, ‖•‖ denotes the Euclidian norm.

123

Journal of Global Optimization (2025) 92:837–888 865

Definition 3 (violation measure) A measure for the minimum constraint violation of some

optimization problemP(V)with variable domainV ⊂ RNv and constraints gP : RNv → R
NP

g ,
on some subdomain Vn ⊂ V is given by:

vion
P:= d

(
{gP(v) : v ∈ Vn}, R

NP
g

−
)

= min
v∈Vn

⎛

⎜⎝
NP

g∑

j=1

max{gP, j (v), 0}2
⎞

⎟⎠

1/2

,

where R− denotes the nonpositive orthant.

Alternative to Definition 3, onemay also define the violation in terms of, e.g., the∞-norm,
which would yield min

v∈Vn
max

j∈{1,...NP
g }
max {0; gP, j (v)}.

We chose Definition 3, following [28, 55], who use it, within their definitions of conver-
gence order of LBSs (Definition 8 and 14, respectively). For clarity, we separate the definition
of violation from that of convergence order.

We adapt Definition 14 of [55] to scenario-based LBSs of TSPX ,Y . All such schemes
effectively lift the deterministic equivalent formulation DEn to the equivalent nonanticipa-
tivity formulation DEX ,Y

NAC, which introduces separate first-stage variables and constraints for
each scenario and couples them via the NACs. Following this, scenario-based LBSs obtain
relaxations of TSPX ,Y , by dropping or dualizing theNACs fromDEX ,Y

NAC, potentially followed
by further relaxations of the objective and constraints.

Definition 4 (Hausdorff convergence order of scenario-based LBSs) Denote the optimal
objective value of DEn as f n

DE, and let R
n be any relaxation of DEn that decomposes into the

Ns scenario relaxations of the form:

f n
R,s := min

zs∈Fn
R,s

fR,s(zs) Rn
s

where for each s, the feasible setFn
R,s containsFn

s , and the objective functions fR,s are such
that the weighted sum of the optimal objective values f n

R,s underestimates f n
DE, i.e.,

f n
R :=

∑

s∈S
ws f n

R,s ≤ f n
DE.

We say that (the LBS based on) Rn
s has:

1. β f -order (Hausdorff) convergence at a feasible point z ∈ Z if there exists C f > 0 such
that for every Zn ⊂ Z with z ∈ Zn ,

f n
DE − f n

R ≤ C f W
(Zn)β f

2. βg-order (Hausdorff) convergence at an infeasible point z ∈ Z if there exists Cg > 0
such that for every Zn ⊂ Z with z ∈ Zn ,

vion
DE − vion

R ≤ Cg W
(Zn)βg

We say that (the LBS based on) Rn
s has (Hausdorff) convergence of order β on Z if is has

β-order (Hausdorff) convergence at each z ∈ Z.

123

866 Journal of Global Optimization (2025) 92:837–888

The generic scenario-based relaxation Rn
s encompasses all LBSs we consider: LSPn

s ;
SPn

s ; the additional relaxation of these problems, resulting from replacing all functions by
their McCormick relaxations on Zn (i.e., MCn

s in the case of SPn
s); and the linear outer

approximation of MCn
s through subtangents, LPn

s . In all cases, the convergence order is with
respect toDEn , i.e., feasibility and infeasibility are always to be understoodwith respect to the
original variables and constraints.As inDefinition14of [55], the convergenceorder at feasible
[infeasible] points establishes an upper bound on the underestimation of the optimal objective
value [minimal constraint violation] in terms of the nodewidth. Thus, the theoretical results of
[28] are directly applicable. In particular, assuming sufficiently small prefactors C f and Cg ,
and that allminimizers are strict, the previous analyses indicate that second-order convergence
at feasible points mitigates clustering around unconstrained minimizers located at points of
differentiability [27, 28], while first-order convergence suffices for unconstrainedminimizers
if they are located at points of nondifferentiability [28, 60]. At constrained minimizers, on
the other hand, first-order convergence may mitigate clustering if the objective and active
constraints grow linearly around the minimizer [28].

Note that according to Definition 3, the constraint violations vion
DE and vion

R are defined
relative to the overall constraints of the respective problems. In contrast to DEn , all scenario
relaxations Rn

s by definition have separate copies of the first-stage variables x and the first-
stage constraints gI (or their relaxations) for each scenario s. Hence, the total number of
variables and constraints of the Ns subproblemsRn

s are Nξ :=Ns(Nx+Ny), and NR
g :=Ns(NI+

NII), respectively. Similarly to gDE, we define gR by aggregating the constraint functions

of Rn
s for all s; i.e., gR is the vector-valued function gR :×s∈S(Zs) �→ R

NR
g , such that for

ξ = (x1, y1, . . . , xNs , yNs ,Ny
) ∈×s∈S(Zs) ⊂ RNξ we have:

gR(ξ):=
⎛

⎜⎝

gR,1(ξ)
...

gR,NR
g
(ξ)

⎞

⎟⎠ ,

e.g., when using LSPn
s or SPn

s for Rn
s , we define these entries as

gLSP(ξ) = gSP(ξ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

gI,1(x1)
...

gI,NI(xNs)

gII,1,1(x1, y1)
...

gII,Ns ,NII(xNs , yNs
)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the bounds inDefinition 4 are relative to thewidth of the overall variable domainZn ,
it is only meaningful for B&B algorithms for which this width diminishes to 0. MUSE-BB
clearly satisfies this condition, as shown for completeness in the following result.

Lemma 1 (Exhaustive Subdivision) The branching scheme used in MUSE-BB is exhaustive,
i.e., in the limit all infinite sequences of descendant nodes converge to some accumulation
point.

Proof In Line 1 of Subroutine 1 we eventually select the variable corresponding to the
dimension of Zn with largest relative domain width (since the effect of different branching
priorities is canceled after a finite number of iterations). While the bisection of the selected
variable can still be rejected during variable filtering (Lines 16 and 17 in Subroutine 4), this

123

Journal of Global Optimization (2025) 92:837–888 867

can only happen a finite number of times, as the strong-branching scores are based on lower
bound improvements which inherently tend to zero. Thus, the width of all variable domains
tends to zero. ��

Note that sincePBDAsonly partitionX ,W (Zn)would need to be substitutedwithW (X n)

in the bounds of Definition 4 to obtain an appropriate alternative definition for PBDAs, also
see the related Definition 14 and Sect. 5 of [55].

5.2 First-order convergence

As we shall see in Lemma 2, branching on second-stage variables y in addition to first-
stage variables x, resolves the possibility of convergence orders below one, i.e., SPn

s can be
guaranteed to have (at least) first-order convergence under the weak assumption of Lipschitz
continuity of the objective and constraint functions. Furthermore, Corollaries 1 and 2 show
that the additional relaxations used in MUSE-BB preserve first-order convergence.

Assumption 1 (Lipschitz, factorable functions) All constraint and objective functions are
Lipschitz, i.e., there exist constants Lg,I,i > 0; i = 1, . . . , NI, and for all s ∈ S there exist
constants Lg,II,s, j > 0, j = 1, . . . , NII; L f ,s > 0, such that:

∣∣gI,i (x) − gI,i (x′)
∣∣ ≤ Lg,I,i

∥∥x − x′∥∥ ∀x, x′ ∈ X , i = 1, . . . , NI,∣∣gII,s, j (zs) − gII,s, j (z′s)
∣∣ ≤ Lg,II,s, j

∥∥zs − z′s
∥∥ ∀zs, z′s ∈ Zs, j = 1, . . . , NII,∣∣ fs(zs) − fs(z′s)

∣∣ ≤ L f ,s
∥∥zs − z′s

∥∥ ∀zs, z′s ∈ Zs .

The following Lemma shows first-order convergence of the LBS based on SPn
s . Its proof

relies on the fact that in any given node n, points from the domainsZn
s = X n ×Yn

s of scenario
subproblems are at most

√
Nx + Ny W

(Zn
s

)
apart. Furthermore, the overall node domain is

Zn = X n × Yn and thus W
(Zn

s

) ≤ W (Zn). We point out that all of the algebraic steps

in the following proof would also hold when replacing SPn
s with the LBS SPX

n ,Ys
s used in

PBDA. Thus in fact, both LBS have first-order convergence in the Z space. However, while
for MUSE-BB W (Zn) tends to zero by Lemma 1, it does not for PBDAs, where Yn = Y
for all nodes n, and hence only W (X n) tends to zero. A meaningful convergence order for
SPX

n ,Ys
s would therefore require bounds in terms of W (X n) instead of W (Zn), also see the

note before Lemma 1 and the related Definition 14 and Sect. 5 of [55].

Lemma 2 (first-order convergence of SPn
s) Under Assumption 1, SPn

s has a convergence
order of β ≥ 1.

Proof Recall that Definition 4 considers convergence orders at feasible and infeasible points
with respect to DEn , leading to a natural proof outline.

Convergence Order at Feasible Points: First consider some nested sequence of nodes
converging to a point z̃ that is feasible in DE. Since z̃ is contained in all nodes n of
such sequences, DEn (and thus SPn

s) have optimal solutions for each n. Let zDE
n =

(xDE
n
, yDE

n
) = (xDE

n
, yDE

n

1 , . . . , yDE
n

Ns
) ∈ Zn be an optimal solution to DEn , and define

zDE
n

s = (xDE
n
, yDE

n

s) ∈ Zn
s . Similarly, let zSP

n

s = (xSP
n

s , ySP
n

s) ∈ Zn
s be an optimal solution

to SPn
s . Using the Lipschitz property of fs , we can immediately express the difference in

optimal objective values as:

f n
DE − f n

SP =
∑

s∈S
ws

(
fs(zDE

n

s) − fs(zSP
n

s)
)

123

868 Journal of Global Optimization (2025) 92:837–888

≤
∑

s∈S
wsCSP

f ,s W
(Zn)

where CSP
f ,s :=L f ,s

√
Nx + Ny . Thus SPn

s has at least first-order convergence at all feasible

points with C f = ∑
s∈S wsCSP

f ,s .
Convergence Order at Infeasible Points: Now consider some nested sequence of nodes

converging to a point z̃ that is infeasible in DE, i.e., z̃ /∈ F . By compactness of F , all such
sequences eventually reach a node n that does not contain any feasible point, i.e., vion

DE > 0.
In the following we only consider nodes at or beyond this threshold, since for larger nodes,
the existence of a feasible point implies vion

DE = 0 by Definition 3, and thus also vion
SP = 0

by the fact that SP is a relaxation. Thus for large nodes vion
DE − vion

SP = 0 and the properties
from Definition 4 hold trivially.

