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Abstract

We present MUSE-BB, a branch-and-bound (B&B) based decomposition algorithm for the
deterministic global solution of nonconvex two-stage stochastic programming problems. In
contrast to three recent decomposition algorithms, which solve this type of problem in a
projected form by nesting an inner B&B in an outer B&B on the first-stage variables, we
branch on all variables within a single B&B tree. This results in a higher convergence order
of the lower bounding scheme, avoids repeated consideration of subdomains, inherent to the
nesting of B&B searches, and enables the use of cheaper subproblems. In particular, when
branching on second-stage variables, we employ a multisection variant of strong-branching,
in which we simultaneously consider one candidate variable from each scenario for branching.
By our decomposable lower bounding scheme, the resulting subproblems are independent
and can be solved in parallel. We then use strong-branching scores to filter less promising
candidate variables and only generate child nodes corresponding to a multisection involving
the remaining variables by combining the appropriate subproblem results. We prove finite
& p-convergence, and demonstrate that the lower-bounding scheme of MUSE-BB has at least
first-order convergence under the mild assumption of Lipschitz continuous functions and
relaxations. MUSE-BB is implemented and made available open source, as an extension of our
deterministic global solver for mixed-integer nonlinear programs, MAiINGO, with OpenMP-
parallelization of the decomposable subroutines. Numerical results show that MUSE-BB
requires less CPU time than solving the deterministic equivalent using the standard version
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of MAiINGO; moreover, the parallelized decomposition allows for further reduction in wall
time.

Keywords Two-stage stochastic programming - Decomposition - Multisection -
Convergence analysis - Clustering

List of symbols

Feasible set of an optimization problem

Objective function

Generic constraint function vector

Nonanticipativity constraints

List of k scenarios for which both sibling subproblems are feasible, the associated
second-stage variable instances will be branched, producing 2¥ orthant nodes
Map from scenarios producing exactly one infeasible sibling subproblem to the
sibling n with a feasible subproblem, the associated second-stage variable instances
will be branched, but do not add to the number of orthant nodes generated
Number, e.g., of first-stage variables (subscript x) or second-stage constraints (sub-
script IT)

Node of the B&B tree

Set of open nodes of the B&B tree

Scenario

Subgradient

Domain of x

First-stage variables

Domain of y

Second-stage variables

L nmNeww9

=

- Cr X Ao Z 3

Subscripts
° Related to lower bound
I Related to first-stage
1T Related to second-stage

Superscripts
° Related to upper bound
cv Convex relaxation
¥ Related to incumbent
* Related to optimal solution

1 Introduction

A standard formulation for optimization under uncertainty is two-stage stochastic program-
ming [1], typically applied when long-term (“here and now”) decisions are taken prior to
the realization of uncertain scenarios, and then recourse (“wait and see’’) decisions are taken
in response to the realized scenario. This paradigm may also be applied in situations where
future events can be expected to occur with a particular frequency, i.e., the scenarios do not
represent an uncertain, but rather time-variable future, as in design and operation problems
in process engineering [2, 3]. In the following we will not distinguish between the two cases
and treat both via “probabilities”.
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1.1 Problem formulation and notation

The overall two-stage problem (TSP) takes the form

) YV
FEY = min fi (x) + Z Ws fii g ()
xeX seS TSPX’y

s.t. g1(x) <0,

where X C RN+, )y C RV foreachs € S,and Y C RVs™y such that X and V:= X, g Vs,
are bounded hyperrectangles, and thus compact sets. The set of considered scenarios S is
assumed to have finite cardinality Ny:=|S| > 1, and each element s € S is assigned a
probability ws € (0, 1], ZSE s ws = 1. Throughout this work, we omit variable domains
and other parameters in references to optimization problems, if they are irrelevant, e.g., as in
TSP. The limitation to values in (0, 1] makes the sum in the objective a convex combination,
allowing for more concise definitions and proofs. Other weights can be equivalently used via
appropriate scaling and redefinition of the objective.

For each scenario s, the value of second-stage optimal value function fl?;i also known
as optimal recourse function corresponds to the optimal objective value of the following
recourse problem (RP) for a fixed value of x, and second-stage domain ):

y .
i () :=min fi, (x, ys)
5§ ySEyS RP;gyx (x)

S. U grrs (x, ys) <0.

The decisions that need to be made in the first and second stage are captured by the variable
vectors x and y,, respectively. As a result, the TSPYY and its optimal value Y are
parameterized by the domains X’ and )V, whereas RPSJ * (x) and its optimal value flf‘; (x) are
parameterized by fixed first-stage variable values x and the domain )s. fi : X +— R and
JfiLs ¢ & x Y5 — R denote the scalar-valued first- and second-stage objective functions,
and g; : X — RM and gus - A XYy RN the vector-valued first- and second-
stage constraint functions. Note that we assume the number of second-stage variables Ny,
and second-stage constraints Ny, to be equal for all scenarios. This assumption is naturally
satisfied in many applications of two stage problems, e.g., system design and operation.
While the generalization to different numbers Ny, and Ny, for each scenario s does not
pose substantial complication, we only consider the simpler case for ease of exposition.

For conciseness, we aggregate the vectors y, into the overall vector of second-stage
variables y € V:

Y11
Y1 :
y=1 : |=| »wm »)
YN, :
YN;,Ny

We denominate any scalar element y, ; of y or y, as a second-stage variable and refer to

the collection of elements at the same position i in y, for different values of s as instances
of a second-stage variable. Furthermore, we define the scenario objective functions f; :
X x Yy — R

[, y)=1i () + fus (x, ) (fs)
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and the overall objective function f : X x Y — R

O y)=fG) + ) ws fis (x.y) f)

seS

= Z Wy (fI (x) + fiLs (x’ ys))

seS

= wy fi(x, 3y,

seS

where the equalities follow from our assumptions on the weights wy.
Using these definitions, TSP**Y can be equivalently stated as the following single-stage
optimization problem, also known as the ‘extensive form’ or the ‘deterministic equivalent’:

fX’y = min f(x, y)
xeX Xy
yey DE*

s.t. gpe(x, ),

DE
where the vector-valued constraint function gpg : X X Y = RN: groups all N?E:=N1 +
N Ny constraints in DE, and is defined as

gr1(x)

gDE,1(x, y) :
gI,Nl(x)

X, = . = .
gpe(x,y) : 1 G, yy) (gpE)
8pE,NPE (X, ¥) )

811N, Ny (X5 Yv,)

The two problems TSPY>Y and DEYY are equivalent in the sense that their globally and
locally optimal solution points and optimal objective values coincide if they exist, whereas
if one of the formulations is infeasible or unbounded, so is the other, see e.g., [2]. We are
interested in the case where all functions in DE may be nonconvex. We limit the theoretical
considerations, implementation, and numerical results to continuous variables. Thus, we do
not explicitly address issues pertaining to discrete variables in the following. The presence
of discrete variables would however not pose substantial complication.

1.2 Literature overview

Solving TSP*-Y by applying general-purpose branch and bound (B&B) solvers [e.g., [4-8]]
to DEY-Y is possible, typically amounting to solution of relaxations of DEX"-¥" in every
B&Bnode. Here A" € IX and )" € IV, where IX and I denote the sets of nonempty, compact
interval subsets of X and )). However, as B&B is intrinsically exponential in the number
of (branched) variables, this approach has worst-case exponential runtime in the number
of scenarios. This has motivated the development of decomposition algorithms capable of
exploiting the special structure of TSP for a more efficient solution. In these algorithms,
multiple independent subproblems are solved instead of instances of DE, which can result in
areduction of computational time required for the solution, as the subproblems are generally
much smaller and thus cheaper to solve. In the best case, such decomposition algorithms
achieve linear scaling with the number of scenarios Nj, i.e., an arithmetic complexity of
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O(Nj). Furthermore, the subproblems are independent and may thus be solved in parallel,
resulting in significant additional reductions of wall time.

Historically, decomposition strategies have predominantly been developed for certain sub-
classes of TSP, e.g., those restricted to linear functions and either only continuous [e.g., 9,
10] or mixed-integer variables [e.g., 11, 12], or those restricted to convex nonlinear functions
[e.g., Generalized Benders Decomposition (GBD) [13]]. More recently, algorithms address-
ing subclasses of TSP allowing for certain nonconvexities, but imposing additional structural
assumptions have also been proposed [e.g., [14—18]]. In the most general case, any of the
functions in TSP may be nonconvex, and no additional structural assumptions are imposed.
Two algorithm variants addressing this case are proposed by [19], however, both variants con-
sider elements of y which introduce nonconvexity as complicating variables in addition to x.
Thus, in the worst case subproblems have a similar size as the original problem, diminishing
the benefits of decomposition.

Three further recent algorithms all employ B&B exclusively on the first-stage variables:
(i) [20] propose a modified Lagrangian relaxation in which so called nonancticipativity con-
straints (cf. Sect.2) are dualized. The resulting Lagrangian problem is thus still a nonconvex
two-stage problem but exhibits additional structure and can thus be solved in a decomposable
manner using the algorithm proposed by [14, 15]. As a result, only the continuous first-stage
variables need to be branched. (i7) [21] propose another B&B algorithm that obtains lower
bounds in each node via global solutions to separate, but generally nonconvex scenario sub-
problems, resulting from simply dropping the nonanticipativity constraints. (iii) [22] use
mixed integer linear or convex mixed integer nonlinear relaxations based on DE as lower
bounding problems, which are solved via GBD. Cuts from Lagrangean subproblems are
added to a Benders master problem and cutting planes for convexification are added to the
Benders subproblems. All three algorithms [20-22], solve Ny independent subproblems on
X" x )y at each B&B node n, where X" € IIX. While this implies that the computational
work of the bounding operation scales linearly in Ny, and further, that the subproblems can
be solved in parallel, linear scaling of the overall algorithms with N; would additionally
require that the number of nodes in the outer B&B search is independent of the number of
scenarios. Note, however, that within a family of problems with variable number of scenarios,
the quality of the lower bounds can be expected to depend on the number of scenarios. For a
given tolerance, the number of nodes visited by the outer B&B search may therefore depend
on the number of scenarios, despite branching only on x. Of course, a similar argument also
holds for other algorithms that are commonly thought to scale linearly with the number of
scenarios, e.g., classical Lagrangian dualization for convex problems. While such algorithms
are typically much more efficient for solving DE compared to general-purpose B&B, and
empirically do exhibit linear scaling, they have not been rigorously proven to scale linearly
with the number of scenarios in the general case.

1.3 Challenges of existing algorithms

Recently [23] observed that all three algorithms, addressing general nonconvex instances of
TSP [20-22] fall into the category of projection-based decomposition algorithms (PBDAs).
Algorithms in this category directly solve TSP (which can be considered a projection
of DEY-Y onto the X' space) by considering only the first-stage variables via second-stage
optimal value functions fﬁy %+ [24] argue that this approach likely suffers from the cluster
effect, a phenomenon of some spatial B&B algorithms, where a large number of nodes may
need to be visited near approximate global minimizers [25-27]. To avoid this effect, the
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relaxations of both objective and constraints need to have a sufficiently high convergence
order [28]. Note that throughout the article we refer to convergence order in the sense of
Hausdorff, unless stated otherwise. The convergence order of relaxations typically used in
algorithms for (mixed-integer) nonlinear programs has been analyzed in a series of articles
[cf. [28-31]]. [24] show that as a result of performing search in the X domain only, PBDAs
need to construct relaxations of the so-called scenario value functions:

PV gy | ST @), xeF
' +0o0, otherwise

where st’yx are the feasible subsets of X in scenario s:

FEYu={x e X | gr(x) 0,3y, € Vs : gy (x. y,) <O

Adopting the convention for the minimum of an infeasible problem to be infinite, the weighted
sum over the scenario value functions is equivalent to the objective of TSP. [24] demonstrate
that only branching on x generally causes st’y“' to be nonsmooth, which in turn limits the
achievable convergence order. In particular, even the ideal PBDA, which uses the tightest-
possible relaxation for each fSX’yS, i.e., the convex envelope, generally has a convergence
order below 1, and only achieves first-order convergence if all fSX’y ¥ are Lipschitz. On the
other hand, they show that this ideal relaxation has second-order convergence if fSX’yS are
twice continuously differentiable, and furthermore, that the algorithm of [22] is equivalent
to using this ideal relaxation, if optimal dual multipliers A} are used. Note that in general,
generating convex envelopes of arbitrary fSX’y ¥ (via optimal dual multipliers or otherwise) is
prohibitively expensive. Furthermore, even for convex f, g and gy; ;, and even in the absence

of discrete variables, the fXX’y * are not guaranteed to be smooth, but rather only lower semi-
continuous [cf., e.g., Theorem 35, Chapter 3 of 1]. In summary, using PBDAs, i.e., branching
on x only, limits convergence order to below one in general. As a result [24] state that PBDAs
are expected to suffer from clustering, and suggest to search for alternative decomposition
approaches, rather than for better relaxations in PBDAs. While a higher convergence order
can certainly be advantageous, we point out that this conclusion might be overly pessimistic,
as the occurrence of clustering is determined by the interplay of both convergence order, and
growth order of the objective and constraint functions [also see 28].

Nevertheless, the three aforementioned PBDAs [20-22] may potentially have further
issues. First, for each node n with domain X" € X, visited by the outer B&B algorithm
searching on X, an inner algorithm searches on X”* x ))s during the solution of the subprob-
lems. The consideration of x in both levels will therefore result in repeated consideration
of the same domain, constituting a duplication of work. Second, in the general case, where
there are nonconvexities in the second stage (through nonconvex objectives or constraints,
or integer variables), the lower bounding subproblems must at least occasionally be solved
globally to guarantee convergence. In addition, [20] and [21] also solve their upper bound-
ing problems globally, while [22] do not explicitly state whether their solutions are local or
global. Finally, the nesting of these expensive bounding routines in an outer B&B algorithm,
bears resemblance to early ideas for solving general mixed-integer nonlinear programming
problems, which considered branching on the integer variables and globally solving a con-
tinuous nonconvex problem in each node. However, such ideas have been abandoned since
nested exponential approaches are considered computationally unfavorable [32].
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1.4 A new decomposition algorithm for TSP

To improve convergence orders of the relaxations, and to avoid duplication of work and the
nesting of expensive search routines, we propose an alternative decomposition algorithm
for TSP. Similar to solving DE via a classical B&B algorithm, we explicitly branch on
first- and second-stage variables, however, we still make use of the structure inherent to
TSP to obtain decomposable bounding subproblems for each scenario. We call our proposed
algorithm MUSE-BB, as it combines classical scenario decomposition with multisection
[33] in a B&B algorithm. Efficient branching on multiple instances of a particular second-
stage variable is made possible by the fact that bounding subproblems for each scenario are
independent of second-stage variable instances from other scenarios: While branching a node
on N second-stage variables results in 25 child nodes, only 2 Ny independent subproblems
need to be solved to update their lower bounds. Each child node can then be generated by
combining bounds and variable domains from N, out of the 2 Ny independent subproblems.
To limit memory requirements as well as the number of generated child nodes with poor
lower bounds, we filter the Ny candidate bisections based on strong-branching scores, and
allow for selecting a further subset of these bisections, ensuring an upper limit on the total
number of generated child nodes.