Let z̃DE
n = (̃xDE

n
, ỹDE

n
) = (̃xDE

n
, ỹDE

n

1 , . . . , ỹDE
n

Ns
) ∈ Zn and ζDEn ∈ R

NDE
g

−
be points at which the minimum constraint violation vion

DE is attained, i.e., vion
DE =

∥∥g(̃zDE
n
) − ζDEn ∥∥. Similarly, let ξ̃

SPn = (̃xSP
n

1 , ỹSP
n

1 , . . . , x̃SP
n

Ns
, ỹSP

n

Ns
) ∈ ×s∈S(Zn

s) and

ζ̃
SPn ∈ R

NSP
g

− be points at which the minimum constraint violation vion
SP is attained,

i.e., vion
SP =

∥∥∥gSP (̃ξ
SPn

) − ζ̃
SPn

∥∥∥. Furthermore, define z̃DE
n

s = (̃xDE
n
, ỹDE

n

s) ∈ Zn
s and

z̃SP
n

s = (̃xSP
n

s , ỹSP
n

s) ∈ Zn
s .

To derive an upper bound on vion
DE − vion

SP, we first give a lower bound on the mini-
mum constraint violation vion

SP. For this we drop positive terms in the definition of vion
SP,

corresponding to the first-stage constraints of all but the first scenario:

vion
SP =

∥∥∥gSP (̃ξ
SPn

) − ζ̃
SPn

∥∥∥

=
⎛

⎜⎝
NSP

g∑

j

∣∣∣gSP, j (̃ξ
SPn

) − ζ̃ SPn

j

∣∣∣
2

⎞

⎟⎠

1/2

=
(∣∣∣gI,1(̃xSP

n

1) − ζ̃ SPn

1

∣∣∣
2 + · · · +

∣∣∣gI,NI (̃x
SPn

1) − ζ̃ SPn

NI

∣∣∣
2

+ · · · +
∣∣∣gI,NI (̃x

SPn

Ns
) − ζ̃ SPn

Ns NI

∣∣∣
2

+
∣∣∣gII,1,1(̃zSP

n

1) − ζ̃ SPn

Ns NI+1

∣∣∣
2 + · · · +

∣∣∣gII,Ns ,NII (̃z
SPn

Ns
) − ζ̃ SPn

NSP
g

∣∣∣
2)1/2

≥
(∣∣∣gI,1(̃xSP

n

1) − ζ̃ SPn

1

∣∣∣
2 + · · · +

∣∣∣gI,NI (̃x
SPn

1) − ζ̃ SPn

NI

∣∣∣
2

+
∣∣∣gII,1,1(̃zSP

n

1) − ζ̃ SPn

Ns NI+1

∣∣∣
2 + · · · +

∣∣∣gII,Ns ,NII (̃z
SPn

Ns
) − ζ̃ SPn

NSP
g

∣∣∣
2)1/2

=:
∥∥∥ g̃SP

n − ζ SPn
∥∥∥

(2)

Note that this corresponds to a projection of the associated points from R
NSP

g onto R
NDE

g , i.e.,

g̃SP
n
, ζ SPn ∈ R

NDE
g .

We can now derive the desired upper bound on vion
DE − vion

SP. By Definition 3, we have

vion
DE − vion

SP =
∥∥∥g(̃zDE

n
) − ζDEn

∥∥∥ −
∥∥∥gSP (̃ξ

SPn

) − ζ̃
SPn

∥∥∥ ,

123

Journal of Global Optimization (2025) 92:837–888 869

and underestimation of the subtracted part by the projection from 2 gives

vion
DE − vion

SP ≤
∥∥∥g(̃zDE

n
) − ζDEn

∥∥∥ −
∥∥∥ g̃SP

n − ζ SPn
∥∥∥ ,

By definition of the infimum in vion
DE, we have

∥∥g(̃zDE
n
) − ζDEn ∥∥ ≤ ∥∥g(̃zDE

n
) − ζ

∥∥ for all

ζ ∈ R
NDE

g
− , in particular, choosing ζ SPn

results in

vion
DE − vion

SP ≤
∥∥∥g(̃zDE

n
) − ζ SPn

∥∥∥ −
∥∥∥ g̃SP

n − ζ SPn
∥∥∥ .

Applying the reverse triangle inequality gives

vion
DE − vion

SP ≤
∥∥∥g(̃zDE

n
) − g̃SP

n
∥∥∥ ,

and thus by definition of the Euclidian norm and g̃SP
n
:

vion
DE − vion

SP ≤
(∣∣∣gI,1(̃xDE

n
) − gI,1(̃xSP

n

1)

∣∣∣
2 + · · · +

∣∣∣gI,NI (̃x
DEn

) − gI,NI (̃x
SPn

1)

∣∣∣
2

+
∣∣∣gII,1,1(̃zDE

n

1) − gII,1,1(̃zSP
n

1)

∣∣∣
2

+ · · · +
∣∣∣gII,Ns ,NII (̃z

DEn

Ns
) − gII,Ns ,NII (̃z

SPn

Ns
)

∣∣∣
2)1/2

.

By Lipschitz continuity of each individual constraint function, all differences can be bounded
by the respective Lipschitz constants

vion
DE − vion

SP ≤
((

LgI,1

∥∥∥x̃DE
n − x̃SP

n

1

∥∥∥
)2 + · · · +

(
LgI,NI

∥∥∥x̃DE
n − x̃SP

n

1

∥∥∥
)2

+
(

LgII,1,1

∥∥∥̃zDE
n

1 − z̃SP
n

1

∥∥∥
)2

+ · · · +
(

LgII,Ns ,NII

∥∥∥̃zDE
n

Ns
− z̃SP

n

Ns

∥∥∥
)2)1/2

.

Finally, since the maximum distances of points in X n and Zn are
√

Nx W (X n) and√
Nx + Ny W

(Zn
s

)
, respectively, and since both W (X n) and W

(Zn
s

)
can be overestimated

by W (Zn) we have:

vion
DE − vion

SP ≤
((

LgI,1

√
Nx W

(X n))2 + · · · +
(

LgI,NI

√
Nx W

(X n))2

+
(

LgII,1,1

√
Nx + Ny W

(Zn
s

))2

+ · · · +
(

LgII,Ns ,NII

√
Nx + Ny W

(Zn
s

))2)1/2

≤ Cg W
(Zn)

Thus SPn
s has at least first-order convergence at all infeasible points with

Cg =

√√√√√Nx

NI∑

i=1

L2
g,I,i + (Nx + Ny)

∑

s∈S

NII∑

j=1

L2
gII,s, j

.

123

870 Journal of Global Optimization (2025) 92:837–888

Conclusion: As the LBS based on SPn
s has convergence orders of β ≥ 1 at both feasible

and infeasible points, it has convergence order of β ≥ 1. ��
Unsurprisingly, when the Assumption 1 is not satisfied, the convergence order of MUSE-

BB can also be below 1. For instance, take Example 1 but use w1 f1 = −√
y1; this gives a

convergence order of 0.5.
Next we show that both the McCormick based LBS, MCn

s , as well as its linearization via
subtangents, LPn

s , inherit the first-order convergence of SP
n
s under mild additional assump-

tions. For both of these convergence results, we require the following assumption:

Assumption 2 (first-order pointwise convergent relaxations) The objective function fs and
all elements of the constraint functions gI and gII,s have first-order pointwise convergent
relaxations, i.e., there exist constants CMC

f ,s > 0, s ∈ S, CMC
g,I,i > 0, i = 1, . . . , NI, and

CMC
g,II,s, j > 0, s ∈ S, j = 1, . . . , NII, such that for all Zn ⊂ Z and any s, the convex

relaxations f cv,ns , gcv,nI and gcv,nII,s in MCn
s satisfy

fs(zs) − f cv,ns (zs) ≤ CMC
f ,s W

(Zn
s

)
, ∀zs ∈ Zn

s ,

gI,i (x) − gcv,n
I,i (x) ≤ CMC

g,I,i W
(X n)

, ∀x ∈ X n, i = 1, . . . NI,

gII,s, j (zs) − gcv,n
II,s, j (zs) ≤ CMC

g,I I ,s, j W
(Zn

s

)
, ∀zs ∈ Zn

s , j = 1, . . . NII.

In fact, for many functions McCormick relaxations satisfying an even stronger variant
of Assumption 2, with second- instead of just first-order pointwise convergence are known
[also see 29]. For our purposes, however, Assumption 2 is sufficient.

Corollary 1 (first-order convergence of MCn
s) Under Assumptions 1 and 2, MCn

s has a
convergence order of β ≥ 1.

Proof By Lemma 2, the scheme SPn
s has first-order convergence with respect to the origi-

nal problem DEn . Furthermore, under Assumption 2, the LBS MCn
s has at least first-order

convergence with respect to SPn
s by Theorem 1 of [55]. Combining these results implies

first-order convergence of MCn
s with respect to DEn . ��

For the first-order convergence of LPn
s , we additionally require the following assumption:

Assumption 3 (Lipschitz convex relaxations) For any node n the convex relaxations f cv,ns ,
gcv,nI , and gcv,nII,s in MCn

s are Lipschitz, i.e., there exist constants LMC
f ,s > 0, LMC

g,I,i > 0; i =
1, . . . , NI, and LMC

g,II,s, j , j = 1, . . . , NII, that constitute upper bounds on the norm of the
respective subgradients. In particular, this implies:
∥∥∥∇̌ f cv,ns (zs)

ᵀ(z′s − zs)

∥∥∥ ≤ LMC
f ,s

√
Nx + Ny W

(Zn
s

)
, ∀zs, z′s ∈ Zn

s
∥∥∥∇̌gcv,n

I,i (x)ᵀ(x′ − x)

∥∥∥ ≤ LMC
g,I,i

√
Nx W

(X n)
, ∀x, x′ ∈ X n, i = 1, . . . NI,

∥∥∥∇̌gcv,n
II,s, j (zs)

ᵀ(z′s − zs)

∥∥∥ ≤ LMC
g,II,s, j

√
Nx + Ny W

(Zn
s

)
, ∀zs, z′s ∈ Zn

s , j = 1, . . . NII.

Assumption 3 is satisfied if the relaxations used for all intrinsic functions are Lipschitz
[cf. 61]. This in turn is the case for standard relaxations of a wide class of functions, provided
they are Lipschitz themselves.

Corollary 2 (first-order convergence ofLPn
s) Under Assumptions 1–3,LPn

s has a convergence
order of β ≥ 1.

123

Journal of Global Optimization (2025) 92:837–888 871

Proof We structure the proof as in Lemma 2.
Convergence Order at Feasible Points: First consider some nested sequence of nodes

converging to a point z̃ that is feasible in DE. For all nodes n of such sequences let zDE
n

s and
zLP

n

s be solutions of DEn , and LPn
s , respectively, and note that

f n
LP,s = subn

fs
(zLP

n

s) = f cv,ns (mn
zs

) + ∇̌ f cv,ns (mn
zs

)ᵀ
(
zLP

n

s − mn
zs

)
,

wheremn
zs
is the midpoint ofZn

s , see subtangent.We can bound the difference of optimal val-
ues of DEn , and LPn

s by subtracting and adding the terms fs(mn
zs

) and applying Assumptions
1–3:

f n
DE − f n

LP =
∑

s∈S
ws

(
f n
DE,s − f n

LP,s

) =
∑

s∈S
ws

(
fs(zDE

n

s) − subn
fs
(zLP

n

s)
)

=
∑

s∈S
ws

(
fs(zDE

n

s) − fs(mn
zs

) + fs(mn
zs

) − f cv,ns (mn
zs

)

− ∇̌ f cv,ns (mn
zs

)ᵀ
(
zLP

n

s − mn
zs

))

≤
∑

s∈S
wsCLP

f ,s W
(Zn)

where CLP
f ,s :=

(
(L f ,s + LMC

f ,s)
√

Nx + Ny + CMC
f ,s

)
. Thus LPn

s has first-order convergence at

feasible points with C f = ∑
s∈S wsCLP

f ,s .
Convergence Order at Infeasible Points: Now consider some sequence of nodes con-

verging to an infeasible point. As in the proof of Lemma 2, let z̃DE
n = (̃xDE

n
, ỹDE

n
) =

(̃xDE
n
, ỹDE

n

1 , . . . , ỹDE
n

Ns
) ∈ Zn , and ζDEn ∈ R

NDE
g

− be points at which the minimum con-

straint violation vion
DE is attained, i.e., vion

DE = ∥∥g(̃zDE
n
) − ζDEn ∥∥, and, let ξ̃

LPn =
(̃xLP

n

1 , ỹLP
n

1 , . . . , x̃LP
n

Ns
, ỹLP

n

Ns
) ∈ ×s∈S(Zn

s) and ζ̃
LPn ∈ R

NLP
g

− be points at which the mini-

mum constraint violation vion
LP is attained, i.e., vio

n
LP =

∥∥∥gLP (̃ξ
LPn

) − ζ̃
LPn

∥∥∥, where gLP is

the vector-valued function containing the constraints of all LPn
s , i.e., the subtangents of the

entries in gSP, see subtangent.

Using the same arguments as in the proof of Lemma2with gLP (̃ξ
LPn

) instead of gSP (̃ξ
SPn

)

we can bound the difference in violation measures of DEn and LPn
s , resulting in:

vion
DE − vion

LP ≤
(∣∣∣gI,1(̃xDE

n
) − subn

gI,1 (̃x
LPn

1)

∣∣∣
2

+ · · · +
∣∣∣gI,NI (̃x

DEn
) − subn

gI,NI
(̃xSP

n

1)

∣∣∣
2

+
∣∣∣gII,1,1(̃zDE

n

1) − subn
gII,1,1 (̃z

SPn

1)

∣∣∣
2

+ · · · +
∣∣∣gII,Ns ,NII (̃z

DEn

Ns
) − subn

gII,Ns ,NII
(̃zSP

n

Ns
)

∣∣∣
2)1/2

as with the objective function, we can bound the differences between each constraint function
and the respective subgradient, using Assumptions 1–3, which results in

vion
DE − vion

LP ≤ CLP
g W

(Zn)
,

123

872 Journal of Global Optimization (2025) 92:837–888

where

CLP
g :=

(NI∑

i=1

(
(Lg,I,i + LMC

g,I,i)
√

Nx + CMC
g,I,i

)2

+
∑

s∈S

NII∑

j=1

(
(Lg,II,s, j + LMC

g,II,s, j)
√

Nx + Ny + CMC
g,II,s, j

)2)1/2

.

Thus LPn
s has first-order convergence at any infeasible point with Cg = CLP

g .
Conclusion: As the LBS based on LPn

s has convergence orders of β ≥ 1 at both feasible
and infeasible points, it has convergence order of β ≥ 1. ��

We are now in the position to prove finite ε f -convergence of MUSE-BB.

Corollary 3 (finite termination ofMUSE-BB)Under Assumptions 1–3, MUSE-BB terminates
finitely for any optimality tolerance ε f > 0, either providing an ε f -optimal solution or a
certificate that the problem is infeasibile.

Proof By Lemma 1, each sequence of descendant nodes converges to some accumulation
point z̃. We show that the use of any LBS Rn

s with convergence order of β > 0 implies
that all such sequences finitely reach a node that can be fathomed by value dominance or
infeasibility.

Convergence at Feasible Points: First consider sequences for which z̃ is feasible. After
a finite number of iterations, any such sequence will produce a node n, for which W (Zn) ≤(

ε f
C f

)1/β
, which implies that f n

DE − f n
R ≤ ε f , i.e., that n is fathomed by value dominance.

Convergence at Infeasible Points: Next consider sequences for which z̃ is infeasible,
and which are not terminated finitely because some descendant node can be fathomed by
value dominance. By compactness of the feasible set, any such sequence will eventually
produce a node ñ that contains no feasible point, and thus has a positive violation measure
vion

DE [̃n]. Since the violation measure increases monotonically for descendants of node ñ,
the sequence is terminated when or before the descendant node n is produced, for which

W (Zn) ≤
(
vion

DE [̃n]
Cg

)1/β
, as this implies 0 ≤ vion

DE − vion
DE [̃n] ≤ vion

R, i.e., infeasibility is

detected by the scheme Rn
s , and node n is fathomed by infeasibility.

Conclusion: In summary, each node sequence terminates finitely and since the original
domain is compact, the total number of sequences must be finite. By Corollary 2, the assump-
tions imply that the LBS Rn

s = LPn
s , used in MUSE-BB has a convergence order of β > 1,

thus MUSE-BB terminates finitely, once all sequences of descendant nodes are terminated.
��

After demonstrating first-order convergence of the LBS employed by MUSE-BB and the
resulting ε f -convergence, we now consider in which cases these convergence properties may
be sufficient to mitigate clustering. As indicated by [28], clustering may be mitigated around
individual minimizers of DE, if the convergence order of the LBS is larger or equal to the
order at which objective and constraint functions grow around thisminimizer.While Example
2 demonstrates that SPn

s (and by extension, also LP
n
s) may have a convergence order as low as

one at constrained minimizers, objective and constraint functions often grow at a linear rate
around such points [28]. Therefore LPn

s may mitigate clustering around certain constrained
minimizers, provided the respective coefficients C f and Cg are sufficiently small [28]. On
the other hand, at partially or unconstrained minimizers, where f is differentiable, f grows

123

Journal of Global Optimization (2025) 92:837–888 873

quadratically or faster in some of the feasible directions. As a result, a LBS needs to have at
least second-order convergence at unconstrained minimizers to to mitigate clustering [26–
28]. Unfortunately, the convergence order of SPn

s may also be as low as one at unconstrained
minimizers, as shown by the following example.

Example 3 Consider an instance of DE with Nx = 1, Ny = 0, Ns = 2 and an original
domain X = [−1, 1]. Take

w1 f1(x1) = 0.5(x1 − 1)2; w2 f2(x2) = 0.5(x2 + 1)2

such that f (x) = x2 + 1, and thus the optimal solution and objective value are xDE = 0, and
f (xDE) = 1, respectively. For any nested sequence of nodes converging to this optimum,
the solutions xDE

n
of the node problem DEn lie in X n = [xn, xn], and thus xn ≤ 0, xn ≥ 0.

For such nodes, the solutions of SPn
s are xSP

n

1 = xn , and xSP
n

2 = xn , respectively. Hence the
difference in objective values is:

f n
DE − f n

SP = 1 − 0.5
(
(xn − 1)2 + (xn + 1)2

)

= −0.5 (xn)2 + xn − xn − 0.5 (xn)2

Now consider a sequence forwhich xn = W n, xn = 0; for this sequence the above expression
simplifies to

f n
DE − f n

SP = W n − 0.5
(
W n)2

.

Now for any C f > 0 this expression becomes larger than C f (W n)2 for the node n0, for
which

W n0 <
1

C f + 0.5
,

i.e., SPn
s is at best first-order convergent at the unconstrained minimizer xDE

n
.

In summary, the present implementation of MUSE-BBmay suffer from clustering around
unconstrained minimizers. To address this, an alternative LBS with at least quadratic con-
vergence order is required. In the following section we analyze an extension of MUSE-BB
whose LBS has this property.

5.3 Second-order convergence

In this section we show that using LSPn
s instead of SPn

s , i.e., dualizing the NACs instead
of dropping them, enables at least second-order convergence at unconstrained minimizers.
Additionally, we consider the resulting effect on the implementation, i.e., how the LBS LPn

s
needs to be adapted when using LSPn

s .
A necessary condition for a LBS to have β-order convergence is that the relaxations

used for its construction have β-order convergence, also see [55]. While this condition is
generally not sufficient for β-order convergence of the resulting LBS, it is sufficient for β-
order convergence around Slater points, i.e., unconstrained feasible points [Corollaries 2, 3
of 55].