Like classical B&B algorithms, MUSE-BB searches the full variable space. Thus in the
worst-case, its runtime is expected to be exponential in Ny. However, the combination of
decomposition with multisection allows for a more efficient exploration of the search space
than with classical algorithms. Moreover, we analyze the convergence order of the lower
bounding scheme used in MUSE-BB. We show that while this convergence order is generally
lower than in classical B&B algorithms, it is at least as high as in PBDAs, and can be
strictly larger when the scenario value functions fSX‘y'Y are not Lipschitz. In particular we
show that the lower bounding scheme of MUSE-BB is (at least) first-order convergent if
all functions and convex relaxations are Lipschitz. While our lower bounding scheme is
generally not second-order convergent, we discuss a possible extension of MUSE-BB, whose
lower bounding scheme achieves second-order convergence at unconstrained minimizers by
dualizing nonanticipativity constraints instead of dropping them. Overall, the results indicate
that MUSE-BB and its extension at least partially avoid issues with the cluster effect.

The remainder of the article is structured as follows: Sect.2 gives a brief review of the
decomposable bounding subproblems used in scenario decomposition algorithms for TSP.
In Sect. 3 we motivate the use of multisection branching of second-stage variables. Following
this, we outline two alternative variants of multisection that allow for efficient incorporation
of decomposable bounding problems in a B&B algorithm, branching on both x and y. Sec-
tion 4 presents the MUSE-BB algorithm, incorporating one variant of multisection branching.
It includes implementation details followed by a formal statement of the MUSE-BB algo-
rithm and subroutines. In Sect. 5 we present convergence results for both our lower bounding
problems, and the overall algorithm. We show that under mild conditions MUSE-BB con-
verges to an ¢ s-optimal solution in finite time for any £ > 0. Section 6 presents the results
of computational experiments on a small test problem, highlighting the effect of different
parameters on MUSE-BB, and Sect. 7 summarizes the results and gives an outlook on future
work.
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2 Decomposable bounding subproblems for TSP

In this section we review how bounds on TSP can be obtained from separate subproblems
for each scenario. Since this approach trivially enables both parallelization and linear scaling
of the computational work for bounding with Ny, its variants are the basis of many existing
decomposition algorithms, as well as for MUSE-BB. The principal idea for decomposable
bounding routines is that first-stage variables are complicating, because they appear in the
objectives and constraints of all scenarios. Therefore, the problem can be decoupled by
scenario, by either introducing independent copies of x, or fixing its value. As shown in the
following, these two cases result in subproblems which respectively provide lower and upper
bounds on the optimal objective value f*Y of TSPY-Y.

An equivalent representation of DE*-Y and thus TSP*-Y is the lifting obtained by intro-
ducing a copy x; of x for each scenario s and enforcing the equality of these copies, resulting
in the following nonanticipativity problem.

fX’y = xmeif)lczwsfs(xm ys)

;Ey seS
S. t. H,x; =0 X,y

gr(xs) <0 Vse8
8115 (xs, yx) <0 VseS.

In DENAC, the first set of constraints enforces equality of all x, thus, the coupling is moved

to these so called nonanticipativity constraints (NACs), where H ; are appropriately shaped,
sparse matrices. For simplicity, we assume the following, specific form of the NACs, also
used, e.g., in [22]:

x;—x;,=0 Vs eS\{1}. (NACs)
Due to the linearity of the NACs, dualizing them with Ny — I multiplier vectors my € RVx, s €

S\ {1} removes the coupling, as it allows to define the vector A:=(A1, ..., Ay,), consisting
of scenario-specific multiplier subvectors

A== Y m/ws,
seS\{1}
Ag=mg/ws s € S\{1}.
Note that inherently,
> wik =0. M
seS
The resulting dualization gives rise to the Lagrangian relaxation
AR @y=min 3 [ G p) 4+ AT
yey SES
s.t. g1(x5) <0 VseS

LRY-Y

8115 (xs, yS) <0 Vses.

By weak duality, the value f]ff{’y (1) provides a lower bound to %Y for any A satisfying
Eq. (1) [cf. e.g., 34]. Furthermore, this bound can be obtained by solving the N; separate
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Lagrangian subproblems

fféﬁ; (As) izglér}ﬁ(xs, ¥+ AsTxg
Ys€Ys
LSPYs
s.t. g (x,) <0
8115 (xs, ys) <0,
and calculating the Lagrangian relaxation based lower bound as
AT W)=Y ws fgh ) < Y. (LRLB)

seS

The best such bound is obtained by solving the Lagrangian dual, which can be written as
X, X,V
R Y (A*):=  max fLSPJ’}S (As) - LYY
€RNs Nx
ZseS As=0

It can be shown that if the sets ]—'SX Y5 have a nonempty intersection, the resulting bound
corresponds to the minimum of the weighted sum of convex envelopes of scenario value
functions, [24], i.e:

X, . Vs
fLRy (A = min Z ws conv f75Y5 (x).
seS

In that sense fflg’y ().*) constitutes the best bound obtainable via convex relaxation in the
framework of scenario decomposition. Unfortunately, obtaining optimal dual multipliers
A* is both computationally expensive and numerically challenging [35]. We therefore only
consider the implications of updating the dual multipliers in Sect. 5, whereas in the remainder
of this work, we focus on the simpler case, also considered by [21], where all multipliers are
fixed to zero. In that case, the scenario relaxation of DEYX-Y consists of N s scenario problems
of the form

RERZE .
fSP,s = xmeu)l(fs(xsv ys)
)

Y;Eys
s. t. 81 (xs) = 0

gII,s (xs’ ys) = 0.

SRS

In Sect. 4.1 we will introduce further subproblems, obtained from additional relaxations of
SP;. To distinguish the different optimal objective values, we use corresponding subscripts.

PsX Vs

The globally optimal objective values fSXP:Sy"' of problems S can be used to obtain a

lower bound fsgg’y on the optimal objective value f*-Y of DEYY ie.,

X X, Vs
f7 =Y ws £ < Y (SPLB)
seS

While the resulting first-stage solutions obtained for each scenario will generally differ from
each other, the bound can be made arbitrarily tight by exhaustive branching on x. PBDAs
like [20-22] use this fact: while they branch on x; and y, during the global solution of the
subproblems SPy, the outer B&B search only requires branching on x to ensure convergence.
As shown by [24], however, the convergence order of such lower bounding schemes is
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inherently limited due to the nonsmoothness of fﬁf % (x), incurred by projection, also cf. TSP
and Sect. 1.

Upper bounds on <Y can generally be obtained by evaluating any feasible point. Fixing
x to an arbitrary point ¥ € X that is feasible with respect to g, gives rise to Ny instances
of RP;. If each of these problems has at least one feasible point ¥, the function values
fiLs (¥, ¥,) provide an upper bound on fl%f * (%), and thus the upper bounding function f,
defined as

FED=H® + D ws fus@® F,) = 5 (UB)

seS

provides an upper bound on the optimal objective value %Y. Thus, given a candidate for ¥,
values for ¥y, can be obtained by local or global solutions of RPSy"' (¥). Candidates proposed
in the literature are commonly based on the individual solutions x} from the lower bounding
subproblems. A common candidate is the (wg-weighted) average ¥ = x*'¢ = ZSE SWs Xy
[20-22]. However, since the feasible set of TSP*+Y is generally nonconvex, this point may
be infeasible. An alternative candidate that is at least guaranteed to be feasible with respect
to g1, and gyp srep, iS X = X rep, such that s™P is a representative scenario for which x . is
closest to x®'8 with respect to the relative Euclidean distance, i.e,

2
re . & xiavg - x:i
sTeP eargmlnz _ (s™°P)
seS “ ]
1=

Xi —X;

where X;, and x; denote the original lower and upper bounds of x; [22]. Note that while X jr,
is trivially feasible in s™P, it is generally not in other scenarios. Furthermore, if a candidate
x p does happen to be feasible, there is no guarantee that local solutions to the corresponding
instances of RP; are found.

As with any spatial B&B method, in the general nonconvex case, a guarantee to find
a feasible point allowing for termination is only given if the feasible set of DEY*Y has
a nonempty interior at a global minimizer, also compare with the analysis for single-stage
programs in [36]. Furthermore, Example 3.1 in [36], where upper bounds are obtained simply
from feasible lower bounding solutions, shows that even when the interior is nonempty, certain
combinations of problem instances, branching and node selection rules can lead to sequences
of lower bounding solutions that never include a feasible point. In such cases, an adaption of
the tested candidates, such as the approach proposed by [36] may be necessary. Unfortunately
such approaches may not address the more general situation of an empty interior, e.g., due
to the presence of equality constraints, although there are approaches that produce upper
bounds without guaranteeing to find feasible points [37]. On the other hand, feasible, and
even (approximately) globally optimal solutions can often be produced relatively easily for
many applications. Because of this, we neither implement the methods presented in [36]
in MUSE-BB, nor analyze this issue further. Instead we follow the common approach to
perform upper bounding via local solutions from candidate points, and concentrate this work
on the issues pertaining to lower bounding.

In summary, by solving instances of the separable subproblems SPSX’y * and RP?} (%), we
can bound the desired optimal solution value of the original problem DE**Y from below and
above:

X, — i~ o~
fay < Y <FEP.
Assuming that arbitrarily good feasible points are found during the successive partitioning of

the variable domains, the bounds can be tightened until some satisfactory accuracy 7 > 0
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is reached. The upper bound f then serves as an g-optimal solution to problem DE¥-Y . In
the following section we present a special branching scheme that efficiently combines the
decomposable subproblems with partitioning of both X’ and ).

3 Multisection branching for decomposable bounding schemes

To avoid several issues associated with the nested branching of PBDAs (cf. Sect. 1), we
propose to combine decomposable bounding schemes with explicit branching of both first-
and second-stage variables. As argued below, standard branching of individual variables
would eliminate some of the benefits of decomposable bounding schemes. We therefore
propose a special branching scheme that either partitions a single first-stage variable or
multiple second-stage variable instances in each iteration. To refer to the partition elements
containing the lower/upper part of a branched variable domain, we say the respective variable
was branched down/up.

We first present the concept of multisection as used in the MUSE-BB in Sect.3.1. Fol-
lowing this, in Sect. 3.2 we outline an alternative idea that may be seen as a hybrid between
the variant presented in Sect. 3.1, and existing PBDAs.

3.1 Multisection in MUSE-BB

In a B&B algorithm for TSP using separable lower and upper bounding problems, branching
on elements of x and y has different implications for the resulting nodes: each node n is
characterized by the domains X" C X and V" C Y, where Y"':=X, s Vi; V! C V.
To obtain a lower bound on 7, variants of the N subproblems SPsX”’w are solved. While
branching on an element of x bisects X" into two subdomains, e.g., X" 4 and X", which
generally results in changed bound contributions from all subproblems (compare cases a and
b in Fig. 1), branching on an element of y, e.g., y, ;, only bisects the second-stage variable
domain )} of the associated scenario s (compare cases b and ¢ in Fig. 1). Thus, if we were
to only branch on yj ;, each of the two resulting child nodes would have Ny — 1 unchanged
subproblems with respect to n. An example for this situation is given by the case ¢ of Fig. 1.

In the parallel setting, where at least two subproblems can be solved simultaneously, this
implies that standard branching on second-stage variables leaves some processing capacity
unused. In other words, we could only exploit the parallelizable solution of subproblems
when processing nodes obtained from branching on first-stage variables.

To enable parallelism when processing nodes produced from second-stage branching,
we can branch on all Ny instances of a particular second-stage variable, instead of a single
one. Note that such a multisection is equivalent to N, sequential bisections, i.e., it splits the
original node into 2™ child nodes instead of two, also see the cases d) through g) of Fig. 1.
Multisection has previously been used in different B&B algorithms for general nonlinear
problems. Mostly this was in the form of branching the domain of a single variable at multiple
points (also called ‘multisplitting”) [38—40], but there are also examples of using multisection
in the present sense, i.e., branching once on multiple variables [33]. While these works
showed that multisplitting and multisection can result in better computational performance
than bisection, the considered B&B algorithms used standard bounding procedures and thus
needed to process all of the resulting nodes individually. In contrast, when solving TSP,
the use of separable bounding subproblems such as SP} allows us to generate bounds for
the exponential number of nodes resulting from multisection without explicitly processing
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Fig. 1 Implications of branching in scenario decomposition. We consider nodes from solving an instance of
DE with Ny = Ny = 1,and Ny = 2. In this case, each node corresponds to a 3D domain (bottom) and updating
the lower bounds requires solving two bounding subproblems on a 2D domain (top). These subproblems can
be considered projections on the X' x Y; and X x ) faces of the node domain (dark and light blue colors,
respectively). b: Branching the node from a on x affects both subproblem domains. ¢: Branching the node
from b on a single instance of y, here y1, only affects the associated subproblem domain, while the subproblem
for the second scenario remains unchanged. d through g: Alternatively to ¢, branching on all instances of y
simultaneously results in four nodes instead of two. However, out of the eight subproblems associated with
these nodes only four are distinct. When processing two complementary nodes, e.g., node d (where both y;
and y, are branched down), and node e (where both y; and y, are branched up), all distinct subproblems are
solved. Thus, explicitly processing the remaining nodes, i.e., f and g in our example, is unnecessary. Instead,
bounds for these nodes can be generated by combining the results from the subproblems solved for d and e.
(Color figure online)

each one individually: for each scenario s, branching on the associated second-stage variable
instance bisects the domain )} into two subdomains, ysd , and Y. Combining these new
domains with the unchanged domain X therefore results in two different subproblems (i.e.,

SP?M’W, and SPSX” e ) per scenario, i.e., multisection of second-stage variables only results
in 2 Ny distinct subproblems. Each child node simply corresponds to one of the possible
combinations of selecting one of the two subproblems for each scenario. This means that to
update lower bounds on all 2% child nodes, only the 2 N, distinct subproblems need to be
solved. Note that this can be achieved by processing any two of the 2™+ nodes that contain
complementary subproblems. One such choice consists of the pair of nodes resulting from
branching all instances of the selected second-stage variable down, or up. In the following
we respectively call these two nodes the lower and upper sibling nodes.

In summary, if a first-stage variable is selected for branching, we perform standard bisec-
tion resulting in two child nodes, whereas if a second-stage variable is selected, we instead
perform multisection branching of all associated variable instances for different scenarios,
resulting in 2% nodes. In both cases, only two nodes need to be processed after branch-
ing a given node n: after first-stage branching, these two nodes are simply the child nodes
with domains (X7, Y") and (X%, Y"). After second-stage branching, we process the sibling
nodes, with domains (X", %) and (X", "), where Y¥:=X s V¢ and Y":=X, g V".
While theoretically one could generate 2% nodes after each second-stage branching, this
poses several issues in an actual implementation. To address this, it is possible to filter the
candidate bisections contributing to the final multisection, i.e., to keep only a “promising”
subset and thus produce a small number of high quality nodes. The process we use for this
will be presented in Sect. 4.4.
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We point out that while the proposed multisection procedure may appear to avoid a com-
putational cost for node processing that is exponential in N, this is only true at the level of
an individual iteration. Whereas the cost for generating the child nodes from multisection
branching is indeed linear in Ny, their number, and thus the overall computational cost for
further processing is still exponential in N;. In the following, we outline an alternative use
of our multisection idea that may avoid this exponential scaling but bears resemblance to
PBDAs. While we do not pursue this idea further in the present work, we believe it to be
fruitful for future research.