[Corollary 6 of 24]shows that the optimal objective value f X
n ,Y

LR

(
λ∗), obtained from the

subproblems LSPX
n ,Ys

s , where the NACs are dualized instead of dropped, is equivalent to
minimizing the ws-weighted sum of convex envelopes of f X

n ,Y
s . As a result, f X

n ,Y
LR

(
λ∗)

constitutes a (constant valued) relaxation of the objective function f on the domain X n ×Y .

123

874 Journal of Global Optimization (2025) 92:837–888

Furthermore, they show that this relaxation is at least second-order convergent with respect
to W (X n), i.e.,

min
x∈X n

∑

s∈S
f X

n ,Ys
s (x) − f X

n ,Y
LR

(
λ∗) ≤ τ W

(X n)β

with β ≥ 2, provided the scenario value functions f X
n ,Ys

s are C2, i.e., twice continuously
differentiable. We point out that in fact, the slightly weaker assumption that f merely has
bounded second-order directional derivatives, i.e., that it is C1,1, is also sufficient for second-
order convergence of f X

n ,Y
LR

(
λ∗), also see [62]. In the special case where the f X

n ,Ys
s are

convex, β above may take any positive value, i.e., the convergence is arbitrarily high. Note
that β-order convergence of f X

n ,Y
LR

(
λ∗) immediately implies β-order convergence of the

LBS LSPX
n ,Ys

s at unconstrained feasible points (and in particular at unconstrained mini-
mizers), because around such points f n

DE, i.e., the optimal value of DEn , is equivalent to

min
x∈X n

∑
s∈S f X

n ,Ys
s (x), also see Corollaries 2 and 3 of [55]. Furthermore, β-order conver-

gence with respect to W (X n) implies β-order convergence with respect to W (Zn), since
W (X n) ≤ W (Zn). As a result, the same line of argument naturally also holds for the scheme

LSPn
s := LSP

X n ,Yn
s

s , which for any X n produces stronger bounds than LSPX
n ,Ys

s . Hence, the

relaxations f X
n ,Yn

LR

(
λ∗) are at least second-order convergent, and Corollaries 2 and 3 of [55]

ensure second-order convergence of LSPn
s at unconstrained feasible points. The following

example demonstrates the improvement of convergence order of LSPn
s over SPn

s .

Example 4 Take the problem from Example 3. The optimal dual values for this problem are
λ∗

s = (2,−2), such that the objectives of LSPn
s are fs(xs)+λs xs = (xs ∓1)2±2xs = x2s +1.

Hence, both subproblems are solved at xLSP
n

1 = xLSP
n

2 = xDE
n = 0, and the difference in

objective values is:

f n
DE − f n

LSP = 1 − 0.5
(
(0 + 1)2 + (0 + 1)2

) = 0,

i.e., LSPn
s is exact and as such has arbitrarily high convergence order at the unconstrained

minimizer xDE
n
.

Note that the arbitrarily high convergence order in Example 4 results from the fact that the
scenario value functions f X ,Ys

s are convex. If f X ,Ys
s are not convex, at least second-order

convergence is guaranteed by the previous arguments.
Several results fromnonlinear parametric programming provide different regularity condi-

tions underwhich f X
n ,Ys

s are C2. In particular, if we assume f is C2, and that the second-order
sufficient condition (SOSC):

∇ f (zDE) = 0

∇2 f (zDE) � 0
(SOSC(zDE))

holds at an unconstrained minimizer zDE = (xDE, yDE) of DE, the fact that f X
n ,Ys

s are C2
follows from the Implicit Function Theorem [63, cf., e.g., Corollary 3.2.3].

Other variants of the Implicit Function Theorem provide similar results for unconstrained
minimizers that do not satisfy SOSC(zDE), e.g., [Theorem 3.3 of 64], or even for constrained
minimizers, satisfying certain regularity conditions, related to the growth of the Lagrangian
of f , e.g., [63] and [65].

We next show how the stronger convergence properties of the LBS LSPn
s can be incor-

porated into MUSE-BB via an adaption of the lower bounding problems subproblems LPn
s .

123

Journal of Global Optimization (2025) 92:837–888 875

Recall that LPn
s result from three subsequent levels of relaxation: after dropping the NACs

from DEX ,Y
NAC (i), the resulting subproblems SPn

s are further relaxed via McCormick’s method
(ii) and outer approximation (iii), resulting in the linear lower bounding problems LPn

s . In
this context, dualizing the NACs, corresponds to replacing the subproblems SPn

s with LSPn
s ,

and performing the subsequent relaxations. Note that the only difference between SPn
s and

LSPn
s are the additional terms λs

ᵀxs . The McCormick relaxation of the sum of the original,
nonlinear objective fs(xs, ys), and the linear term λs

ᵀxs is simply f cv,ns (xs, ys) + λs
ᵀxs

[cf. Proposition 2 of 29]. Next we consider the subtangents of these terms: if ∇̌ f cv,ns is the
subgradient of f cv,ns , used in the original instance of LPn

s , then ∇̌ f cv,ns + λs is a valid sub-
gradient of f cv,ns (xs, ys) + λs

ᵀxs [cf. Proposition 2.3.3 of 66]. As a result, replacing SPn
s

with LSPn
s in MUSE-BB is equivalent to adding λs to the coefficients of xs in the first set of

constraints, of the subproblems LPn
s .

While conceptually, themultipliers can be updated byperforming dual iterationswith these
modified linear lower bounding subproblems, such updates will generally not converge to the
optimal multipliers of the original problem LSPn

s . Even though convergence over a sequence
of nodes can be expected, as the node size diminishes and the McCormick relaxations, and
linear relaxations converge towards the original functions, such a conversion in the limit may
not be sufficient to yield second-order convergence of the resulting lower bounding scheme.

In summary, similar to PBDAs, the LBS used in MUSE-BB may be made second-order
convergent at certain minimizers by dualizing the NACs instead of dropping them. However,
the use of optimal dual multipliers λ∗ appears to be a requirement for second-order conver-
gence, and, as already pointed out in Sect. 4.1, obtaining such multipliers is generally very
challenging. The fact that SPn

s can be interpreted as an instance of LSPn
s with the suboptimal

multipliers λ = 0, indicates that suboptimal multipliers may result in a first-order conver-
gent LBS, also see the related result on a Lagrangian dual-based LBS for general nonlinear
programming problems in [Theorem 6 of 55]. While it may be sufficient to limit multiplier
updates to small nodes suspected to contain the neighborhoods of critical minimizers, we
leave the investigation of such approaches for future work.

6 Computational results

We now present computational results obtained with the parallelized decomposition algo-
rithm MUSE-BB, and outline how it compares against solving the deterministic equivalent
formulation DEX ,Y with the standard version of MAiNGO. MUSE-BB performs upper
bounding based on the subproblems SPn

s , and OBBT, lower bounding, and DBBT, based on
the separable subproblems LPn

s . All scenario subproblems are solved simultaneously, using
one thread per scenario. MAiNGO performs upper bounding based on DEn and all other
routines based on a linearization of DEn , using a single thread.

We do not compare with other deterministic global solvers as these generally employ
different routines for management of the B&B tree, generating relaxations of individual
functions, and solving individual lower and upper bounding problems, distorting the effect
of the decomposition. Further, we focus our computational experiments on the effects of
individual algorithm parameters, rather than conducting larger-scale computational studies,
as the latter would require access to a library of two-stage test problems, which is currently
unavailable. While previous works do consider some larger-scale problems, the implementa-
tions are either unpublished [e.g., the test library “GOSSIP” from 20] or a generic formulation
is given while the concrete problem data is not [see, e.g., Sect. 7.1 in 22].

123

876 Journal of Global Optimization (2025) 92:837–888

We consider variants of a simple test problem with Nx = Ny = 1 and Ns = 4, 8, and 16, i.e.,
with different size based on the number of scenarios. The test problem is a simplified design
and operation problem for a combined heat and power (CHP) system, based on stochastic heat
and power demands. Scenarios for demand data are generated from a seeded pseudorandom
sampling, ensuring identical instances upon repetition for a given Ns value. The problem
involves nonlinearities related to economies of scale, thermal and electrical efficiencies, and
the implementation of a minimal part-load constraint. A detailed description of the problem
is given in “Appendix A”.

We focus on the performance difference of the lower bounding routines, hence all exper-
iments are performed with initial points based on dense uniform sampling of 1000 values in
each of the x and ys domains, which always results in ε f -optimal initial points, that are never
improved during the course of the algorithm.We use the default settings ofMAiNGO, includ-
ing a relative optimality tolerance of 1%. All computational experiments are performed on
the RWTH Compute Cluster “CLAIX-2018”. Each compute node has 2 Intel Xeon Platinum
8160 Processors with 2.1GHz, 24 cores each, i.e., there is a total of 48 cores per compute
node, and 4GB of main memory per core. In initial tests we observed significant variation
of run times, both for MAiNGO and MUSE-BB. We attribute this variation to execution on
particular – likely overloaded – compute nodes which consistently require longer solution
times compared to other compute nodes. To reduce the effect of this variation, we repeat
the solution of each considered instance 20 times and report median values of the resulting
solution times and optimality gaps.

6.1 Importance of branching priority

Initially we will focus on the case kmax = 1, i.e., we branch only on second-stage variable
instances that either produce infeasible subproblems or produce the highest strong-branching
score. This means each multisection of second stage variables results in at most 2 child nodes
being created, i.e., as in a standard B&B algorithm like MAiNGO.

In problems like DE, exhibiting two-stage structure, the first-stage variables appear in
all of the scenario subproblems, while the second-stage variable instances only appear in
one, each. This suggests a higher importance of branching on first-stage vs. second-stage
variables, especiallywith increasing Ns . In B&Balgorithms, the prioritywithwhich variables
are branched is typically controlled via branching priorities for individual variables, which
are multiplied with the relative interval width before selecting a variable to branch on, also cf.
the description of Subroutine 1. As a result, it seems intuitive that B&B algorithms solving
DEmay generally benefit from relatively high branching priorities for the first-stage variables
compared to the second-stage variables, independent ofwhether decomposition is used or not.
For this reason, we compare howMAiNGO andMUSE-BB performwith different branching
priority ratios

ρ = first-stage branching priority

second-stage branching priority
,

which in the present case (Nx = Ny = 1) correspond to the branching priority of x (the priority
for ys being 1).

Figure3 shows the wall times spent in B&B when using MAiNGO and MUSE-BB on
problem instances with Ns ∈ {4, 8, 16}. Both individual times (colored dots), as well as the
median times (horizontal lines) are depicted. Table 1 lists the median wall times and relative
gaps for instances which do not terminate within the time-limit of one hour. In general, the ρ

123

Journal of Global Optimization (2025) 92:837–888 877

Fig. 3 Variation of solution time
for deterministic equivalent
(MAiNGO) and parallel
decomposition (MUSE-BB) with
ρ for Ns ∈ {4, 8, 16} over 20 runs
each. Parameter combinations
without data points did not
terminate within 3600s, also see
Table 1

Table 1 Median B&B wall times
in seconds over 20 runs, or
remaining relative optimality
gaps in % (computed as 1 - ratio
of lower to upper bound) after
3600s for solving the CHP sizing
model with different number of
scenarios and branching
priorities, using MAiNGO and
MUSE-BB

Algor MAiNGO MUSE-BB
ρNs 4 8 16 4 8 16

1 1.7 145 17% 2.6 2.4% 20%

2 1.1 77 8.8% 0.82 62 7.6%

4 1.1 59 4.6% 0.42 12 2.8%

8 1.4 55 3.7% 0.33 4.3 1292

16 2.2 98 3.8% 0.43 3.5 765

32 3.9 142 4.3% 0.75 5.2 329

64 8.2 342 5.0% 1.6 7.8 295

128 16 550 5.7% 3.0 14 436

Twoout of the 20 runs for the instance Ns = ρ = 16, solvedwithMUSE-
BB, timed out. The median is computed with respect to the remaining
18 runs. Minima for each column (highlighted in bold) indicate that
the performance of MUSE-BB relatively to MAiNGO improves with an
increase of scenarios, and thus problem size

values minimizing average wall time for each scenario are much lower for MAiNGO than for
MUSE-BB. However, low ρ values lead to significantly worse performance for MUSE-BB
than for MAiNGO, e.g., all runs for (Ns, ρ) = (8, 1) time out after one hour with a median
remaining gap of 2.4%. For Ns = 16, all instances solved with MAiNGO time out, while
for MUSE-BB almost all instances with ρ values above 4 terminate (with the exception of
two outliers for ρ = 16). This indicates the importance of appropriate branching priorities
when solving stochastic problems in general, and when usingMUSE-BB in particular. When
comparing the best ρ values for each scenario (bold in Table 1), MUSE-BB outperforms

123

878 Journal of Global Optimization (2025) 92:837–888

MAiNGO in terms of wall time by a factor of 3.5 and 15 for Ns = 4 and Ns = 8, respectively.
For Ns = 16 the value is expected to be significantly larger than 3600/295.3 ≈ 12.

Note that already for these relatively small problem sizes outperformance is close to or
even larger than the number of scenarios and thus the number of used threads. This implies
that MUSE-BB can be more favorable than more general parallelization approaches such
as, e.g., the MPI parallelization of MAiNGO, where open nodes are processed by different
CPUs (not used in this work). While such general parallelization approaches are more widely
applicable, they do not exploit the special problem structure of DE. Consequently they may
be used in conjunction with the parallel processing of individual B&B nodes presented in
this work to optimally use computational infrastructure.

The results indicate that optimal branching priority ratios (i.e., ρ values resulting in mini-
malmedianwall time)may increase with the number of scenarios considered. Nevertheless, a
projection-based approach, where only the first-stage variables are branched (corresponding
to ρ → ∞) appears unfavorable, as wall times increase significantly for large ρ-values.

6.2 Effect of multisection

We next consider the effect of the multisection parameters kmax, and η. Recall that every time
a second-stage variable is selected for branching, we solve the 2Ns independent subproblems,
resulting from themultisection involving the corresponding Ns variable instances for different
scenarios. We then use the results to compute strong-branching scores σs for each scenario,
and create up to 2kmax child nodes, with the actual number being controlled by the value of
the strong-branching threshold η ∈ (0, 1], i.e., we reject bisections with a strong-branching
score below ησs , see Sect. 4.4.

For each Ns value, we take the three ρ values for which MUSE-BB performed
best at kmax = 1, and perform further experiments for kmax ∈ {2, 4, 8}, and η ∈
{0.1, 0.2, 0.5, 0.8, 1}. Increasing values of kmax, and decreasing values of η allow a larger
number of child nodes to be created from each multisection, i.e., the maximum is 28 = 256
for (kmax, η) = (8, 1).We point out thatmultiple variablesmay achieve themaximum strong-
branching score. Hence, even for η = 1, the settings kmax = 1, and kmax > 1, may produce
different B&B trees (and thus wall times) for a given problem instance, as the latter setting
allows creating more than 2 child nodes, while the former does not.

As before, we repeat the solution for each parameter combination 20 times. Since com-
binations with Ns = 4, and Ns = 8, show no clear trend for the effect of kmax, or η, we only
focus on combinations with Ns = 16, the results of which are depicted in Fig. 4. The B&B
wall times of all investigated combinations are visualized in Fig.6 in “Appendix B”.

Only a small set of parameter combinations results in improvements over the best median
wall time for kmax = 1, (i.e., 295 s for ρ = 64). However, these improvements are mostly
insignificant, with the best median wall time of 272s (achieved for (kmax, ρ, η) = (4, 32, 1))
corresponding to an improvement of less than 8%. For the remaining parameter combinations
median wall times remain the same or increase. While combinations with (Ns, kmax) =
(16, 2) show no clear trend for the effect of η, for (Ns, kmax) = (16, 4), and (16, 8), an
increase of η results in reductions of wall time.

We point out that setting the strong-branching threshold η to a value of 1 produces very
similar results as setting kmax to 1, since only bisections that produce the highest strong-
branching score may be selected. In fact, for the considered parameter combinations, the
total number of iterations for kmax > 1 only depends on ρ, with the corresponding values
being around 0.06% lower than those for kmax = 1.

123

Journal of Global Optimization (2025) 92:837–888 879

Fig. 4 Variation of solution times for solving the CHP sizing problem using MUSE-BB with kmax ∈
{1, 2, 4, 8}, and η ∈ {0.1, 0.2, 0.5, 0.8, 1} for the three ρ values resulting in the lowest median wall
times for (kmax, Ns) = (1, 16). For each parameter combination, a set of 20 runs is performed. For
(kmax, ρ, η) = (8, 32, 0.1), (8, 32, 0.2), and (8, 64, 0.1), 8, 2, and 3 runs timed out after 3600s, respec-
tively. Medians with respect to the remaining runs are depicted as horizontal black lines and the lowest median
time for kmax = 1 is depicted as a dashed red line for reference. Increasing kmax generally results in larger
wall times, and for kmax = 4 and 8, increasing η results in smaller wall times. (Color figure online)

For the considered problem, increasing kmax and reducing η tends to result in increases
of median wall times, however, the generality of this finding needs to be investigated with a
larger group of problems. In particular, it is conceivable that for problems in which multiple
variable instances have a comparatively strong effect on the objective or feasible set, values
of kmax > 1 and η < 1 may be preferable.

For kmax = 1 or η = 1, the behavior ofMUSE-BB is very similar to that of a standardB&B
algorithm solving the deterministic equivalent with a strong-branching heuristic.While this is
not commonly done, range reduction similar to that ofMUSE-BB, i.e., using the intersections
of variable domains from rejected bisections for the selected one, may also be done on the
basis of full-space bounding problems within classical strong-branching. Whereas MUSE-
BB solves smaller, independent subproblems, the bounds obtained from such an adapted
strong-branching routine in a standard B&B are naturally stronger. This trade-off appears to
be worth further study in future work.

6.3 Scaling with Ns

As we pointed out in the introduction, the fact that MUSE-BB employs a B&B search in the
full variable space implies that the number of nodes visited, and thus computational effort,
scales exponentially with Ns in the worst-case. This is despite the fact that the proposed
multisection branching allows processing an exponential number of nodes with an effort
that is linear in Ns , since each of the resulting nodes may need to be further branched and
processed.

The computational results fromprevious sections confirm this expected superlinear scaling
with Ns , but also highlight the superiority of MUSE-BB over the solution of the determin-
istic equivalent via MAiNGO. For MAiNGO the computational time of the best parameter
combinations increases by a factor of 50 (55s / 1.1 s) when going from Ns = 4 to Ns = 8.(cf.
bold times in Table 1). In contrast, for MUSE-BB, the corresponding factor is only 10.6 (3.5 s
/ 0.33 s).

The optimal value of ρ appears to scale approximately linearly with Ns . Thus it may
appear that for large numbers of scenarios, MUSE-BB will behave somewhat like a PBDA,

123

880 Journal of Global Optimization (2025) 92:837–888

in the sense that branching is done primarily on x. However, recall that each time a particular
second-stage variable instance is selected for branching, the current implementation chooses
all other instances of that variable formultisection. Since the number of second-stage variable
instances increases linearly with Ns , a fixed value of ρ would thus result in more frequent
branching on a given second-stage variable instance. Therefore the observed increase of
ρ does not necessarily imply a more frequent branching of x, but can rather be seen as a
compensation for the above-mentioned behavior. Furthermore, unlike PBDAs, MUSE-BB
avoids the global solutionof subproblems.This difference in computational effort complicates
direct comparisons based on individual iterations of MUSE-BB and PBDAs. Again, a more
comprehensive comparison with a larger set of test problems will be needed to determine
which class of algorithms is best suited to different types of problems.

7 Summary and outlook

We present MUSE-BB, a multisection B&B-based decomposition algorithm for the deter-
ministic global optimization of general nonconvex nonlinear two-stage problems. We prove
finite ε f -convergence, show favorable convergence order of our lower bounding scheme,
compared to existing algorithms, and provide initial computational results indicating good
scalability of MUSE-BB with the number of scenarios.