3.2 Projected multisection

The only conceivable path to avoid exponential scaling with Ny in the context of multisection-
based second-stage branching is to avoid the explicit generation of the resulting child nodes.
One approach for this is to maintain information related to second-stage variable domains and
objective bounds at the subproblem level, without combining this information from different
scenarios into individual B&B nodes. One can still compute a lower bound related to the
first-stage domain by combining the lowest lower bounds from each scenario. Furthermore
this bound can be refined by further partitioning of the resulting subproblem domains and
organizing the resulting subproblem nodes in a separate B&B tree for each scenario. Similar
to PBDAS, this results in ‘nested’ B&B trees: The outer tree contains nodes based on first-
stage domains, each of which maintains a state of progress for the search in the second-stage
domains and associated lower bounds in N separate second-stage trees.

In contrast to existing PBDAs, branching of first- and second-stage variables is carried
out exclusively in the outer and inner trees, respectively. This not only avoids duplication
of first-stage variables, but also the exhaustive exploration of the second-stage trees in each
iteration, since their state is passed on to child nodes from branching on first-stage variables
in the outer tree.

The number of nodes in the outer tree is exponential in N,.. In the worst case, each such
outer node is associated to N full second-stage trees, the size of which is exponential in N,.
Thus a total of Nya™*b™Ny nodes may need to be processed, i.e., it appears that this approach
would avoid the exponential scaling with N and indeed scale linearly with Nj.

While this linear scaling appears promising, avoiding the generation of nodes from explicit
combinations of subproblem data results in lower bounds based on the lowest lower bounds
from the second-stage trees. Since this may be seen as a ‘projection’ of bounding information,
it is unclear whether this approach can be considered a full-space or rather a projected search.
We suspect the convergence order of this approach to be limited as with PBDAs, and therefore
focus the remainder of this work on the previously presented idea.

4 Proposed algorithm

We now present the spatial multisection B&B algorithm MUSE-BB for the solution of
TSP+, Algorithm 1 presents a formal statement of MUSE-BB; the relevant subroutines
will be presented in the following. For conciseness, we assume throughout this section that
given a node n, we have access to its domains X" and )", and lower bound f”, as well as
the domains X" and )", and lower bounds f” of the corresponding subproblems. Under this
assumption, it suffices to provide nodes to the subroutines instead of all associated data. If a
node n can be fathomed by infeasibility, we set its lower bound f"to oo.
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Algorithm 1: MUSE-BB

Input : Instance of TSPY ,y, tolerance & fo maximum number of effective bisections kmax,
strong-branching threshold 7 B
Output: Incumbent point (xT, yT), incumbent objective value f, certificate i

11« X xY: f" < —c0: N <« {n}; f < 00; Mgjp, < empty Map;

2 while AV #@ do // there are nodes to be processed

3 n < select a node and remove from N\

4 if n € Mgjpthen // do a “sibling iteration”

// n is the previously processed parent node, re-entered into N
as a placeholder for the sibling nodes

5 (d,u) < Mgiplnl; // recover the sibling nodes to be processed

// see Subroutine 3 in Section 4.3

6 (f”,?n,x”,y") <« processSiblings (n,d,u);
7 it 7' < Fthen (x7, 7. F) < (&, y". f"):
8 if f* < f then
"// see Subroutine 4 in Section 4.4

9 (M, L) < filteredMultiSection(n,d,u);
10 foreachi € {0, ..., 2Ll 1} do

// see Subroutine 5 in Section 4.4
11 0 < generateOrthantNode (i,n,d,u, M, L);

// see Subroutine 1 in Section 4.3
12 if f° < f then branchNode (o) ;
13 end
14 end

15 else // do a “normal iteration”
// see Subroutine 2 in Section 4.3

16 (i",fn,x",y") <« processNode (n) ;
17 if 7" < fthen (xT, yT, ) < ", y", F");
// see Subroutine 1 in Section 4.3
18 if f" < f then branchNode (n);
19 end

20 | f < min,en [ // update lowest lower bound
2t | if f+ef > f then return LA AN Jis

22 end

23 return (xf, yT,f, Bk

On a high level, MUSE-BB only differs from a standard B&B algorithm in the use of
different kinds of iterations for nodes obtained from branching on first- and second-stage
variables. In both cases, the bounds of unprocessed nodes are updated, and the nodes are
either fathomed (by infeasibility or value dominance, i.e., f* > f) or branched.

Each iteration begins with the selection of a node n from a list of nodes A" (Line 3
in Algorithm 1). The selected node is either an unprocessed node (the root node or one
of the two child nodes obtained from standard bisection of a first-stage variable) which is
processed via a “normal iteration”, similar as in a standard B&B algorithm (Lines 15-18),
or it is a placeholder for two unprocessed sibling nodes that will be addressed via a special
“sibling iteration” (Lines 4—14). In the latter case, n is the parent of the sibling nodes that
was processed and multisected, (i.e., branched on N second-stage variables as presented
in Sect.3) in a previous iteration. In that case, there is an entry in Mgy, mapping n to the
sibling nodes d and u (Lines 4 and 5), which are processed together, using some of the bound
and domain information from their parent, n (Line 6). During this step we also search for
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an upper bound within the domain of the parent node. If possible, we use such a bound to
update the best known upper bound (Line 7) and if this does not allow the parent node to
be fathomed (Line 8), we use the results from the sibling iteration to generate processed
child nodes whose number is exponential in the number of branched variables. However,
instead of using all N; bisections of the original multisection, we filter them, selecting only a
subset for the final multisection (Line 9, also see Sect.4.4). We only consider branching via
partitioning of the original domain through hyperplanes, orthogonal to the branched variable
dimensions. Because of this and the related concept of an orthant, i.e., the intersection of
k mutually orthogonal half-spaces in k-dimensional Euclidean space, we refer to the nodes
resulting from the filtered multisection as “orthant nodes” in the following. The map M
and the list £, returned from the filtered multisection, determine the subproblem data (from
n,d, or u) to be used for a particular orthant node 0. The number k of orthant nodes to be
generated is determined by the length of £ (Line 10). As the orthant nodes are already in a
processed state, we immediately branch them, provided they cannot be fathomed (Line 12).

In the course of the algorithm, unprocessed nodes are either fathomed or branched, until
the lower and upper bounds converge to & s optimality (Line 21) or the list A" is exhausted
(Line 23, possibly indicating infeasibility of TSP**Y). On termination, MUSE-BB either
provides an incumbent (x*, yT), with an associated objective value f = f(xT, yT) that is at
most ¢y larger than the global lower bound f, or a certificate of infeasibility ( f = 00).

We implement MUSE-BB as an extension of our deterministic global optimization solver
and open-source project MAINGO [6]. In Sects.4.1-4.2 we detail how lower bounding and
range reduction schemes available in MAINGO are adapted to subproblems from Sect.2
to obtain the decomposable bounding schemes used in the processing subroutines. Since
node processing comprises the main computational work, the respective subroutines are
parallelized in our implementation. The main theoretical results we present in Sect.5 do
not depend on the presented bounding schemes, i.e., alternative ones may be employed
analogously. Next, we discuss the branching of first- and second-stage variables (Subroutine
1) via standard bisection and the multisection from Sect.3, and detail how the resulting
nodes are respectively processed in “normal” and “sibling iterations” (Subroutines 2 and 3)
in Sect. 4.3. Finally, we present the subroutines for the filtered multisection and orthant node
generation in Sect.4.4.

4.1 Lower and upper bounding

Our deterministic global solver MAINGO [6] employs a general-purpose B&B algorithm
with lower bounding problems obtained via McCormick-based relaxation techniques [30,
41-45]. When solving TSP via equivalence to DE, we generate and solve such relaxations
based on DE*"-Y" for each node . In the following, we abbreviate DEX"Y" as DE".

PBDAs like [21], on the other hand, only branch on the first-stage variables and solve
Ny subproblems SP;YH’ys (or variants thereof) in each node. To ensure convergence, the
three reviewed algorithms [20-22] at least occasionally solve these subproblems to global
optimality. This generally also requires branching on x; and y,, albeit not in the outer
algorithm.

In MUSE-BB we also generate lower bounds based on SP;, however, we partition both the
X and ) domains in the same B&B tree and thus consider subproblems based on SP;Yn’w
(abbreviated as SP} in the following) instead of SP;Yn’y ‘. In contrast to PBDAs, the explicit
partitioning of the ) domain, renders global solution of subproblems unnecessary for conver-
gence. We therefore further relax the subproblems SP}, resulting in cheaper lower bounding
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problems. In particular, we make use of the available relaxation techniques in MAiINGO to
construct the following McCormick based convex relaxations of SP}:

fac,si= min f7" (xg, )
’ x;eX"
Y€V
X ‘ cv,n MC_’S‘L
s.t.gy (x5) <0
cv,n

8115 (x5, ¥,) <0,

where fi"", g1"", and g§;"" are the McCormick based convex relaxations of the functions

fs» g1 and gy 5, on X" x Vi, respectively [41, 42, 45]. These problems are further linearized
based on subtangents at one or more linearization points [cf. 46]. By default (and in all
experiments in Sect. 6) we only linearize at the midpoint of the node domain. The resulting
lower bounding problems take the form:

s. t. subflfj (xs, ys) <wv LPY
sub:éI (xs) <0

suby, (x5,y5) <0

Here, subg are subtangents of the convex relaxation of the function ¢ at the center of the
domain of node n, i.e.,

subjy (0):=¢"" (my) + V™" (m4)T (e — m,) (subtangent)

where the superscript ‘cv,n” denotes the corresponding convex relaxation, m, denotes the
midpoint of either X" or X" x V¥ (depending on the passed variables), and V denotes a
subgradient, i.e., 6(;5“*” (mg) € 3¢V (m,), where dp¥"" (m,) is the subdifferential of ¢¢¥"

at m,. Since fi'p  are valid lower bounds on the globally optimal objective values fSXP”A Vs
of SPY, they provide a valid lower bound for node #, i.e:

ffPZZZws f]flp’s < fsnp < fX"J;"' (LPLB”)
seS

Evidently this bound is generally weaker than the one obtained via global solution (see
SPLB), but it is also much cheaper to compute.

For upper bounding, we solve instances of the form RPSJ‘:', (x™) (abbreviated as RPY in the
following), instead of RPSy S (x™) as in PBDAs. Furthermore, in contrast to [20] and [21] who
solve their upper bounding problems globally, we again aim to reduce computational cost by
solving RP? locally. We obtain X" from the lower bounding solution corresponding to s™P (see
Sect.2). If the corresponding local solutions of RP} result in a feasible y" = (¥, ..., ¥y,),

the corresponding objective values fir (X", 7) > fl%};: (X™) can be aggregated to a globally
valid upper bound 7", via the upper bounding function (UB), i.e:

fl=rEn Y = Y (UB")

If 7" is smaller than the previously best upper bound £, the incumbent (x7, y*) and f are
updated with (¥", 7*) and f ', respectively.
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4.2 Range reduction

In this section we discuss decomposable range reduction routines for tightening variable
bounds in B&B algorithms for TSP. We first consider two general points, namely, how the
NACs can enable fathoming by infeasibility after application of these routines, and how
dominance rules give rise to scenario-specific objective cuts. We then present the specific
routines employed in MUSE-BB. While range reduction is not necessary from a theoretical
standpoint, it can improve the efficiency of the algorithm by reducing the search domain.

Based on decomposable bounding problems such as SP} or LP}, one can obtain decom-
posable range reduction routines by applying reduction techniques to the subproblems instead
of the full problem DE". Standard techniques for feasibility-based reductions can be applied.
As will be discussed in the following, however, optimality-based reductions require modified
upper bounds instead of objective values of points, feasible in the subproblems. In both cases,
the independence of subproblems allows for parallel updates of the bounds for the variables
(xs,y,) of each scenario s.

After each round of range reduction, the NACs can be used to tighten the first-stage
variable bounds. More explicitly, if X' denotes the tightened first-stage variable domain for
node n and scenario s after any of the presented decomposable range reduction routines, a
valid reduction of the overall domain X" is evidently given by the intersection X"’

= m Xl (X" aggregation)
seS

In particular, if X is empty, node n can be fathomed by infeasibility.

If an upper bound f is known, dominance rules can be used to derive objective cuts
for range reduction routines. Since in a decomposable bounding scheme objective values
obtainable in any particular node n are limited from below by the local lower bound £},
all nodes for which fg, > f holds can be fathomed by dominance. To derive a scenario-
specific cutoff based on a given value of f, we rewrite the dominance condition in terms of
scenario-specific lower bounds. Using (SPLB), a node is dominated if

X}'I yll —
Zwsfsps > f.

seS

Note that replacing any fspns g by a smaller value (say f n ) results in an even stronger
condition, that implies the above. Thus for any particular scenano s, the node is dominated
if
f B ’ Z Ws! igp,s’
n - s'eS\{s}
= SP,s Wy

= 7;’ (s-domination)

The above approach is a slight generalization to the scenario-specific upper bounds proposed
by [47] for the ‘primal problems’ in their decomposition method. In particular, any valid
lower bounds f n , can be used. In MUSE-BB we use the maximum of fLP and an interval
arithmetic based lower bound based on the objective of SP}.

MAINGO implements three range reduction techniques: constraint propagation [CP, cf.
e.g. 48], optimization-based bounds tightening [OBBT, cf. e.g. 49], duality-based bounds
tightening and probing [both referred to as DBBT in the following, cf. e.g. 50].

CP essentially refers to the inverse propagation of feasible intervals of the constraint val-
ues, i.e., (—oo, 0] in our case, to the variables [48]. This allows to determine conservative
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variable ranges for which the constraints can be fulfilled and thus enables domain reduc-
tion by intersecting the variable domains with these valid ranges. Thus, applying CP to the
subproblems SP} instead of DE" directly gives a decomposable routine.

The OBBT procedure consists of minimizing or maximizing a selected variable v subject
to the (relaxed) constraints of the original problem [49]. In our case, we consider scenario-
specific OBBT-problems, based on the lower bounding subproblems LP7, i.e., they take the
form:

v\U =min \ max v
x;eX"
Y5 €Yy
s.t. subly (x5, ¥5) < 7. OBBT?,
sub”gI (xs) <0

sub’;,HJ (x5, y5) <0
While no finite upper bound f is known, the first constraint is dropped. For each iteration, we
initially consider all variables for OBBT, and apply a variant of the trivial filtering heuristic
from [49] after each pass. Similar OBBT based problems have been proposed, e.g., by [20,
21, 51] for their respective algorithms.

DBBT uses objective bounds and duality information from the node subproblems that are
typically solved in spatial B&B algorithms [50] to tighten variable domains. In our case, if
all subproblems LPY are feasible, the solutions (¥, ¥,), associated reduced cost multipliers
(rx,s,Ty,s), and lower bounds f]f’P, , are available. If in addition a finite upper bound fis

known, we can compute scenario-specific ?ZI values from s-domination and perform DBBT.
For variables v for which the solution value v* corresponds to the respective lower or upper
bound, the complementary bound may be tightened:
fo—f
ifv* = v, setv = min(v,v—i— I5 LR
’

—n (DBBT)
f s f fP,s)

r

where r is the corresponding entry in ry ; or ry g, which must be positive in the first case
and negative in the second one. For variables for which the solution lies between the bounds,
two probing variants of LP} can be solved: in these probing LPs, the variable is temporarily
fixed to one of its bounds and DBBT is applied based on the new reduced cost multipliers
and optimal objective values. As probing is relatively expensive, it is deactivated by default
(and in all experiments of Sect. 6).