Existing decomposition algorithms for two-stage nonconvex MINLP problems [20–22]
have been classified as PBDAs [23, 24], since they all employ spatial B&B in the first-
stage variables. PBDAs achieve this by solving decomposable subproblems of both first- and
second-stage variables in each node. To obtain good lower bounds, these subproblems are
solved globally via a nested spatial B&B. Instead, we propose to branch on both first- and
second-stage variables within a single B&B tree, and to further relax subproblems, avoiding
duplicate branching on first-stage variables, and the nesting of spatial B&B procedures.
We either branch normally on a single first-stage variable, or we simultaneously branch on
multiple second-stage variables from different scenarios. While such multisection produces
an exponential number of child nodes, the total number of distinct subproblems is linear
in the number of bisected variables, by virtue of the decomposition. Thus, we only need to
process the distinct subproblems and can generate child nodes by appropriately combining the
subproblem results. To avoid an excessive number of child nodes with poor lower bounds, we
only use a subset of bisections (reverting the remaining ones). We select the bisections based
on their associated strong-branching scores, which are readily available after processing.
This allows to only generate child nodes corresponding to the most promising bisections
with highest strong-branching scores.

Our theoretical results show that by branching on all variables, the lower bounding scheme
of MUSE-BB generally has a convergence order of one, if all functions are Lipschitz. This is
in contrast to lower bounding schemes of existing decomposition algorithms, whichmay have
convergence orders below one, in general [24]. Whether or not this improved convergence
order actually translates into an advantage with respect to the occurrence of clustering is
however not clear at this point, and requires further investigation.

We perform initial computational experiments with a small test problem, which despite its
size still incorporates relevant nonlinearities found in applications. Our results highlight the
importance of choosing appropriate branching priorities for both general B&B and decom-
position algorithms. Moreover, the results show that even for this small problem and small
numbers of scenarios, MUSE-BB can significantly outperform the standard version of our

123

Journal of Global Optimization (2025) 92:837–888 881

open-source deterministic global solver MAiNGO, applied to the deterministic equivalent
formulation. For the considered problem instances, the best wall times of MUSE-BB are
achieved when essentially limiting the number of child nodes resulting from multisection to
two. In this case, MUSE-BB behaves very similar to a B&B algorithm solving the determin-
istic equivalent using a strong-branching heuristic that employs certain range reduction with
the rejected bisections.

Further theoretical and computational comparison of MUSE-BB with other decomposi-
tion algorithms, and with specialized strong-branching in full-space B&B is necessary, in
particular, determining conditions in which each method is preferable, e.g., depending on
the numbers of first- and second-stage variables, and scenarios. However, as meaningful
computational studies require adequate implementations of the alternative algorithms and a
sufficiently representative test set, we leave this as future work.

Aswith existing decomposition algorithms, the lower bounding schemeofMUSE-BBmay
be improved by dualizing the coupling (nonanticipativity) constraints instead of dropping
them. The resulting lower bounding scheme can be shown to have second-order convergence
at minimizers satisfying certain regularity conditions. However, this extension requires opti-
mal dual multipliers, which are expensive to compute in general. The details of how such an
extension can be implemented need to be clarified, in particular, when using further relax-
ations.

We aim to investigate the effect of combining the parallel bounding routines ofMUSE-BB
with more general B&B parallelization as implemented in MAiNGO, as this is expected to
make MUSE-BB applicable to much larger, more realistic case studies. Furthermore, it may
be interesting to generalize the presented implementation to problems with different num-
bers of second-stage variables and constraints. A related extension would allow branching on
arbitrary combinations of second-stage variables from different scenarios, instead of limiting
multisection to scenario instances of a particular second-stage variable. Finally, the decom-
posable bounding routines of MUSE-BB may enable efficient strong-branching in problems
that do not fall into the category of two-stage programming problems, but still exhibit block
structures, coupled by complicating constraints.

Since MUSE-BB operates a B&B search in the full variable space, its worst-case compu-
tational effort remains exponential in Ns . While our computational results indicate that it can
perform significantly better than a B&B algorithm applied to the deterministic equivalent, an
open question is whether the exponential scaling can be avoided without resorting to existing
projection-based algorithms. To this end, we also outlined how an alternative handling of
multisection may allow nesting B&B trees which exclusively address second-stage variables
from individual scenarios within a tree that addresses first-stage variables. This approach
may be seen as a hybrid between existing PBDAs (which duplicate the first stage variables
in the nested B&B trees) and MUSE-BB.

123

882 Journal of Global Optimization (2025) 92:837–888

Fig. 5 Conceptual CHP operation

A Test Problem

We consider the design of a combined heat and power (CHP) unit, i.e., an equipment sizing
problem whose aim is to satisfy given heat and power demands at minimum cost, see Fig. 5.

The size of the CHP is expressed as a nominal heat output Q̇nom, which corresponds to
the maximum thermal output Q̇out. The actual output at any given point is determined by a
relative heat output Q̇rel:

Q̇out := Q̇nom Q̇rel (3)

The energy input to the CHP in terms of lower heating value of natural gas, Ėgas, can be
calculated via the thermal efficiency ηth, which is a function of Q̇nom and Q̇rel:

Ėgas := Q̇out

ηth(Q̇nom, Q̇rel)
(4)

Following this the power output Pout can be computed via the electrical efficiency ηth, which
is also a function of Q̇nom and Q̇rel:

Pout := Ėgas ηel(Q̇nom, Q̇rel) (5)

The functional form of the efficiencies ηth and ηel is given by:

ηth(Q̇nom, Q̇rel) := ηth,nom(Q̇nom) ηth,rel(Q̇rel) (6)

ηth,nom(Q̇nom) := 0.498 − Q̇nom

21.17MW
(7)

ηth,rel(Q̇rel) := 1.10 − 0.0768 (Q̇rel + 0.130)2 (8)

ηel(Q̇nom Q̇rel) := ηel,nom(Q̇nom) ηel,rel(Q̇rel) (9)

ηel,nom(Q̇nom) := 0.372 + Q̇nom

21.17MW
(10)

ηel,rel(Q̇rel) := 1.02 − 0.435 (0.774 Q̇rel − 1)2 (11)

123

Journal of Global Optimization (2025) 92:837–888 883

A heat shortage, defined as

Q̇short := Q̇dem − Q̇out (12)

must be avoided (i.e., Q̇short must be negative). Correspondingly, the power shortage can be
defined as:

Pshort := Pdem − Pout (13)

A power shortage can be adressed by purchasing power from the grid, i.e.:

Pbuy := max(0, Pshort) (14)

If Pshort or Q̇short are negative, the excess power can be sold to the grid at a reduced price,
while the excess heat can be dissipated into the environment:

Ṗsell := max(0,−Pshort) (15)

Q̇diss := max(0,−Q̇short). (16)

With these definitionswe can formulate a reduced-space problem that contains the nominal
heat output as the only first-stage variable, i.e: x = (Q̇nom) ∈ [1.4MW, 2.3MW], and the
part-load in each scenario as the only second-stage variable, i.e: ys = (Q̇rel,s) ∈ [0, 1].

We choose total annualized costs (TAC) in million e as the objective function. The first-
stage objective function describes the annualized investment costs (according to an economy
of scales approach) and the second-stage objectives correspond to the annual operating costs
in each scenario:

fI (x) = 149567e/a

(
Q̇nom

1MW

)0.9

× 10−6 (17)

fII,s
(
x, ys

) = Top(pgas Ėgas,s

+ pel,buy Pbuy,s

− pel,sell Psell,s) × 10−6 (18)

Where Top = 6000 h/a, pgas = 80e/(MWh), pel,buy = 250e/(MWh), pel,sell =
100e/(MWh)

We approximate the requirement that the CHP unit must either be inactive or operate
above a minimal part-load threshold of 50% with quadratic second-stage constraints of the
form

0.0619263 − (Q̇rel,s − 0.25115)2 ≤ 0 (19)

which restrict the relative outputs Q̇rel,s to less than 0.1%, or more than 50% part-load. An
additional constraint is that

Q̇short,s ≤ 0, (20)

also see Eq. (12). Note that Eq. (19) implies that heat demands corresponding to part-loads
between 0.1% and 50% cannot be satisfied. To ensure the considered instances have a feasible
solution, the randomlygeneratedheat demands are set to 0 if they fall into this range. Similarly,
the generated power and heat demands are capped to the highest possible production.

123

884 Journal of Global Optimization (2025) 92:837–888

B Parameter Study for kmax and �

See Fig. 6.

Fig. 6 Variation of solution times for solving the CHP sizing problem using MUSE-BB with kmax ∈
{1, 2, 4, 8}, and η ∈ {0.1, 0.2, 0.5, 0.8, 1} for the three ρ values resulting in the lowest median wall times
for Ns = 4, 8, and 16, with kmax = 1. For each parameter combination, a set of 20 runs is performed. For
(kmax, ρ, η) = (8, 32, 0.1), (8, 32, 0.2), and (8, 64, 0.1), 8, 2, and 3 runs timed out after 3600s, respectively.
Medians with respect to the remaining runs are depicted as horizontal black lines and the lowest median time
for kmax = 1 is depicted as a dashed red line for reference. Whereas for Ns = 4, and 8, no clear trend is
discernible, for Ns = 16, increasing kmax generally results in larger wall times, and for kmax = 4, and 8,
increasing η results in smaller wall times. (Color figure online)

123

Journal of Global Optimization (2025) 92:837–888 885

C Overview of Functions and Optimization Problems

Function explanation

f overall objective function
fI first-stage objective function
fII,s second-stage objective function

f Ys
II,s second-stage optimal value function

fs scenario objective function

f X ,Ys
s scenario optimal value function

Problem explanation

TSP two-stage (stochastic programming) problem
DE (DEn) deterministic equivalent form of TSP (restricted to the domain of node n)
DENAC NAC formulation, equivalent to DE and TSP
RPn

s recourse problems for a given value of x for node n (providing upper bounds)
LSPn

s relaxations of DENAC for node n by dualizing NACs with multipliers λs
SPn

s relaxations of DENAC for node n by dropping NACs
MCn

s McCormick relaxation of SPn
s for node n

LPn
s linear relaxation of MCn

s for node n (providing lower bounds)
OBBTn

s,v OBBT problems for variable v and node n
Rn

s generic scenario relaxation for node n

Acknowledgements Funding by the Werner Siemens Foundation within the WSS project of the century
“catalaix” is acknowledged. Simulations were performedwith computing resources granted byRWTHAachen
University under project rwth1468.M.L.,M.D., andA.M. acknowledge funding from theHelmholtz Associa-
tion of German Research Centers. The authors are grateful to J.K.Scott for his instructive talk [23], providing
a recording of this talk, and fruitful discussions. Furthermore, they sincerely thank the reviewers for their
insightful feedback and constructive suggestions, which have significantly improved the quality and clarity of
the manuscript.

Author Contributions A.M., D.B., M.L. contributed to the conceptual development of the algorithm. A.M.,
andM.L. developed the theoretical results (proofs and examples in 5).M.L. carried out the software implemen-
tation with guidance from D.B. M.L. designed and conducted the computational experiments and analyzed
the results. Conceptualization: A.M., D.B., M.L. Formal Analysis: A.M., M.L. Funding Acquisition: A.M.,
M.D. Methodology: A.M., M.L. Software: M.L. Supervision: A.M., M.D. Validation: M.L. Visualization:
M.L. Writing—original draft: A.M., M.L. Writing—review and editing: All authors.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

886 Journal of Global Optimization (2025) 92:837–888

References

1. Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer, New York (2011). https://
doi.org/10.1007/978-1-4614-0237-4

2. Yunt, M., Chachuat, B., Mitsos, A., Barton, P.I.: Designing man-portable power generation systems for
varying power demand. AIChE J. 54(5), 1254–1269 (2008). https://doi.org/10.1002/aic.11442

3. Langiu, M., Dahmen, M., Mitsos, A.: Simultaneous optimization of design and operation of an air-cooled
geothermal ORC under consideration of multiple operating points. Comput. Chem. Eng. 161, 107745
(2022). https://doi.org/10.1016/j.compchemeng.2022.107745

4. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: alphaBB: a global optimization method for general con-
strained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995). https://doi.org/10.1007/bf01099647

5. Vigerske, S., Gleixner, A.M.: SCIP: global optimization of mixed-integer nonlinear programs in a branch-
and-cut framework. Optim. Methods Softw. 33(3), 1–31 (2017). https://doi.org/10.1080/10556788.2017.
1335312

6. Bongartz, D., Najman, J., Sass, S., Mitsos, A.: MAiNGO: McCormick based Algorithm for mixed
integer Nonlinear Global Optimization. Technical report, Process Systems Engineering (AVT.SVT),
RWTH Aachen University (2018). http://permalink.avt.rwth-aachen.de/?id=729717. The open-source
version is available at https://git.rwth-aachen.de/avt-svt/public/maingo. The corresponding Python pack-
age maingopy is available at https://pypi.org/project/maingopy

7. Belotti, P.: Couenne: a User’s Manual (2019). https://www.coin-or.org/Couenne/couenne-user-manual.
pdf. Accessed 13 May 2024

8. Sahinidis, N.V.: BARON user manual: v. 24.05.08 (2024). http://www.minlp.com/downloads/docs/baron
%20manual.pdf. Accessed 08 May 2024

9. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8(1), 101–111 (1960).
https://doi.org/10.1287/opre.8.1.101

10. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math.
4(1), 238–252 (1962). https://doi.org/10.1007/BF01386316

11. Laporte, G., Louveaux, F.V.: The integer L-shaped method for stochastic integer programs with complete
recourse. Oper. Res. Lett. 13(3), 133–142 (1993). https://doi.org/10.1016/0167-6377(93)90002-X

12. Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming.Oper. Res. Lett. 24(1–2),
37–45 (1999). https://doi.org/10.1016/S0167-6377(98)00050-9

13. Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972).
https://doi.org/10.1007/BF00934810

14. Li,X., Tomasgard,A.,Barton, P.I.:Nonconvexgeneralized benders decomposition for stochastic separable
mixed-integer nonlinear programs. J. Optim. Theory Appl. 151(3), 425–454 (2011). https://doi.org/10.
1007/s10957-011-9888-1

15. Li, X., Sundaramoorthy, A., Barton, P.I.: Nonconvex generalized benders decomposition. In: Optimization
in Science and Engineering, pp. 307–331. Springer, New York (2014). https://doi.org/10.1007/978-1-
4939-0808-0_16

16. Karuppiah, R., Grossmann, I.E.: A Lagrangean based branch-and-cut algorithm for global optimization
of nonconvex mixed-integer nonlinear programs with decomposable structures. J. Glob. Optim. 41(2),
163–186 (2007). https://doi.org/10.1007/s10898-007-9203-8

17. Khajavirad, A., Michalek, J.J.: A deterministic Lagrangian-based global optimization approach for qua-
siseparable nonconvex mixed-integer nonlinear programs. J. Mech. Design (2009). https://doi.org/10.
1115/1.3087559

18. Li, H., Cui, Y.: A decomposition algorithm for two-stage stochastic programs with nonconvex recourse
functions. SIAM J. Optim. 34(1), 306–335 (2024). https://doi.org/10.1137/22M1488533

19. Ogbe,E., Li,X.:A joint decompositionmethod for global optimization ofmultiscenario nonconvexmixed-
integer nonlinear programs. J. Glob. Optim. 75(3), 595–629 (2019). https://doi.org/10.1007/s10898-019-
00786-x

20. Kannan, R.: Algorithms, analysis and software for the global optimization of two-stage stochastic pro-
grams. Ph.D. Thesis, Massachusetts Institute of Technology (2018). https://dspace.mit.edu/handle/1721.
1/117326. Accessed 13 May 2024

21. Cao, Y., Zavala, V.M.: A scalable global optimization algorithm for stochastic nonlinear programs. J.
Glob. Optim. 75(2), 393–416 (2019). https://doi.org/10.1007/s10898-019-00769-y

22. Li, C., Grossmann, I.E.: A generalized Benders decomposition-based branch and cut algorithm for two-
stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables.
J. Glob. Optim. 75(2), 247–272 (2019). https://doi.org/10.1007/s10898-019-00816-8

123

https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1002/aic.11442
https://doi.org/10.1016/j.compchemeng.2022.107745
https://doi.org/10.1007/bf01099647
https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1080/10556788.2017.1335312
http://permalink.avt.rwth-aachen.de/?id=729717
https://git.rwth-aachen.de/avt-svt/public/maingo
https://pypi.org/project/maingopy
https://www.coin-or.org/Couenne/couenne-user-manual.pdf
https://www.coin-or.org/Couenne/couenne-user-manual.pdf
http://www.minlp.com/downloads/docs/baron%20manual.pdf
http://www.minlp.com/downloads/docs/baron%20manual.pdf
https://doi.org/10.1287/opre.8.1.101
https://doi.org/10.1007/BF01386316
https://doi.org/10.1016/0167-6377(93)90002-X
https://doi.org/10.1016/S0167-6377(98)00050-9
https://doi.org/10.1007/BF00934810
https://doi.org/10.1007/s10957-011-9888-1
https://doi.org/10.1007/s10957-011-9888-1
https://doi.org/10.1007/978-1-4939-0808-0_16
https://doi.org/10.1007/978-1-4939-0808-0_16
https://doi.org/10.1007/s10898-007-9203-8
https://doi.org/10.1115/1.3087559
https://doi.org/10.1115/1.3087559
https://doi.org/10.1137/22M1488533
https://doi.org/10.1007/s10898-019-00786-x
https://doi.org/10.1007/s10898-019-00786-x
https://dspace.mit.edu/handle/1721.1/117326
https://dspace.mit.edu/handle/1721.1/117326
https://doi.org/10.1007/s10898-019-00769-y
https://doi.org/10.1007/s10898-019-00816-8

Journal of Global Optimization (2025) 92:837–888 887

23. Robertson, D.L., Cheng, P., Scott, J.K.: Convergence rate analysis for schemes of relaxations in decom-
position methods for global nonconvex stochastic optimization. In: CAST Plenary Session of AIChE
Annual Meeting 2020 (2020)

24. Robertson, D., Cheng, P., Scott, J.K.: On the convergence order of value function relaxations used in
decomposition-based global optimization of nonconvex stochastic programs. J. Glob. Optim. (2025).
https://doi.org/10.1007/s10898-024-01458-1

25. Kearfott, B., Du, K.: The cluster problem in global optimization: the univariate case. In: Computing
Supplementum, pp. 117–127. Springer, Vienna (1993). https://doi.org/10.1007/978-3-7091-6918-6_10

26. Du, K., Kearfott, R.B.: The cluster problem in multivariate global optimization. J. Glob. Optim. 5(3),
253–265 (1994). https://doi.org/10.1007/bf01096455

27. Wechsung, A., Schaber, S.D., Barton, P.I.: The cluster problem revisited. J. Glob. Optim. 58(3), 429–438
(2014). https://doi.org/10.1007/s10898-013-0059-9

28. Kannan, R., Barton, P.I.: The cluster problem in constrained global optimization. J. Glob. Optim. 69(3),
629–676 (2017). https://doi.org/10.1007/s10898-017-0531-z

29. Bompadre, A., Mitsos, A.: Convergence rate of McCormick relaxations. J. Glob. Optim. 52(1), 1–28
(2011). https://doi.org/10.1007/s10898-011-9685-2

30. Najman, J., Mitsos, A.: Convergence analysis of multivariate McCormick relaxations. J. Glob. Optim.
66(4), 597–628 (2016). https://doi.org/10.1007/s10898-016-0408-6

31. Cao, H., Song, Y., Khan, K.A.: Convergence of subtangent-based relaxations of nonlinear programs.
Processes 7(4), 221 (2019). https://doi.org/10.3390/pr7040221

32. Smith, E.M.B., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21,
791–796 (1997). https://doi.org/10.1016/s0098-1354(97)87599-0