Since each subproblem contains only part of the information of DE”, the presented range-
reduction routines will generally be less effective than their full space counterparts. Thus,
the use of parallelized range reduction needs to result in sufficiently large reductions of wall
time to warrant the looser variable bounds. In comparison to the solution time of a lower
bounding problem, CP is computationally very cheap, which makes its decomposable variant
less appealing. Nevertheless it must be used when processing sibling nodes obtained from
multisection branching (cf. Sect. 3), as the resulting domains are needed for the generation
of orthant nodes, also see Subroutine 5 in Sect.4. OBBT on the other hand is a relatively
expensive procedure. This typically causes OBBT to dominate the computational work done
per iteration and thus makes a decomposable OBBT variant more appealing. Finally, the
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Subroutine 1: branchNode (n)

1 v < select a variable from (x, y) maximizing largest relative domain width x branching priority;
2 ifve {xi, liefl,--- ,Nx}} then // v corresponds to some x;

3 (d, u) < bisect n along the domain of v;

4 N <« NuU{d,ul;
5
6
7

else // v corresponds to yy,; for some s’
i < index for which v = y¢ ;3

d < n,u<n;// Initialize d and u as copies of n

foreach s € Sdo // branch d/u down/up on all instances of v

8 UV < Ys,is

9 d < lower half of bisecting d along the domain of v;
10 u < upper half of bisecting u along the domain of v;
11 end

// Since n,d, and u all share the same lower bound, the former is
re-entered into N and the latter two are stored in Mg

2 | N<NU{n})

B | Msipln] < (d, u);

14 end

use of decomposable lower bounding problems inherently requires the use of decomposable
DBBT, as duality information necessary for a full space variant is not available.

4.3 Branching and node processing

In this section, we present the branching and processing routines of Algorithm 1. In Subroutine
1, we first present how processed nodes are branched, as this determines the kind of iteration
that will be performed for the child nodes. Following this, we present the processing of nodes
obtained from first- and second-stage branching in Subroutines 2 and 3.

Any processed node n that is not fathomed is branched on either a first-stage variable or
on multiple second-stage variable instances, as outlined in Subroutine 1. For this, we select
some first- or second-stage variable v, maximizing the product of relative domain width
(i.e., current over original interval width) and branching priority (assumed to be nonzero), to
ensure exhaustive partitioning. If v is an element of x, i.e., v = x;, we bisect the associated
domain X7" = [x;, X;] at some branching point x}”, and add the two resulting nodes with the
lower and upper part of the original domain (i.e., [x;, x}’] and [x}’, Xi]) to the list of open
nodes (Lines 3 and 4 in Subroutine 1). In MUSE-BB, x}’ always corresponds to the center of
the interval, i.e., 0.5 (x; + X;).

If instead, v is an element of y, i.e., v = yy ;, for some s’, we perform the proposed
multisection branching. As pointed out in Sect.3, the child nodes of this multisection can
subsequently be generated from the results of two complementary nodes. Therefore we only
need to generate the lower and upper sibling node at this point. Taking the example from
Fig. 1: multisecting a parent node p, corresponding to node b) in Fig. 1, results in sibling nodes
d, and u, corresponding to nodes d), and e), respectively, which we create by branching all
N, instances of the selected second-stage variable y, ; down / up (Lines 6-11).

For a practical algorithm, we need to limit the number of nodes that will be generated in
the sibling iterations, as will be outlined in Sect.4.4. This is done via a filtered multisection
which requires domain and bound data from the parent node n as well as the sibling nodes. We
therefore return the parent node to the list of open nodes and create the mapping n +— (d, u)
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Subroutine 2: processNode (n)

1 do CP based on DE"*; fathom by dominance or infeasibility;

2 do OBBT based on LP{; fathom by dominance; apply X' aggregation, fathom by infeasibility ;
3 solve LPY and set i’} <« fIZlP s Vs eS, use LPLB", set i” <« fIiIP’ fathom by dominance or
infeasibility ;

X" < solution of LP} with s = s™P;

Y, 7’;) < solution and objective value of RP} Vs € S, update (3", F") via UB", fathom by
dominance ;

do DBBT based on LP?, fathom by dominance;

return (f", ", %", ")

[N

SN

in Mgy (Lines 12 and 13). When the node 7 is selected a second time in Algorithm 1, this
is detected via a lookup in M, and we perform a sibling iteration instead.

For the root node and all nodes resulting from first-stage branching, we do a “normal
iteration”, i.e., the respective node is processed as specified in Subroutine 2, and either
fathomed, or branched as specified in Subroutine 1. The only difference of Subroutine 2
with respect to a standard B&B algorithm is the possible use of decomposable bounding and
range reduction routines from Sect.4.1 and 4.2. In our implementation, we solve scenario
subproblems for OBBT (Line 2 of Subroutine 2), lower and upper bounding (Lines 3 and 5),
and DBBT (Line 6) in parallel, while the computationally cheap CP (Line 1) is done using
the full problem, DE”. To generate a candidate solution X" for upper bounding (Line 4), we
use a representative scenario s™P as outlined in Sect.2.

With sibling nodes, obtained from second-stage branching, we do a “sibling iteration”.
Before we give the formal statement of the combined processing of siblings in Subroutine
3, we recall that child nodes from multisection can be generated by combining the results
from different subproblems of both siblings (cf. Sect. 3). In contrast to Subroutine 2, the use
of decomposable range reduction and bounding routines is thus mandatory in Subroutine
3. Moreover, we cannot perform X' aggregation after doing range reduction routines on
n € {d, u}, because the resulting tightening would only be valid for the respective sibling
node. However, we can first propagate results form range reduction of both siblings to the
parent node p, whose multi section resulted in d and u, and then back to the siblings: let XS" s
Xy and ygl , V¥ denote the tightened variable domains obtained after applying some range
reduction to the subproblems of d and u for scenario s. Then the unions of the first- and
second-stage domains are a valid tightening of the corresponding domains from the parent
node p, i.e:

A} < conv (Xsd U Xf)
(parent s-domain tightening)

V! « conv (Ji;l U )7;‘)

Here, the use of the convex hull of the unions is purely for ease of implementation, as it
ensures the resulting domains are representable as hyperrectangles. Once we have applied
parent s-domain tightening for all scenarios, we can use the resulting X for X aggregation.
Intersecting the resulting X7’ with X¢ and X* results in a valid tightening of the sibling
domains:

x4 xdnar

, , (sibling s-domain tightening)
XY xtn P
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Subroutine 3: processSiblings (p,d, u)

1 foreach s € S do

2 foreach n € {d, u} do

3 ‘ CP based on SP}; fathom by dominance or infeasibility
4 end

5 apply parent s-domain tightening; fathom by infeasibility;
6 end

7 apply X} aggregation, apply sibling s-domain tightening Vs € S, fathom by infeasibility;
8 foreach s € S do

9 foreach n € {d, u} do

10 | OBBT based on LPY; fathom by dominance

11 end

12 apply parent s-domain tightening; fathom by infeasibility;
13 end

14 apply Xsp aggregation, apply sibling s-domain tightening Vs € S, fathom by infeasibility;
15 foreach s € S do
16 foreach n € {d, u} do

17 solve LP}, set i;’ <« f]ilP,s’ and fathom by infeasibility
18 end

19 check for s-domination; fathom by dominance;

20 end

21 foreach s € S do
22 foreach n € {d, u} do

23 ‘ do DBBT based on LP’S' ; fathom by dominance

24 end

25 apply parent s-domain tightening; fathom by infeasibility;
26 end

27 apply Xsp aggregation, apply sibling s-domain tightening Vs € S, fathom by infeasibility;

28 X7 < solution of LP{ with s from a variant of s™P that considers all feasible scenarios for n € {d, u};
29 foreach s € S do

30 ‘ (if , 75 ) < solution and objective value of RPf , check for s-domination; fathom by dominance;
31 end

32 update (37, F¥) via UB?;

33 return (f2, fP %P, 5P)

With this in place we can now review Subroutine 3. For each scenario, we execute the
range reduction and lower bounding routines for the corresponding subproblem of both
siblings. Any of these routines may indicate that either d or u can be fathomed because
the subproblem for some scenario s is dominated or infeasible. However, the results from
the remaining subproblems of the fathomable sibling can still be combined with the results
of the subproblem for s from the other sibling to generate child nodes. Thus we continue
the sibling iteration as long as for each scenario there is at least one feasible, undominated
subproblem from either sibling. For lower bounding (Lines 15-20 in Subroutine 3) we solve
the subproblems LPY, using the associated domains after CP (Lines 1-6) and OBBT (Lines
8-13). Following this, we perform DBBT (Lines 21-26). We perform all range reduction
(Lines 1-6, Lines 8—13, and Lines 21-26), as well as bounding (Lines 15-20, and Lines 29—
31) in parallel. Based on the final variable domains and objective bounds, we can generate
processed orthant nodes as detailed in Sect.4.4. In analogy to Subroutine 2, we could solve
one upper bounding problem for each such orthant node, however, this would result in an
exponential number of upper bounding problems. Instead, we choose to solve only a single

set of upper bounding problems RP?“H (¥P) (Lines 29-31 in Subroutine 3), using the )}’
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domains, resulting from parent s-domain tightening after DBBT. We select X" to be one of
the first-stage solutions of the feasible subproblems of both siblings, based on a representative
scenario s™P, that takes into account the subproblems of both siblings.

4.4 Filtered multisection

In this section we present a filtered multisection that addresses issues pertaining to the inher-
ently exponential number of child nodes resulting from multisection branching, as presented
in Sect. 3. After motivating this filtered multisection we give a formal statement in Subroutine
4. Following this, we comment on the possibility of adapting a related approach used in [21],
for branching on first-stage variables. Finally we present the generation of orthant nodes in
Subroutine 5.

The ability to generate 2" bounded child nodes by processing and recombining the results
from just two sibling nodes may seem attractive, however, handling an exponential number
of nodes for arbitrary Ny can quickly become an issue in practice. Consider for instance a
simple problem with Ny = Ny = I; simply storing the variable bounds of child nodes from
a single second-stage branching as 8 byte double values requires 16 (1 + Ny) 2V bytes, e.g.,
more than two terabytes of memory for Ny = 32. At least in principle, we could avoid this
memory issue by generating the nodes on demand in later iterations, however, doing this in
an appropriate order, e.g., by increasing lower bound would require additional computations.
More importantly, it is possible that for some of the bisections neither of the two subproblems
improves the lower bound of the parent node significantly. This can result in a large number
of nodes with weak objective bounds that all need to be processed separately, slowing down
the algorithm.

To address this issue, we can select a subset of the N, bisection candidates that allows for
a significant increase of the lower bound or reduction of the overall domain size, compared
to the parent node. We then revert the original multisection in favor of a second, filtered
multisection, comprising only the variable instances corresponding to the selected bisection
candidates. For this, we use Subroutine 4, which will be presented in the following. Note that
each bisection candidate corresponds to a particular scenario s, a branched variable instance
¥s.i» and two associated sibling subproblems with complementary domains for y; ;. For each
bisection candidate we get one of three results:

Case 1) Both subproblems are infeasible, this immediately implies infeasibility of the parent
node p.

Case 2) Exactly one subproblem is infeasible, only the domain of the feasible subproblem
can contribute to the generation of feasible orthant nodes, i.e., selecting this bisection
candidate does not increase their number.

Case 3) Both subproblems are feasible, selecting this bisection candidate doubles the result-
ing number of orthant nodes.

Since Case (1) is already addressed by the fathoming rules in Subroutine 3, Subroutine 4
only needs to address Cases (2) and (3). We select all bisection candidates from Case (2)
(Lines 4-7 in Subroutine 4), as they effectively result in a domain reduction, without affecting
the number of generated nodes. The feasible subproblems associated with these bisection
candidates are stored in the map M. The remaining bisection candidates, corresponding to
Case (3), are collected in £ (Line 9).

As the number k£ < Ny of bisection candidates selected from Case (3) determines the
resulting number of child nodes, we call k the “effective number of bisections”. To determine
which bisection candidates should be selected, we use a heuristic based on strong-branching
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Subroutine 4: filteredMultiSection (p,d, u)

1 M < empty map; /* mapping s with single feasible subproblem to
the corresponding sibling */
2 L < empty list; /* containing s for which both sibling subproblems
are feasible */
3 foreach s € S do
4 if f‘j = oo then
5 ‘ﬁ/\/l[s]:u; // variable corresponding to s will be branched
6 elseif f* = oo then
7 \ M(s] =d,; // variable corresponding to s will be branched
8 else
9 append s to L; /* variable corresponding to s might be
branched (see Lines 16-17) */
10 end
11 end

12 Omax = MaXgc/ Os;
13 if omax < 2 then

14 \ replace oy and omax With scores based on relative widths of variable domains
15 end

16 delete all s for which o5 < nomax from L;

17 delete all but the kmax best entries from £;

18 return (M, L);

scores [52, 53]: given sibling nodes d and u obtained from the parent node p, each bisection
candidate, i.e., each scenario s, is assigned a strong-branching score o;. For this, we employ
the default scoring function of SCIP, proposed in [54], which is calculated as

os::max(if — fP ey max(f¥ — fP, &5) (o)

Here the constant &, ensures a nonnegative score for cases where only one sibling improves
upon the parent bound.

We only keep scenarios from £ with a score of at least nomax, where n € (0, 1] and opax
is the largest of the scores Lines 12 and 15. Additionally, a maximum number of effective
bisections kmax is imposed to ensure that the filtered multisection produces at most 2kmax
child nodes (Line 17). If all scores are smaller than 8(27, we instead rank and select bisection
candidates based on relative widths of the associated variable domains (Lines 12 and 15).
This ensures exhaustive partitioning in the limit, necessary for the convergence of MUSE-BB,
also see Lemma 1 and Corollary 3 in Sect.5. A visualization of the proposed multisection
branching procedure is given in Fig. 2.

The use of strong-branching scores in Subroutine 4 suggests a relation between filtered
multisection and standard strong-branching, where alternative bisections of a set of N,
variables are considered. While standard strong-branching requires processing 2 N,, full nodes
to select a single bisection, i.e., generate 2 child nodes, we only process 2 Ny subproblems
(equivalent to 2 full nodes) and may generate an exponential number of nodes in each filtered
multisection. Nevertheless, standard strong-branching might also be useful in MUSE-BB, as
indicated by its use in the related algorithm of [21] for the selection of first-stage variables:
in each iteration, the authors consider all elements of x via strong-branching, solving LP
relaxations of the associated instances of DE" for the 2 N, child nodes. For the two nodes
of the selected bisection, they then perform the global solution of the subproblems SPy,
required for the convergence of their algorithm. While a similar approach could also be
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original multisection filtered multisection

@ branch y; ; @ branch ys ;
O/ AN O/ AN

O branch ys ; O branch
N Ysy,i
/ \ / \ !