33. Karmakar, S., Mahato, S.K., Bhunia, A.K.: Interval oriented multi-section techniques for global opti-
mization. J. Comput. Appl. Math. 224(2), 476–491 (2009). https://doi.org/10.1016/j.cam.2008.05.025

34. Dür, M., Horst, R.: Lagrange duality and partitioning techniques in nonconvex global optimization. J.
Optim. Theory Appl. 95(2), 347–369 (1997). https://doi.org/10.1023/a:1022687222060

35. Oliveira, F., Gupta, V., Hamacher, S., Grossmann, I.E.: A Lagrangean decomposition approach for oil
supply chain investment planning under uncertainty with risk considerations. Comput. Chem. Eng. 50,
184–195 (2013). https://doi.org/10.1016/j.compchemeng.2012.10.012

36. Kirst, P., Stein, O., Steuermann, P.: Deterministic upper bounds for spatial branch-and-bound methods in
global minimization with nonconvex constraints. TOP 23(2), 591–616 (2015). https://doi.org/10.1007/
s11750-015-0387-7

37. Füllner, C., Kirst, P., Stein, O.: Convergent upper bounds in global minimization with nonlinear equality
constraints. Math. Programm. 187(1–2), 617–651 (2020). https://doi.org/10.1007/s10107-020-01493-2

38. Csallner, A.E., Csendes, T., Markót, M.C.: Multisection in interval branch and bound methods for
global optimization—I. Theor. Results. J. Glob. Optim. 16(4), 371–392 (2000). https://doi.org/10.1023/
a:1008354711345

39. Markót, M.C., Csendes, T., Csallner, A.E.: Multisection in interval branch and bound methods for
global optimization—II. Numer. Tests. J. Glob. Optim. 16(3), 219–228 (2000). https://doi.org/10.1023/
a:1008359223042

40. Kazazakis, N.: Parallel Computing, Interval Derivative Methods, Heuristic Algorithms, and Their Imple-
mentation in a Numerical Solver, for Deterministic Global Optimization. Ph.D. Thesis, Imperial College
London (2017)

41. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex
underestimating problems.Math. Programm. 10(1), 147–175 (1976). https://doi.org/10.1007/bf01580665

42. Tsoukalas, A.,Mitsos, A.:MultivariateMcCormick relaxations. J. Glob.Optim. 59(2–3), 633–662 (2014).
https://doi.org/10.1007/s10898-014-0176-0

43. Villanueva, M.E.: Set-Theoretic Methods for Analysis Estimation and Control of Nonlinear Systems.
Ph.D. Thesis, Imperial College London (2015)

44. Chachuat, B., Houska, B., Paulen, R., Peri’c, N., Rajyaguru, J., Villanueva,M.E.: Set-theoretic approaches
in analysis, estimation and control of nonlinear systems. IFAC-PapersOnLine 48(8), 981–995 (2015).
https://doi.org/10.1016/j.ifacol.2015.09.097

45. Najman, J., Bongartz, D., Mitsos, A.: Linearization of McCormick relaxations and hybridization with the
auxiliary variable method. J. Glob. Optim. (2021). https://doi.org/10.1007/s10898-020-00977-x

46. Najman, J., Mitsos, A.: Tighter McCormick relaxations through subgradient propagation. J. Glob. Optim.
75(3), 565–593 (2019). https://doi.org/10.1007/s10898-019-00791-0

47. Li, D., Li, X.: Global optimization of an industrial natural gas production network. IFAC-PapersOnLine
48(8), 337–342 (2015). https://doi.org/10.1016/j.ifacol.2015.08.204

48. Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization. J. Glob.
Optim. 33(4), 541–562 (2005). https://doi.org/10.1007/s10898-005-0937-x

123

https://doi.org/10.1007/s10898-024-01458-1
https://doi.org/10.1007/978-3-7091-6918-6_10
https://doi.org/10.1007/bf01096455
https://doi.org/10.1007/s10898-013-0059-9
https://doi.org/10.1007/s10898-017-0531-z
https://doi.org/10.1007/s10898-011-9685-2
https://doi.org/10.1007/s10898-016-0408-6
https://doi.org/10.3390/pr7040221
https://doi.org/10.1016/s0098-1354(97)87599-0
https://doi.org/10.1016/j.cam.2008.05.025
https://doi.org/10.1023/a:1022687222060
https://doi.org/10.1016/j.compchemeng.2012.10.012
https://doi.org/10.1007/s11750-015-0387-7
https://doi.org/10.1007/s11750-015-0387-7
https://doi.org/10.1007/s10107-020-01493-2
https://doi.org/10.1023/a:1008354711345
https://doi.org/10.1023/a:1008354711345
https://doi.org/10.1023/a:1008359223042
https://doi.org/10.1023/a:1008359223042
https://doi.org/10.1007/bf01580665
https://doi.org/10.1007/s10898-014-0176-0
https://doi.org/10.1016/j.ifacol.2015.09.097
https://doi.org/10.1007/s10898-020-00977-x
https://doi.org/10.1007/s10898-019-00791-0
https://doi.org/10.1016/j.ifacol.2015.08.204
https://doi.org/10.1007/s10898-005-0937-x

888 Journal of Global Optimization (2025) 92:837–888

49. Gleixner, A.M., Berthold, T., Müller, B., Weltge, S.: Three enhancements for optimization-based bound
tightening. J. Glob. Optim. 67(4), 731–757 (2016). https://doi.org/10.1007/s10898-016-0450-4

50. Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applica-
tions in process design. Comput. Chem. Eng. 19(5), 551–566 (1995). https://doi.org/10.1016/0098-
1354(94)00097-2

51. Li, D., Li, X.: Domain reduction for Benders decomposition based global optimization. Comput. Chem.
Eng. 93, 248–265 (2016). https://doi.org/10.1016/j.compchemeng.2016.06.009

52. Applegate,D., Bixby, R., Chvatal, V., Cook, B.: FindingCuts in theTSP (APreliminaryReport). Technical
report, AT&T Bell Labs (1995)

53. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005).
https://doi.org/10.1016/j.orl.2004.04.002

54. Achterberg, T.: Constraint Integer Programming. Ph.D. Thesis, TU Berlin (2007)
55. Kannan, R., Barton, P.I.: Convergence-order analysis of branch-and-bound algorithms for constrained

problems. J. Glob. Optim. 71(4), 753–813 (2017). https://doi.org/10.1007/s10898-017-0532-y
56. Adjiman, C.S., Floudas, C.A.: alphaBB algorithm. In: Encyclopedia of Optimization, pp. 61–73. Springer,

New York (2008). https://doi.org/10.1007/978-0-387-74759-0_11
57. Rote, G.: The convergence rate of the sandwich algorithm for approximating convex functions. Computing

48(3–4), 337–361 (1992). https://doi.org/10.1007/bf02238642
58. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical

and computational study. Math Program 99(3), 563–591 (2004). https://doi.org/10.1007/s10107-003-
0467-6

59. Khan, K.A.: Subtangent-based approaches for dynamic set propagation. In: 2018 IEEE Conference on
Decision and Control (CDC), pp. 3050–3055 (2018). https://doi.org/10.1109/cdc.2018.8618872

60. Wechsung, A.: Global Optimization in Reduced Space. Ph.D. Thesis, Massachusetts Institute of Tech-
nology

61. Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relaxations. J. Glob. Optim. 51(4), 569–
606 (2011). https://doi.org/10.1007/s10898-011-9664-7

62. Zlobec, S.: On the Liu–Floudas convexification of smooth programs. J. Glob. Optim. 32(3), 401–407
(2005). https://doi.org/10.1007/s10898-004-3134-4

63. Fiacco, A.V. (ed.): Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Elsevier,
Amsterdam (1983). https://doi.org/10.1016/s0076-5392(08)x6041-2

64. Ginchev, I., Torre, D.L., Rocca, M.: Ck,1 functions, characterization, Taylor’s formula and optimization:
a survey. Real Anal. Exch. 35(2), 311–342 (2009)

65. Stechlinski, P., Khan, K.A., Barton, P.I.: Generalized sensitivity analysis of nonlinear programs. SIAM
J. Optim. 28(1), 272–301 (2018). https://doi.org/10.1137/17m1120385

66. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990). https://doi.org/10.
1137/1.9781611971309

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10898-016-0450-4
https://doi.org/10.1016/0098-1354(94)00097-2
https://doi.org/10.1016/0098-1354(94)00097-2
https://doi.org/10.1016/j.compchemeng.2016.06.009
https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1007/s10898-017-0532-y
https://doi.org/10.1007/978-0-387-74759-0_11
https://doi.org/10.1007/bf02238642
https://doi.org/10.1007/s10107-003-0467-6
https://doi.org/10.1007/s10107-003-0467-6
https://doi.org/10.1109/cdc.2018.8618872
https://doi.org/10.1007/s10898-011-9664-7
https://doi.org/10.1007/s10898-004-3134-4
https://doi.org/10.1016/s0076-5392(08)x6041-2
https://doi.org/10.1137/17m1120385
https://doi.org/10.1137/1.9781611971309
https://doi.org/10.1137/1.9781611971309

	MUSE-BB: a decomposition algorithm for nonconvex two-stage problems using strong multisection branching
	Abstract
	1 Introduction
	1.1 Problem formulation and notation
	1.2 Literature overview
	1.3 Challenges of existing algorithms
	1.4 A new decomposition algorithm for TSP

	2 Decomposable bounding subproblems for TSP
	3 Multisection branching for decomposable bounding schemes
	3.1 Multisection in MUSE-BB
	3.2 Projected multisection

	4 Proposed algorithm
	4.1 Lower and upper bounding
	4.2 Range reduction
	4.3 Branching and node processing
	4.4 Filtered multisection

	5 Theoretical results
	5.1 Preliminaries
	5.2 First-order convergence
	5.3 Second-order convergence

	6 Computational results
	6.1 Importance of branching priority
	6.2 Effect of multisection
	6.3 Scaling with N?

	7 Summary and outlook
	A Test Problem
	B Parameter Study for kmax and η
	C Overview of Functions and Optimization Problems
	Acknowledgements
	References