- branch ys, ;
/N /
; branch yn_; O O o O O

@ @

o@m--- O oo--- 0

Fig. 2 Example for multisection branching and filtered multisection. In the original multisection (left) the
parent node p is branched on all second stage variable instances y, ; for a given variable index i. Instead
of generating all 25 nodes, we only generate the leftmost and rightmost node, corresponding to branching
all variable instances down (d) or up (u), respectively. We process these sibling nodes (blue) by solving the
resulting subproblems (squares). In the example, the subproblem for s = 2 of d is infeasible (red) while all
other subproblems are feasible (green). Right: based on the subproblem results, we perform a second, filtered
multisection of p, involving a subset k of the original Ny bisection candidates (right). This can be interpreted
as generating a new tree of k sequential bisections: we keep all bisections producing exactly one feasible
subproblem (here only the bisection of y» ;), as they do not increase the total number of child nodes. For the
bisections resulting in two feasible subproblems, we consider the bound improvement w.r.t. the corresponding
subproblems of p to compute the associated strong-branching scores og. The bisection candidates are then
filtered based on the values of o5 and the algorithm parameters n and kmax. We reject bisections for which
improvement is considered insufficient, i.e., those with oy < nomax, for a threshold n € (0, 1]. The remaining
ones are sorted by descending strong-branching score, resulting in an ordering of the associated scenarios (i.e.,
S1, ..., Sg ). Of these bisections we keep at most kmax . Finally, we generate the corresponding 2K orthant nodes
(green) using appropriate combinations of domains and bounds from the feasible sibling subproblems. (Color
figure online)

adopted in MUSE-BB, we do not require expensive global bounding routines for convergence;
hence solving full-space LP relaxations based on DE" is relatively expensive in our case.
Alternatively we could solve the decomposable LP relaxations LPY, and aggregate the strong-
branching scores oy, e.g., via a wy-weighted sum. As pointed out above, this would require
to process 2 N, nodes instead of just 2. Due to the importance of first-stage branching for
TSP (also see Sect. 6), this effort may in fact be warranted, however, we do not consider this
idea further here, and instead branch only on individual first-stage variables as indicated in
Subroutine 1.

The map M, and list £, returned by Subroutine 4 are used within Subroutine 5 for the
generation of individual orthant nodes. For this, we collect the appropriate variable domains
and subproblem objective values for each orthant from one of the siblings or the parent node
(Lines 16-18 in Subroutine 5). For each scenario s, the respective node is determined, based
on whether the associated bisection was selected (s € M or s € L) or not (Lines 4-15).
If s is in the map M, we only use the data from the feasible subproblem of the associated
sibling node (Lines 4 and 5). If instead, the scenario is in £, appropriate subproblem data is
taken based on the orthant index i (cf. Line 10 of Algorithm 1) to determine the sibling node
from which to use data (Lines 6—12 in Subroutine 5). Otherwise the bisection is rejected,
i.e., we use the data from the parent (Line 14). Note that the latter case does not imply that
the solution of the associated subproblems was in vain, as it may still result in tightened
variable bounds due to parent s-domain tightening (Lines 5, 12 and 25 in Subroutine 3).
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Subroutine 5: generateOrthantNode (i, p,d, u, M, L)

1 b < vector of | L] bits, representing i;

2 XO «— XP;

3 foreach s € S do

4 if s € M then

// use data from the feasible subproblem of bisection s

5 n < M][s];

6 else if s € £ then

// use data from the sibling subproblem corresponding to
orthant id i

7 J < position of s in L;
8 if b; = 0 then

9 | n<«d:

10 else

1 | n<u

12 end

13 else

// use parent data (bisection s was filtered in Lines 16-17 of
Subroutine 4)

14 n < p;

15 end

16 X0 — XNl
17 9 <« Vi,

18 Iﬁ e—lf;

19 end

20 V0 < Xes Vs

2 iu -~ ZSES Ws ﬁ;

22 ifX”:(?)ori”> fthenf’:oo;
23 return o;

Once data for all scenarios has been collected, we aggregate the overall second-stage domain
and scenario-weighted lower bound (Lines 20 and 21). Finally we test whether the orthant
node is infeasible or dominated and return it (Line 22).

5 Theoretical results

In this section we present convergence results for the lower bounding schemes used in MUSE-
BB, and highlight the connection to the convergence of the algorithm itself. When applied to
the domains of individual B&B nodes, the lower bounding problems presented in Sect.4.1
give rise to different lower bounding schemes (LBSs). Their quality is determined by their
underestimation of the true optimal value, and their capacity to quickly detect infeasible
subdomains. In the following we analyze the asymptotic behavior of these two qualities for
LBSs relevant to MUSE-BB, as the size of B&B nodes diminishes. In particular, we consider
the LBSs based on: (i) dropping or dualizing the NACs, corresponding to the subproblems
SP}, or LSP}, respectively, (ii) the McCormick relaxations of subproblems from (i), and
(iii) the linear programming relaxations, resulting from subtangent relaxation of subprob-
lems from (ii). Formally, the asymptotic behavior of a LBS for a sequence of descendant
nodes is quantified by the convergence order [55]. We first introduce additional notation and
definitions related to this convergence order in Sect. 5.1, and then present conditions under
which different LBSs achieve first- and second-order convergence, respectively in Sects. 5.2
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and 5.3. As a result of the first-order convergence, we show that MUSE-BB guarantees finite
termination with an ¢ ¢-optimal solution in Sect. 5.2. In Sect. 5.3 we analyze an extension of
MUSE-BB in which the NACs are dualized instead of dropped. We show that employing
this dualization within MUSE-BB is equivalent to adding the terms A;Tx;, to the objective
function relaxations in the subproblems LPY, and performing dual iterations to update the
multipliers A,. Provided optimal multipliers A} are obtained, we show that this results in
stronger convergence properties, with implications for the so-called cluster effect [25, 26].
In particular, while theoretical results of [28] indicate that the current implementation of
MUSE-BB may mitigate clustering around typical constrained minimizers, mitigating clus-
tering around typical unconstrained minimizers may require an extension such as the one
presented in Sect.5.3.

Before we give the formal definition of a LBS and the associated convergence order, we
highlight the impact of the quality of lower bounds via two examples. For this we define the
width of an interval.

Definition 1 (width of a multidimensional interval) A measure for the width of a multidi-
mensional interval ¥V = X; ¢, m) [gi, U,-] C R™ is given by:

.....

WO =, ()

As shown by [28], the occurrence of clustering is related to the convergence order of the LBS,
which in turn is defined in terms of the ‘size of B&B nodes’, i.e., the width of the domain of
branched variables, measured by Definition 1 [also see 55]. In algorithms like PBDAsS, this
node size is given by W (X™), whereas in algorithms like MUSE-BB it is given by the width
of the overall variable domain, i.e., W (£). While MUSE-BB will of course require more
branching than PBDAs to reach a given node size, the LBSs used in MUSE-BB may achieve
a higher convergence order than the scheme SPSX”’y *, used in PBDAs.

The following example illustrates this situation for LBSs based on SPy, i.e., the simplest
scenario relaxation, corresponding to dropping the NACs from DEif A)c] : while the scheme

SP;Yn‘y:, where only X is partitioned, results in an absolute optimality gap that diminishes

with /W (X), the gap produced by the scheme SPf"’y‘y , which additionally partitions ),
diminishes with W (Z").

Example 1 Consider the following instance of DEY-Y with N, = y =1, Ny =2 and an
original domain with X = Y| = ), = [0, 2]. Take

wi filx,y) = -y g1 y) = —x1 + ¥}

wa fo(x1,y2) =2y gua(x, y2) =x2— 3

The objectives imply Ehat at the optimum zPE" = (xPE", yPE' yDE"y of DE", yDE'
is maximized and yPF" is minimized. For any feasible node n with 2" = [x",X"] x

n

Y ¥ % 5 51, the bounds and constraints imply yPE" < min{vxPE" §} and
yPE" > max{v/xDE", Y3}. We have yPE = yPE = V/xDE on the original domain, and thus
FPE, yPE yDEy — (/xDE which is minimized at z°F = (xPF, yPE yDE) = (0,0, 0),
with objective value 0.

Now consider the lower bounds generated by lower bounding schemes based on SPy
on any nested sequence of nodes converging to the optimum zPF. Since all nodes in such
sequences satisfy x" = X;l = 0, the optimal solutions of the associated instance of SPj
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satisfy yISP" = min{~/x", ¥} and ygpn = max{/x", X;} = 0, and thus from the constraint

g11,2- We have xgpn = yzspn =0.

In SPSXn’y *, only x is branched, and the width of a node n corresponds to W" = W (X)) =
x", while W (y;’) =y, = 2 remains constant. Since X" < 2, we have: ylspn = +/W", and

thus fie — fip = VW
In SP? Y , both x and y, are branched, and the width of a node n corresponds to W”" =
W (2"). For a given width W”", the largest value for f/jz — f&p over all nodes n’ with

\ (Z”/) = W" will be produced by the node n with X" = y7 = W". Once W" < 1, we
have that v W" > W", and thus ylspn = W" and fJp — fop = W".

While Example 1 shows that for certain problems the scheme SPSX” Vs will produce weaker

bounds than SP;Y”’W for a given node width, the following example demonstrates that this
is not always the case, i.e., both LBSs may produce absolute optimality gaps that diminish
linearly (and not better) with the node width.

Example 2 Take Example 1, but change the constraints to

gui(x1,y1) = —x1 +y1;  gua(x2, y2) =x2— .

which implies that yP® = yDPE = xPE on the original domain, and thus f (xPE, yPE, yDE) =

xPE_ This is again minimized at ZPF = (xDE, ylle, yIZDE) = (0, 0, 0), with objective value 0.
n xryr .. 1 7

Now for both SPy¥ Y, and SP; Vs , it is easy to see that x§P1 = ygp’ =0, and xlSP" =

ylsPn = W", resulting in fjz — f¢p = W”", ie., an optimality gap that decreases exactly

linearly with the node width.

As we shall see in Sect.5.1, S-order convergence of a LBS requires that the optimality
gap decreases proportionally to (W”)ﬂ , with B > 0, i.e., a higher value of g is associated
with a better quality of the LBS. [24] showed that the convergence orders below one of
LBSs used in PBDAS are inherent to the projection resulting from running a B&B in the X’

space only. In particular, even LBSs based on the ideal relaxation, i.e., on convex envelopes

" Vs

. . X
of the scenario value functions f may have less than first-order convergence, unless

fSX"’yS is Lipschitz, which is not guaranteed in general. In contrast, we show in Sect. 5.2 that
the scheme SP = SP§( Vs , obtained by simply dropping the NACs, has at least first-order

convergence under the much milder assumption that the objective and constraint functions
of DE are Lipschitz. If additionally, the used convex relaxations are Lipschitz, subsequent
convex and linear relaxations used in MUSE-BB preserve this first-order convergence.

As demonstrated by Examples 1 and 2, the convergence order may still be as low as
one, despite branching on second-stage variables. In Sect. 5.3 we show that this limitation is
inherent to dropping the NACs, and that dualizing them instead results in a LBS that is as
least as strong as the presented one, but additionally guarantees second-order convergence
at unconstrained minimizers.

Despite this promising outlook for MUSE-BB, we need to point out that the seemingly
superior convergence order of LBSs for MUSE-BB compared to that of PBDAs may be
relativized by the fact that the occurrence of clustering is not exclusively determined by
convergence order, but also by the local growth order of objective and constraint functions, see
[28]. Even if for a given problem, a LBS for MUSE-BB has a higher convergence order than a
comparable scheme for a PBDA, the lower order might still be sufficient to mitigate clustering
in PBDAs. This is because by operating in the projected space, the relevant growth order for
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PBDAs is that of of the scenario value functions fsx,y ¢, which may also be reduced compared
that of the original objective functions f;. In Example 1, e.g., we have fIX o (x) = /x, and

thus a growth order of 1/2, matching the convergence order of the scheme SP;W’y“' ,indicating
that clustering might still be avoided, despite the reduced convergence order. Conditions for
which PBDAs or algorithms like MUSE-BB will show superior performance are thus not
immediately clear from the present analysis.

5.1 Preliminaries

To avoid the so-called cluster effect [25-27] where a B&B algorithm visits a large num-
ber of nodes near approximate global minimizers, LBSs need to exhibit a sufficiently large
convergence order. Early works on clustering [25-27] focused on clustering around uncon-
strained minimizers, where the convergence order of LBSs is equivalent to the convergence
order of the relaxations used for the objective function. Around constrained minimizers, on
the other hand, one additionally needs to consider the effect of relaxing the feasible set,
leading to an extended notion of convergence order [28, 55], which additionally depends
on the convergence orders of the relaxations used for the constraint functions. In B&B for
general nonlinear programming problems, relaxations of objective and constraints are typi-
cally generated by convex relaxation methods. In [29] we therefore analyzed the convergence
order of McCormick [41], «-BB [56], and convex hull relaxations. Convergence orders for
(further) relaxation through polyhedral outer approximation were investigated by [57-59].
While [28] consider a classical LBS for general nonlinear programming problems based on
convex relaxation, their conclusions are not dependent on this type of LBS. [55] present a
more general definition of a LBS, and give conditions under which convex and Lagrangian
relaxations with appropriate convergence orders result in first- and second-order convergent
LBS.

In preparation for Definition 4, where we use an extended notion of convergence order of
a LBS in the sense of [55], we introduce additional nomenclature and definitions. For each
B&B node n and the corresponding subproblem domains Z:=X" x Y}, we introduce the
scenario-specific feasible sets

Fli=((x.y,) € 2! : g1 (x) <0, gy, (x.y,) <0

Similarly, for the overall domains Z":=X" x )", associated with each node n, we express
the feasible set of DE" = DEX"Y" as

Fli={(x,y) € 2" : (x,y,) € FI' Vs € S}.

Furthermore, since we branch on both x and y, the distinction between them becomes irrele-
vant in many parts of the following analysis. For conciseness, we therefore aggregate the first-
and second-stage variables, i.e., we introduce the notation (x, y) = (x, y;, ..., Yy )=:2 €
Z" ¢ RM:, and (x, yo)=1zs € ZI C RNzs where, N.:=N, + NgNy and N ;=N + N,.

Definition 2 (distance between two sets) A measure for the distance of two sets Z1, Z,, C R™
is given by:
d(Z1, 22):= inf |z1 — z2]
Z1€2]

2262

Throughout this text, ||e|| denotes the Euclidian norm.
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Definition 3 (violation measure) A measure for the minimum constraint violation of some

P
optimization problem P(V) with variable domain V ¢ R and constraints gp : RN> — RNs
on some subdomain V" C V is given by:

. n_d . n RN:
viop:=d [ {gp(v) : v € V"},R_
WP 1/2
8
= min Zmax{gp,j(v), 0} )

veyn .
j=1

where R_ denotes the nonpositive orthant.

Alternative to Definition 3, one may also define the violation in terms of, e.g., the co-norm,

which would yield min  max max {0; gp, ;(v)}.
veV! je(l,..NE)

We chose Definition 3, following [28, 55], who use it, within their definitions of conver-
gence order of LBSs (Definition 8 and 14, respectively). For clarity, we separate the definition
of violation from that of convergence order.

We adapt Definition 14 of [55] to scenario-based LBSs of TSP*-Y. All such schemes
effectively lift the deterministic equivalent formulation DE” to the equivalent nonanticipa-
tivity formulation DEIfI( AJC} , which introduces separate first-stage variables and constraints for
each scenario and couples them via the NACs. Following this, scenario-based LBSs obtain
relaxations of TSP*Y by dropping or dualizing the NACs from DEif /’SC], potentially followed
by further relaxations of the objective and constraints.

Definition 4 (Hausdorff convergence order of scenario-based LBSs) Denote the optimal
objective value of DE" as f{};., and let R” be any relaxation of DE" that decomposes into the
N, scenario relaxations of the form:

fog= min fr(z) R
Zs€ R.s

where for each s, the feasible set Fy | contains F', and the objective functions fr ¢ are such
that the weighted sum of the optimal objective values fy ; underestimates fjp, i.e.,

= "we fR < fhg.

seS

We say that (the LBS based on) RY has:

1. By-order (Hausdorff) convergence at a feasible point z € Z if there exists Cy > 0 such
that for every Z" C Z with z € 2",

fis — fo < Cpw(2m)P

2. Bg-order (Hausdorff) convergence at an infeasible point z € Z if there exists Cg > 0
such that for every Z" C Z with z € 2",

viopg — viog < C, W (Z")ﬁg

We say that (the LBS based on) R} has (Hausdorff) convergence of order g on Z if is has
B-order (Hausdorff) convergence at each z € Z.
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The generic scenario-based relaxation R} encompasses all LBSs we consider: LSPY;
SP}; the additional relaxation of these problems, resulting from replacing all functions by
their McCormick relaxations on Z" (i.e., MC} in the case of SP}); and the linear outer
approximation of MC/ through subtangents, LPY. In all cases, the convergence order is with
respectto DE", i.e., feasibility and infeasibility are always to be understood with respect to the
original variables and constraints. As in Definition 14 of [55], the convergence order at feasible
[infeasible] points establishes an upper bound on the underestimation of the optimal objective
value [minimal constraint violation] in terms of the node width. Thus, the theoretical results of
[28] are directly applicable. In particular, assuming sufficiently small prefactors C s and Cy,
and that all minimizers are strict, the previous analyses indicate that second-order convergence
at feasible points mitigates clustering around unconstrained minimizers located at points of
differentiability [27, 28], while first-order convergence suffices for unconstrained minimizers
if they are located at points of nondifferentiability [28, 60]. At constrained minimizers, on
the other hand, first-order convergence may mitigate clustering if the objective and active
constraints grow linearly around the minimizer [28].

Note that according to Definition 3, the constraint violations viof); and viof are defined
relative to the overall constraints of the respective problems. In contrast to DE”, all scenario
relaxations R} by definition have separate copies of the first-stage variables x and the first-
stage constraints gy (or their relaxations) for each scenario s. Hence, the total number of
variables and constraints of the N subproblems R{ are Ng:=N;(Nx+Ny),and Ng =Ny (N1+
Nip), respectively. Similarly to gpg, we define gg by aggregating the constraint functions

of RY for all s; i.e., gg is the vector-valued function gg : X,cs5(Zs) — RY v , such that for

E=(X1,y1,.--,XN,, YN,.N,) € Xses(Zs) C RM: we have:
gr,1(&)
gr(é):= >
8RR (6)

e.g., when using LSPY or SP} for R}, we define these entries as

gr1(xy)

grn (X n,)

gLsp(é) = gsp() = gu1,1(x1, y;p)

81Ny Ny (XN, > Yv,)

Since the bounds in Definition 4 are relative to the width of the overall variable domain Z”,
it is only meaningful for B&B algorithms for which this width diminishes to 0. MUSE-BB
clearly satisfies this condition, as shown for completeness in the following result.

Lemma 1 (Exhaustive Subdivision) The branching scheme used in MUSE-BB is exhaustive,
i.e., in the limit all infinite sequences of descendant nodes converge to some accumulation
point.

Proof In Line 1 of Subroutine 1 we eventually select the variable corresponding to the
dimension of Z" with largest relative domain width (since the effect of different branching
priorities is canceled after a finite number of iterations). While the bisection of the selected
variable can still be rejected during variable filtering (Lines 16 and 17 in Subroutine 4), this
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can only happen a finite number of times, as the strong-branching scores are based on lower
bound improvements which inherently tend to zero. Thus, the width of all variable domains
tends to zero. O

Note that since PBDAs only partition X', W (Z") would need to be substituted with W (X)
in the bounds of Definition 4 to obtain an appropriate alternative definition for PBDAs, also
see the related Definition 14 and Sect. 5 of [55].

5.2 First-order convergence

As we shall see in Lemma 2, branching on second-stage variables y in addition to first-
stage variables x, resolves the possibility of convergence orders below one, i.e., SP} can be
guaranteed to have (at least) first-order convergence under the weak assumption of Lipschitz
continuity of the objective and constraint functions. Furthermore, Corollaries 1 and 2 show
that the additional relaxations used in MUSE-BB preserve first-order convergence.

Assumption 1 (Lipschitz, factorable functions) All constraint and objective functions are
Lipschitz, i.e., there exist constants Lg1; > 0; i = 1,..., Ny, and for all s € S there exist
constants Lgy1,5,; >0, j=1,..., Nii; Ly > 0, such that:

|g1,i(x) —gLi(x’)| < Lg,l,i ||x —x’” Vx,x’ eX,i=1,...,Np,
|gH,s,j(Zs) - gII,s,j(Z;)| <Lguys,j ||Zs -z, || Vz5,2, € Z,j=1,..., Nn,
| fe(zs) — [5G < Ly |zs — 24| Vas. 2} € 2.

The following Lemma shows first-order convergence of the LBS based on SPY. Its proof
relies on the fact that in any given node 7, points from the domains Z! = X" x )V} of scenario
subproblems are at most /N, + N, W (an) apart. Furthermore, the overall node domain is

Z" = X" x Y" and thus W (Z;‘) < W (Z2™). We point out that all of the algebraic steps

in the following proof would also hold when replacing SP{ with the LBS SP;Y”’yS used in

PBDA. Thus in fact, both LBS have first-order convergence in the Z space. However, while
for MUSE-BB W (2") tends to zero by Lemma 1, it does not for PBDAs, where )" = )
for all nodes n, and hence only W (X") tends to zero. A meaningful convergence order for
SP;Y"’yS would therefore require bounds in terms of W (X”") instead of W (Z"), also see the
note before Lemma 1 and the related Definition 14 and Sect. 5 of [55].

Lemma 2 (first-order convergence of SP;) Under Assumption 1, SP} has a convergence
order of B > 1.

Proof Recall that Definition 4 considers convergence orders at feasible and infeasible points
with respect to DE”, leading to a natural proof outline.

Convergence Order at Feasible Points: First consider some nested sequence of nodes
converging to a point Z that is feasible in DE. Since 7 is contained in all nodes n of
such sequences, DE" (and thus SP}) have optimal solutions for each n. Let ZPF
(xDEn, yDE") = (xDE", ylle", R y%‘?n) € Z" be an optimal solution to DE”, and define
ZPF" = (P yDE"y ¢ 27 Similarly, let 257" = (x5, ySP") € Z! be an optimal solution
to SP}. Using the Lipschitz property of f;, we can immediately express the difference in
optimal objective values as:

fie = fo =D s (FG@F) = £GES™)

seS
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<Y w,C¥ W (2"

seS

where C SP =L s\/Nx + Ny. Thus SP{ has at least first-order convergence at all feasible
points w1th Cr=73 s wSC?P

Convergence Order at Infeasible Points: Now consider some nested sequence of nodes
converging to a point Z that is infeasible in DE, i.e., 7 ¢ F. By compactness of F, all such
sequences eventually reach a node n that does not contain any feasible point, i.e., vioj > 0.
In the following we only consider nodes at or beyond this threshold, since for larger nodes,
the existence of a feasible point implies viof,; = 0 by Definition 3, and thus also viog, = 0
by the fact that SP is a relaxation. Thus for large nodes viof,; — viogp = 0 and the properties
from Definition 4 hold trivially.

DE
Let ZPF" = (FPF' 3PE"y = (¥ DE",}?E",...,yN ) € 2" and ¢PF' e R_ Ne
be points at which the minimum constramt violation VIODE is attained, i.e., vioDE =
n n ~ P’l ~ P’l ~ P?l ~ P’l
Hg(ZDE — ¢PE'|| Similarly, let§ = (x? ,y? ,...,xlsv_c ,ylsv_c ) € Xses(ZY) and

~SP" NSP . . .. . . . . . .
€ R_® be points at which the minimum constraint violation viof, is attained,
p SP

. . ~SP" SP" ~ ~ ~
ie., viogp = H gsp(€ H Furthermore, define Z°F" = (¥PF', 3PF") ¢ 27 and
NSPn ~SPn NSPn

zy = (X7 LYy )er?.

To derive an upper bound on viop — viogp, we first give a lower bound on the mini-
mum constraint violation viogp. For this we drop positive terms in the definition of viogp,
corresponding to the first-stage constraints of all but the first scenario:

. ~SP"_ ~Spn
71
V10gp = HgSP@ )—¢ H
1/2

NSP

Ll ~SPn spn 2
> ‘gsp jé

J

(’gll(xsl’ )—CSPH‘Z-I-----F ’81,N1(x )_§SP"

~SP"

2
ot e @D - 8, @)

2
SP"\ TSP SP"\ 'SP
+ ’811,1,1(51 ) — CNSNIH’ +o ‘gII,NS,NH(Z ) = Eyge

2)1/2
)1/2

1 ~ 1 2 1
z(kmu?)—ﬁp\+~wﬂamu S

7o
‘ng 1(1 NSNI—H’ +o ‘gn NS,NH(NNS NSP

. [ ~SP" Sp"
=[5 -

. L . . SP DE
Note that this corresponds to a projection of the associated points from RN onto RMe | ie.,
>SP"  .SP" NPE
g, eR™
We can now derive the desired upper bound on viof,; — viogp. By Definition 3, we have

~Sp"

v1oDE VlOSP = Hg(NDEn DE H - Hg P(E )—
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and underestimation of the subtracted part by the projection from 2 gives

DE”

’

~SP" SP"
- Hg -

viopyg — viogp < Hg('EDE") —-¢

DE"

By definition of the infimum in vio}}, we have || g ZPE") — ¢PF' || < | g GPE") — ¢| forall

NDE . . .
¢ € R_* , in particular, choosing £S7" results in

SP"
-¢

~SPp” Sp"
o Gl

viopg — viogp < Hg('ZDE")
Applying the reverse triangle inequality gives

)

. . DE"\ _ ~SP"
viopg — viogp < Hg(z y—%

and thus by definition of the Euclidian norm and g5

2 2
. . ~DE" ~Sp" ~DE" ~Spn
V10%E—V10§p§(’gl,l(x ) — 81,1(x7 )‘ +~-~+‘g1,1v1(x ) —eLm(XT )
2
DE" Spn
+‘gll,l,l(21 ) —gm1,1(@) )‘
2)1/2

By Lipschitz continuity of each individual constraint function, all differences can be bounded
by the respective Lipschitz constants
) 2

DE" SP"
+ ...+ ‘gII,NS,NII(ZNS ) - gH,Ns,NII(ENS )

o F o ~DE" _ ~SP" ~DE" _ ~SP"
viopg — Viogp < ((Lg“ Hx — X7 X —x)

Vbt (L
5

~DE" ~Sp”
Z Nx — 2 Ns

~DE" ~SP"
+ (Lgu,l.l Hzl -2

o\ 172
+--+ (LgII.Ns,NH ) ) :
Finally, since the maximum distances of points in X" and Z" are /N, W (X") and

Ny + Ny W (an) respectively, and since both W (X"*) and W (Zf) can be overestimated
by W (2") we have:

2 2
vioy —viop = ( (L W () 0+ (i VW W (47))

2
+ (Lgll,],] Nx + Ny W (Z;l)>
o\ 172
e (L VN + Ny W (22)) )

<C,W (2"

Thus SPY has at least first-order convergence at all infeasible points with

Nt Ni
_ 2 z
Co= | Ny E :Lg,l,i + (Nx + Ny) ZLg'Il,s,j'
i=1 seS j:l
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Conclusion: As the LBS based on SPY has convergence orders of 8 > 1 at both feasible
and infeasible points, it has convergence order of § > 1. O

Unsurprisingly, when the Assumption 1 is not satisfied, the convergence order of MUSE-
BB can also be below 1. For instance, take Example 1 but use wy fi = —,/y1; this gives a
convergence order of 0.5.

Next we show that both the McCormick based LBS, MCY, as well as its linearization via
subtangents, LP}, inherit the first-order convergence of SP{ under mild additional assump-
tions. For both of these convergence results, we require the following assumption:

Assumption 2 (first-order pointwise convergent relaxations) The objective function f; and
all elements of the constraint functions g; and gy ; have first-order pointwise convergent

relaxations, i.e., there exist constants C?AS > 0,5 € S, Cgllci > 0,i =1,..., N, and
Cg’lﬁsj > 0,5 € §,j = 1,..., Ny, such that for all Z* C Z and any s, the convex

relaxations f; ", g{"" and g in MC” satisfy

folzs) = £ (2s) < CYSW(27), Yz, € 27,

gri(x) — g () < YL, W (X"), Vred" i=1,...NyL

gis,j(z) — gy (@) < Cylpp jW(EY), Ve € 2], j=1,...Nn.

In fact, for many functions McCormick relaxations satisfying an even stronger variant
of Assumption 2, with second- instead of just first-order pointwise convergence are known
[also see 29]. For our purposes, however, Assumption 2 is sufficient.

Corollary 1 (first-order convergence of MC}) Under Assumptions I and 2, MC} has a
convergence order of B > 1.

Proof By Lemma 2, the scheme SP? has first-order convergence with respect to the origi-
nal problem DE". Furthermore, under Assumption 2, the LBS MCY has at least first-order
convergence with respect to SP7 by Theorem 1 of [55]. Combining these results implies
first-order convergence of MC] with respect to DE". O

For the first-order convergence of LP}, we additionally require the following assumption:

Assumption 3 (Lipschitz convex relaxations) For any node n the convex relaxations fy """

g;", and gf")" in MC! are Lipschitz, i.e., there exist constants Ll}/lg > 0, ng\/ﬁCi >0;i=
1,..., Np, and Lg/lﬁ 50 j = 1,..., Ny, that constitute upper bounds on the norm of the

respective subgradients. In particular, this implies:
[V @t @ - 20| = LYSYNCF N, W (D). V2,2 € 20

H?g“f”(x)T(x’—x)H < LMCVUNW (X)), Vx.x' e X" i=1,.. N

Li

< Ly, jV/Ne+ NyW(2]), Vzo.z, € 2!, j=1,... N

H ngl\jfj (Zs)T (Z:‘ — Zs)

Assumption 3 is satisfied if the relaxations used for all intrinsic functions are Lipschitz
[cf. 61]. This in turn is the case for standard relaxations of a wide class of functions, provided
they are Lipschitz themselves.

Corollary 2 (first-order convergence of LPY) Under Assumptions 1-3, LP% has a convergence
order of B > 1.
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Proof We structure the proof as in Lemma 2.

Convergence Order at Feasible Points: First consider some nested sequence of nodes
converging to a point 7 that is feasible in DE. For all nodes n of such sequences let zSDE" and
z%Pn be solutions of DE", and LPY, respectively, and note that

R = subly P = 7 ) 4V [ )T (27— ).
where m?, is the midpoint of Z, see subtangent. We can bound the difference of optimal val-

ues of DE” and LP} by subtractlng and adding the terms f; (m7 ) and applying Assumptions
1-3:

foe — fip = Z Ws (flgE,s - ffp,s) = Z Ws (fs(Z]sDEn) - SUbr}X (szn))

seS SES
= 2w (£GP — fuml) + fyml) = [ oml,
SES

_ 6fscv,n(mg‘-)T (Zi‘P” B mg‘> )

<Y w,CFEw(z")

seS

where C.If" ((L f.s+ L ), /Ny + Ny + C ) Thus LPY has first-order convergence at

feasible points with Cy = ZYE s WsCEP s
Convergence Order at Infeasible Pomts: Now consider some sequence of nodes con-
verging to an infeasible point. As in the proof of Lemma 2, let Z°F" = (¥PF", 3PF") =

DE
(xPE", R L, }RE") € 2" and ¢PF' € R A points at which the minimum con-

— ;‘DE" , and, let E =

. . . . . . s n _ DEn
straint violation viof) is attained, i.e., viopy = || g@”")

~LPT ~LPT ~ ~LP" NP . . .
(x LP", LPt LP ,y];VP ) € Xses(ZY) and {LP € R_* be points at which the mini-

ZLP"  ~LP
mum constraint V101at10n vio'p is attained, i.e., vio]'p, = ’ gip& )—¢

the vector-valued function containing the constraints of all LPY, i.e., the subtangents of the
entries in ggp, see subtangent.

Using the same arguments as in the proof of Lemma 2 with g; p (ELP ) instead of ggp (ESP )
we can bound the difference in violation measures of DE" and LPY, resulting in:

2
~DE" ~LP"
viopg — viofp < ( ‘gl 1) — subgI | (x7 )’

ot o G — b @[

2
P"l
‘gllll(Nl )—Subgnll(\/S )

12
DE" n SP”
+"'+‘gll,NS,NH(ZVNS ) —sub, o @) ’ )

as with the objective function, we can bound the differences between each constraint function
and the respective subgradient, using Assumptions 1-3, which results in

viofyg — viofp < C;P w(z"),
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where

Ni 2
Ci,‘P::<Z ((Lg,l,i + LYT VN + Cﬁ?ﬁ)

i=1

Ni ) 1/2
MC / MC
+ZZ((Lg,ll,s,j +Lg,ll,s,j) Nx +Ny +Cg,ll,s,j> ) .
ses j=1

Thus LP} has first-order convergence at any infeasible point with C, = C;P.
Conclusion: As the LBS based on LP} has convergence orders of 8 > 1 at both feasible
and infeasible points, it has convergence order of § > 1. O

We are now in the position to prove finite & r-convergence of MUSE-BB.

Corollary 3 (finite termination of MUSE-BB) Under Assumptions 1-3, MUSE-BB terminates
finitely for any optimality tolerance €y > 0, either providing an ¢ r-optimal solution or a
certificate that the problem is infeasibile.

Proof By Lemma 1, each sequence of descendant nodes converges to some accumulation
point Z. We show that the use of any LBS R’ with convergence order of f > 0 implies
that all such sequences finitely reach a node that can be fathomed by value dominance or
infeasibility.

Convergence at Feasible Points: First consider sequences for which 7 is feasible. After
a finite number of iterations, any such sequence will produce a node n, for which W (Z") <

(é—f/) l/ﬂ, which implies that fD”E — fl’{ < &y, i.e., that n is fathomed by value dominance.

Convergence at Infeasible Points: Next consider sequences for which 7 is infeasible,
and which are not terminated finitely because some descendant node can be fathomed by
value dominance. By compactness of the feasible set, any such sequence will eventually
produce a node 7 that contains no feasible point, and thus has a positive violation measure
viop[71]. Since the violation measure increases monotonically for descendants of node 7,

the sequence is terminated when or before the descendant node n is produced, for which
W (Z") < (%1;["])1//3, as this implies 0 < vio}y — vio}g[7] < viog, i.e., infeasibility is
detected by the scheme R/, and node n is fathomed by infeasibility.

Conclusion: In summary, each node sequence terminates finitely and since the original
domain is compact, the total number of sequences must be finite. By Corollary 2, the assump-
tions imply that the LBS R} = LPY, used in MUSE-BB has a convergence order of § > 1,
thus MUSE-BB terminates finitely, once all sequences of descendant nodes are terminated.

O

After demonstrating first-order convergence of the LBS employed by MUSE-BB and the
resulting € p-convergence, we now consider in which cases these convergence properties may
be sufficient to mitigate clustering. As indicated by [28], clustering may be mitigated around
individual minimizers of DE, if the convergence order of the LBS is larger or equal to the
order at which objective and constraint functions grow around this minimizer. While Example
2 demonstrates that SP} (and by extension, also LP}) may have a convergence order as low as
one at constrained minimizers, objective and constraint functions often grow at a linear rate
around such points [28]. Therefore LP may mitigate clustering around certain constrained
minimizers, provided the respective coefficients C s and C, are sufficiently small [28]. On
the other hand, at partially or unconstrained minimizers, where f is differentiable, f grows
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quadratically or faster in some of the feasible directions. As a result, a LBS needs to have at
least second-order convergence at unconstrained minimizers to to mitigate clustering [26—
28]. Unfortunately, the convergence order of SPY may also be as low as one at unconstrained
minimizers, as shown by the following example.

Example 3 Consider an instance of DE with Ny = 1, N, = 0, Ny = 2 and an original
domain X = [—1, 1]. Take

wi fi(x1) =0.5(x1 — D% w2 fr(x2) = 0.5(x2 + 1)?

such that f(x) = x% 4+ 1, and thus the optimal solution and objective value are x°E = 0, and
f(xPE) = 1, respectively. For any nested sequence of nodes converging to this optimum,
the solutions xPE" of the node problem DE” lie in X" = [x", X"*], and thus x”* < 0,x" > 0.
For such nodes, the solutions of SP} are xISP " = x", and xzsP " = x", respectively. Hence the

difference in objective values is:

S = f =1-0.5(@ ~ D>+ Q" +1)%)
= 05" +3" —x" —0.5(:")?

Now consider a sequence for which X" = W”, x = 0; for this sequence the above expression
simplifies to

fig — foo = W" — 05 (W")>.

Now for any Cy > 0 this expression becomes larger than C ¢ (W™)? for the node ny, for
which

1

W< —
Cy +0.5’

i.e., SPY is at best first-order convergent at the unconstrained minimizer xDE",

In summary, the present implementation of MUSE-BB may suffer from clustering around
unconstrained minimizers. To address this, an alternative LBS with at least quadratic con-
vergence order is required. In the following section we analyze an extension of MUSE-BB
whose LBS has this property.

5.3 Second-order convergence

In this section we show that using LSP? instead of SPY, i.e., dualizing the NACs instead
of dropping them, enables at least second-order convergence at unconstrained minimizers.
Additionally, we consider the resulting effect on the implementation, i.e., how the LBS LP}
needs to be adapted when using LSP}.

A necessary condition for a LBS to have S-order convergence is that the relaxations
used for its construction have S-order convergence, also see [55]. While this condition is
generally not sufficient for 8-order convergence of the resulting LBS, it is sufficient for g-
order convergence around Slater points, i.e., unconstrained feasible points [Corollaries 2, 3
of 55].

[Corollary 6 of 24]shows that the optimal objective value f]fgq’y ().*), obtained from the

subproblems LSPSX”’)} *, where the NACs are dualized instead of dropped, is equivalent to
minimizing the w-weighted sum of convex envelopes of f;* . As a result, f{% > (A*)

constitutes a (constant valued) relaxation of the objective function f on the domain X" x ).
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Furthermore, they show that this relaxation is at least second-order convergent with respect
to W (X"), ie., 5
. X", Vs XY (q % n
x“e‘?nsezsfs @) — fir 7 () =TW(x")

with 8 > 2, provided the scenario value functions f;‘(n’y‘Y are C2, i.e., twice continuously
differentiable. We point out that in fact, the slightly weaker assumption that f merely has
bounded second-order directional derivatives, i.e., that it is C1!, is also sufficient for Eecond-
order convergence of szl({",y (X*), also see [62]. In the special case where the fSX Y5 are
convex, B above may take any positive value, i.e., the convergence is arbitrarily high. Note
that B-order convergence of flff:’y (l*) immediately implies S-order convergence of the

LBS LSPSX Y5 at unconstrained feasible points (and in particular at unconstrained mini-
mizers), because around such points fD”E, i.e., the optimal value of DE”, is equivalent to

mi\l} ZYE s fSX"’y‘ (x), also see Corollaries 2 and 3 of [55]. Furthermore, S-order conver-
xeXn :

gence with respect to W (X") implies S-order convergence with respect to W (Z"), since
W (X)) < W (2"). As aresult, the same line of argument naturally also holds for the scheme
LSPy := LSPSX” o , which for any X" produces stronger bounds than LSP;"M’y“ . Hence, the
relaxations fff:‘y " (X*) are at least second-order convergent, and Corollaries 2 and 3 of [55]
ensure second-order convergence of LSP} at unconstrained feasible points. The following
example demonstrates the improvement of convergence order of LSPY over SPY.

Example 4 Take the problem from Example 3. The optimal dual values for this problem are
A¥ = (2, —2), such that the objectives of LSPY are f;(xy) +Asxs = (x5 F 1)2 +2x, = xf +1.
Hence, both subproblems are solved at x{“spn x%spn = xDPE" = 0, and the difference in

objective values is:

fhe— flsp =1—-05(0+ D>+ 0+ 1)?) =0,

i.e., LSP? is exact and as such has arbitrarily high convergence order at the unconstrained
. . . n
minimizer xPF".

Note that the arbitrarily high convergence order in Example 4 results from the fact that the
scenario value functions st,y * are convex. If fSX’y‘" are not convex, at least second-order
convergence is guaranteed by the previous arguments.

Several results from nonlinear parametric programming provide different regularity condi-
tions under which fSX}1 Y5 are €2.In particular, if we assume f is C2, and that the second-order

sufficient condition (SOSC):
ViEPE) =0

DE
V2 7 %) > 0 (SOSC(z-%))
holds at an unconstrained minimizer zPF = (xPE, yDE) of DE, the fact that fsx",ys are C2
follows from the Implicit Function Theorem [63, cf., e.g., Corollary 3.2.3].

Other variants of the Implicit Function Theorem provide similar results for unconstrained
minimizers that do not satisfy SOSC(zDE), e.g., [Theorem 3.3 of 64], or even for constrained
minimizers, satisfying certain regularity conditions, related to the growth of the Lagrangian
of f,e.g., [63] and [65].

We next show how the stronger convergence properties of the LBS LSPY can be incor-
porated into MUSE-BB via an adaption of the lower bounding problems subproblems LP}.
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Recall that LPY result from three subsequent levels of relaxation: after dropping the NACs
from DE?I‘/ AJC} (i), the resulting subproblems SP} are further relaxed via McCormick’s method
(ii) and outer approximation (iii), resulting in the linear lower bounding problems LP}. In
this context, dualizing the NACs, corresponds to replacing the subproblems SP} with LSP},
and performing the subsequent relaxations. Note that the only difference between SP} and
LSP? are the additional terms A Tx. The McCormick relaxation of the sum of the original,

nonlinear objective f;(xs, y,), and the linear term A, Tx is simply £V (s, yg) + A Txg

[cf. Proposition 2 of 29]. Next we consider the subtangents of these terms: if V f;"" is the
subgradient of ", used in the original instance of LP", then V f*" + A; is a valid sub-
gradient of £V (x, ¥s) + AgTx [cf. Proposition 2.3.3 of 66]. As a result, replacing SP}
with LSPY in MUSE-BB is equivalent to adding A to the coefficients of x; in the first set of
constraints, of the subproblems LP}.

While conceptually, the multipliers can be updated by performing dual iterations with these
modified linear lower bounding subproblems, such updates will generally not converge to the
optimal multipliers of the original problem LSP}. Even though convergence over a sequence
of nodes can be expected, as the node size diminishes and the McCormick relaxations, and
linear relaxations converge towards the original functions, such a conversion in the limit may
not be sufficient to yield second-order convergence of the resulting lower bounding scheme.

In summary, similar to PBDAs, the LBS used in MUSE-BB may be made second-order
convergent at certain minimizers by dualizing the NACs instead of dropping them. However,
the use of optimal dual multipliers A* appears to be a requirement for second-order conver-
gence, and, as already pointed out in Sect.4.1, obtaining such multipliers is generally very
challenging. The fact that SPY can be interpreted as an instance of LSP? with the suboptimal
multipliers A = 0, indicates that suboptimal multipliers may result in a first-order conver-
gent LBS, also see the related result on a Lagrangian dual-based LBS for general nonlinear
programming problems in [Theorem 6 of 55]. While it may be sufficient to limit multiplier
updates to small nodes suspected to contain the neighborhoods of critical minimizers, we
leave the investigation of such approaches for future work.

6 Computational results

We now present computational results obtained with the parallelized decomposition algo-
rithm MUSE-BB, and outline how it compares against solving the deterministic equivalent
formulation DEY"Y with the standard version of MAINGO. MUSE-BB performs upper
bounding based on the subproblems SP’, and OBBT, lower bounding, and DBBT, based on
the separable subproblems LP}. All scenario subproblems are solved simultaneously, using
one thread per scenario. MAINGO performs upper bounding based on DE” and all other
routines based on a linearization of DE”, using a single thread.

We do not compare with other deterministic global solvers as these generally employ
different routines for management of the B&B tree, generating relaxations of individual
functions, and solving individual lower and upper bounding problems, distorting the effect
of the decomposition. Further, we focus our computational experiments on the effects of
individual algorithm parameters, rather than conducting larger-scale computational studies,
as the latter would require access to a library of two-stage test problems, which is currently
unavailable. While previous works do consider some larger-scale problems, the implementa-
tions are either unpublished [e.g., the test library “GOSSIP” from 20] or a generic formulation
is given while the concrete problem data is not [see, e.g., Sect. 7.1 in 22].
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We consider variants of a simple test problem with Ny = Ny =1and Ny =4, 8, and 16, i.e.,
with different size based on the number of scenarios. The test problem is a simplified design
and operation problem for a combined heat and power (CHP) system, based on stochastic heat
and power demands. Scenarios for demand data are generated from a seeded pseudorandom
sampling, ensuring identical instances upon repetition for a given N value. The problem
involves nonlinearities related to economies of scale, thermal and electrical efficiencies, and
the implementation of a minimal part-load constraint. A detailed description of the problem
is given in “Appendix A”.

We focus on the performance difference of the lower bounding routines, hence all exper-
iments are performed with initial points based on dense uniform sampling of 1000 values in
each of the x and y; domains, which always results in € -optimal initial points, that are never
improved during the course of the algorithm. We use the default settings of MAINGO, includ-
ing a relative optimality tolerance of 1%. All computational experiments are performed on
the RWTH Compute Cluster “CLAIX-2018”. Each compute node has 2 Intel Xeon Platinum
8160 Processors with 2.1 GHz, 24 cores each, i.e., there is a total of 48 cores per compute
node, and 4 GB of main memory per core. In initial tests we observed significant variation
of run times, both for MAINGO and MUSE-BB. We attribute this variation to execution on
particular — likely overloaded — compute nodes which consistently require longer solution
times compared to other compute nodes. To reduce the effect of this variation, we repeat
the solution of each considered instance 20 times and report median values of the resulting
solution times and optimality gaps.

6.1 Importance of branching priority

Initially we will focus on the case kmax = 1, i.e., we branch only on second-stage variable
instances that either produce infeasible subproblems or produce the highest strong-branching
score. This means each multisection of second stage variables results in at most 2 child nodes
being created, i.e., as in a standard B&B algorithm like MAiINGO.

In problems like DE, exhibiting two-stage structure, the first-stage variables appear in
all of the scenario subproblems, while the second-stage variable instances only appear in
one, each. This suggests a higher importance of branching on first-stage vs. second-stage
variables, especially with increasing N;. In B&B algorithms, the priority with which variables
are branched is typically controlled via branching priorities for individual variables, which
are multiplied with the relative interval width before selecting a variable to branch on, also cf.
the description of Subroutine 1. As a result, it seems intuitive that B&B algorithms solving
DE may generally benefit from relatively high branching priorities for the first-stage variables
compared to the second-stage variables, independent of whether decomposition is used or not.
For this reason, we compare how MAINGO and MUSE-BB perform with different branching
priority ratios

first-stage branching priority

" second-stage branching priority’

which in the present case (N, = Ny = 1) correspond to the branching priority of x (the priority
for ys being 1).

Figure 3 shows the wall times spent in B&B when using MAINGO and MUSE-BB on
problem instances with Ny € {4, 8, 16}. Both individual times (colored dots), as well as the
median times (horizontal lines) are depicted. Table 1 lists the median wall times and relative
gaps for instances which do not terminate within the time-limit of one hour. In general, the p
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Table 1 é\/[edianzg&B wall times 5| gor MAINGO MUSE-BB
in seconds over 20 runs, or oN, 7 g 16 7 3 %
remaining relative optimality
gaps in % (computed as 1 - ratio 1 1.7 145 17% 26 2.4% 20%
of lower to upper bound) after
3600s for solving the CHP sizing 2 L1 77 8.8% 0.82 62 7.6%
model with different number of 4 1.1 59 4.6% 0.42 12 2.8%
scenarios and branching 8 14 55 37% 033 43 1292
priorities, using MAiNGO and
MUSE-BB 16 22 98 3.8% 0.43 35 765
32 3.9 142 4.3% 0.75 52 329
64 8.2 342 5.0% 1.6 7.8 295
128 16 550 5.7% 3.0 14 436

Two out of the 20 runs for the instance Ny = p = 16, solved with MUSE-
BB, timed out. The median is computed with respect to the remaining
18 runs. Minima for each column (highlighted in bold) indicate that
the performance of MUSE-BB relatively to MAINGO improves with an
increase of scenarios, and thus problem size

values minimizing average wall time for each scenario are much lower for MAiNGO than for
MUSE-BB. However, low p values lead to significantly worse performance for MUSE-BB
than for MAINGO, e.g., all runs for (Ny, p) = (8, 1) time out after one hour with a median
remaining gap of 2.4%. For N = 16, all instances solved with MAiINGO time out, while
for MUSE-BB almost all instances with p values above 4 terminate (with the exception of
two outliers for p = 16). This indicates the importance of appropriate branching priorities
when solving stochastic problems in general, and when using MUSE-BB in particular. When
comparing the best p values for each scenario (bold in Table 1), MUSE-BB outperforms
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MAINGQO in terms of wall time by a factor of 3.5 and 15 for Ny = 4 and Ny = 8, respectively.
For Ny = 16 the value is expected to be significantly larger than 3600/295.3 =~ 12.

Note that already for these relatively small problem sizes outperformance is close to or
even larger than the number of scenarios and thus the number of used threads. This implies
that MUSE-BB can be more favorable than more general parallelization approaches such
as, e.g., the MPI parallelization of MAINGO, where open nodes are processed by different
CPUs (not used in this work). While such general parallelization approaches are more widely
applicable, they do not exploit the special problem structure of DE. Consequently they may
be used in conjunction with the parallel processing of individual B&B nodes presented in
this work to optimally use computational infrastructure.

The results indicate that optimal branching priority ratios (i.e., p values resulting in mini-
mal median wall time) may increase with the number of scenarios considered. Nevertheless, a
projection-based approach, where only the first-stage variables are branched (corresponding
to p — 00) appears unfavorable, as wall times increase significantly for large p-values.

6.2 Effect of multisection

We next consider the effect of the multisection parameters kmax, and 7. Recall that every time
a second-stage variable is selected for branching, we solve the 2 N independent subproblems,
resulting from the multisection involving the corresponding N; variable instances for different
scenarios. We then use the results to compute strong-branching scores oy for each scenario,
and create up to 2max child nodes, with the actual number being controlled by the value of
the strong-branching threshold n € (0, 1], i.e., we reject bisections with a strong-branching
score below noy, see Sect.4.4.

For each N value, we take the three p values for which MUSE-BB performed
best at kmax = 1, and perform further experiments for kmax € {2,4,8), and n €
{0.1,0.2,0.5, 0.8, 1}. Increasing values of kpax, and decreasing values of n allow a larger
number of child nodes to be created from each multisection, i.e., the maximum is 28 = 256
for (kmax, 1) = (8, 1). We point out that multiple variables may achieve the maximum strong-
branching score. Hence, even for n = 1, the settings kmax = 1, and kpax > 1, may produce
different B&B trees (and thus wall times) for a given problem instance, as the latter setting
allows creating more than 2 child nodes, while the former does not.

As before, we repeat the solution for each parameter combination 20 times. Since com-
binations with Ny =4, and Ny = 8, show no clear trend for the effect of kpax, Or 17, we only
focus on combinations with N, = 16, the results of which are depicted in Fig.4. The B&B
wall times of all investigated combinations are visualized in Fig. 6 in “Appendix B”.

Only a small set of parameter combinations results in improvements over the best median
wall time for kpax = 1, (i.e., 295s for p = 64). However, these improvements are mostly
insignificant, with the best median wall time of 272 s (achieved for (kmax, 0, 7) = (4, 32, 1))
corresponding to an improvement of less than 8%. For the remaining parameter combinations
median wall times remain the same or increase. While combinations with (N, kmax) =
(16, 2) show no clear trend for the effect of n, for (N, kmax) = (16, 4), and (16, 8), an
increase of 7 results in reductions of wall time.

We point out that setting the strong-branching threshold 7 to a value of 1 produces very
similar results as setting kmax to 1, since only bisections that produce the highest strong-
branching score may be selected. In fact, for the considered parameter combinations, the
total number of iterations for kpa,x > 1 only depends on p, with the corresponding values
being around 0.06% lower than those for kpax = 1.
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Fig. 4 Variation of solution times for solving the CHP sizing problem using MUSE-BB with kmax €
{1,2,4,8}, and n € {0.1,0.2,0.5,0.8, 1} for the three p values resulting in the lowest median wall
times for (kmax, Ns) = (1,16). For each parameter combination, a set of 20 runs is performed. For
(kmax, p, 1) = (8,32,0.1), (8,32,0.2), and (8, 64,0.1), 8, 2, and 3 runs timed out after 36005, respec-
tively. Medians with respect to the remaining runs are depicted as horizontal black lines and the lowest median
time for kmax = 1 is depicted as a dashed red line for reference. Increasing kmax generally results in larger
wall times, and for kmax = 4 and 8, increasing 7 results in smaller wall times. (Color figure online)

For the considered problem, increasing kmax and reducing 7 tends to result in increases
of median wall times, however, the generality of this finding needs to be investigated with a
larger group of problems. In particular, it is conceivable that for problems in which multiple
variable instances have a comparatively strong effect on the objective or feasible set, values
of kmax > 1 and n < 1 may be preferable.

For kpmax = 1 orn = 1, the behavior of MUSE-BB is very similar to that of a standard B&B
algorithm solving the deterministic equivalent with a strong-branching heuristic. While this is
not commonly done, range reduction similar to that of MUSE-BB, i.e., using the intersections
of variable domains from rejected bisections for the selected one, may also be done on the
basis of full-space bounding problems within classical strong-branching. Whereas MUSE-
BB solves smaller, independent subproblems, the bounds obtained from such an adapted
strong-branching routine in a standard B&B are naturally stronger. This trade-off appears to
be worth further study in future work.

6.3 Scaling with N

As we pointed out in the introduction, the fact that MUSE-BB employs a B&B search in the
full variable space implies that the number of nodes visited, and thus computational effort,
scales exponentially with N in the worst-case. This is despite the fact that the proposed
multisection branching allows processing an exponential number of nodes with an effort
that is linear in Ny, since each of the resulting nodes may need to be further branched and
processed.

The computational results from previous sections confirm this expected superlinear scaling
with Ny, but also highlight the superiority of MUSE-BB over the solution of the determin-
istic equivalent via MAINGO. For MAINGO the computational time of the best parameter
combinations increases by a factor of 50 (55s/1.1s) when going from Ny = 4 to Ny = 8.(cf.
bold times in Table 1). In contrast, for MUSE-BB, the corresponding factor is only 10.6 (3.5 s
/0.335).

The optimal value of p appears to scale approximately linearly with N;. Thus it may
appear that for large numbers of scenarios, MUSE-BB will behave somewhat like a PBDA,
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in the sense that branching is done primarily on x. However, recall that each time a particular
second-stage variable instance is selected for branching, the current implementation chooses
all other instances of that variable for multisection. Since the number of second-stage variable
instances increases linearly with Ny, a fixed value of p would thus result in more frequent
branching on a given second-stage variable instance. Therefore the observed increase of
p does not necessarily imply a more frequent branching of x, but can rather be seen as a
compensation for the above-mentioned behavior. Furthermore, unlike PBDAs, MUSE-BB
avoids the global solution of subproblems. This difference in computational effort complicates
direct comparisons based on individual iterations of MUSE-BB and PBDAs. Again, a more
comprehensive comparison with a larger set of test problems will be needed to determine
which class of algorithms is best suited to different types of problems.

7 Summary and outlook

We present MUSE-BB, a multisection B&B-based decomposition algorithm for the deter-
ministic global optimization of general nonconvex nonlinear two-stage problems. We prove
finite € r-convergence, show favorable convergence order of our lower bounding scheme,
compared to existing algorithms, and provide initial computational results indicating good
scalability of MUSE-BB with the number of scenarios.

Existing decomposition algorithms for two-stage nonconvex MINLP problems [20-22]
have been classified as PBDAs [23, 24], since they all employ spatial B&B in the first-
stage variables. PBDAs achieve this by solving decomposable subproblems of both first- and
second-stage variables in each node. To obtain good lower bounds, these subproblems are
solved globally via a nested spatial B&B. Instead, we propose to branch on both first- and
second-stage variables within a single B&B tree, and to further relax subproblems, avoiding
duplicate branching on first-stage variables, and the nesting of spatial B&B procedures.
We either branch normally on a single first-stage variable, or we simultaneously branch on
multiple second-stage variables from different scenarios. While such multisection produces
an exponential number of child nodes, the total number of distinct subproblems is linear
in the number of bisected variables, by virtue of the decomposition. Thus, we only need to
process the distinct subproblems and can generate child nodes by appropriately combining the
subproblem results. To avoid an excessive number of child nodes with poor lower bounds, we
only use a subset of bisections (reverting the remaining ones). We select the bisections based
on their associated strong-branching scores, which are readily available after processing.
This allows to only generate child nodes corresponding to the most promising bisections
with highest strong-branching scores.

Our theoretical results show that by branching on all variables, the lower bounding scheme
of MUSE-BB generally has a convergence order of one, if all functions are Lipschitz. This is
in contrast to lower bounding schemes of existing decomposition algorithms, which may have
convergence orders below one, in general [24]. Whether or not this improved convergence
order actually translates into an advantage with respect to the occurrence of clustering is
however not clear at this point, and requires further investigation.

We perform initial computational experiments with a small test problem, which despite its
size still incorporates relevant nonlinearities found in applications. Our results highlight the
importance of choosing appropriate branching priorities for both general B&B and decom-
position algorithms. Moreover, the results show that even for this small problem and small
numbers of scenarios, MUSE-BB can significantly outperform the standard version of our
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open-source deterministic global solver MAiINGO, applied to the deterministic equivalent
formulation. For the considered problem instances, the best wall times of MUSE-BB are
achieved when essentially limiting the number of child nodes resulting from multisection to
two. In this case, MUSE-BB behaves very similar to a B&B algorithm solving the determin-
istic equivalent using a strong-branching heuristic that employs certain range reduction with
the rejected bisections.

Further theoretical and computational comparison of MUSE-BB with other decomposi-
tion algorithms, and with specialized strong-branching in full-space B&B is necessary, in
particular, determining conditions in which each method is preferable, e.g., depending on
the numbers of first- and second-stage variables, and scenarios. However, as meaningful
computational studies require adequate implementations of the alternative algorithms and a
sufficiently representative test set, we leave this as future work.

As with existing decomposition algorithms, the lower bounding scheme of MUSE-BB may
be improved by dualizing the coupling (nonanticipativity) constraints instead of dropping
them. The resulting lower bounding scheme can be shown to have second-order convergence
at minimizers satisfying certain regularity conditions. However, this extension requires opti-
mal dual multipliers, which are expensive to compute in general. The details of how such an
extension can be implemented need to be clarified, in particular, when using further relax-
ations.

We aim to investigate the effect of combining the parallel bounding routines of MUSE-BB
with more general B&B parallelization as implemented in MAiINGO, as this is expected to
make MUSE-BB applicable to much larger, more realistic case studies. Furthermore, it may
be interesting to generalize the presented implementation to problems with different num-
bers of second-stage variables and constraints. A related extension would allow branching on
arbitrary combinations of second-stage variables from different scenarios, instead of limiting
multisection to scenario instances of a particular second-stage variable. Finally, the decom-
posable bounding routines of MUSE-BB may enable efficient strong-branching in problems
that do not fall into the category of two-stage programming problems, but still exhibit block
structures, coupled by complicating constraints.

Since MUSE-BB operates a B&B search in the full variable space, its worst-case compu-
tational effort remains exponential in Ny. While our computational results indicate that it can
perform significantly better than a B&B algorithm applied to the deterministic equivalent, an
open question is whether the exponential scaling can be avoided without resorting to existing
projection-based algorithms. To this end, we also outlined how an alternative handling of
multisection may allow nesting B&B trees which exclusively address second-stage variables
from individual scenarios within a tree that addresses first-stage variables. This approach
may be seen as a hybrid between existing PBDAs (which duplicate the first stage variables
in the nested B&B trees) and MUSE-BB.
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Fig.5 Conceptual CHP operation
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A Test Problem

We consider the design of a combined heat and power (CHP) unit, i.e., an equipment sizing
problem whose aim is to satisfy given heat and power demands at minimum cost, see Fig. 5.

The size of the CHP is expressed as a nominal heat output Qpnom, which corresponds to
the maximum thermal output Qout. The actual output at any given point is determined by a
relative heat output Qrelz

Qout = Qnom Qrel 3

The energy input to the CHP in terms of lower heating value of natural gas, Egas, can be
calculated via the thermal efficiency ng,, which is a function of Qnom and Qre:

_ dm
nth(Qnom» Qrel)

Following this the power output Py, can be computed via the electrical efficiency 7, which
is also a function of Qpom and Qer:

“

gas -

Poyt = Egas Uel(Q.nomv Qrel) 5
The functional form of the efficiencies ny, and ne is given by:

nth(Qnom» Qrel) = 7hh,nom(Q‘nom) nth,rel(Qrel) (6)

: 0
Nth,nom (Onom) 1= 0.498 — ﬁ @)
Nibrel (Qret) = 1.10 — 0.0768 (Qrer + 0.130)* ®)
nel(Qnom Qrel) = 7']el,nom(Q‘nom) nel,rel(Qrel) 9

: 0
Netnom (Qnom) 1= 0.372 + —=Z (10)
Nelrel (Orel) 1= 1.02 — 0.435 (0.774 Qre1 — 1)* (11)
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A heat shortage, defined as

Qshort = Qdem - Qout (12)

must be avoided (i.e., Qghore Must be negative). Correspondingly, the power shortage can be
defined as:

Pshort := Pdem — Pout (13)
A power shortage can be adressed by purchasing power from the grid, i.e.:
Pouy 1= max (0, Psport) (14)

If Pshort OF Q'shon are negative, the excess power can be sold to the grid at a reduced price,
while the excess heat can be dissipated into the environment:

Psell = max(O, — Pshort) (15)
Ouiss := max(0, — Oshort)- (16)

With these definitions we can formulate a reduced-space problem that contains the nominal
heat output as the only first-stage variable, i.e: x = (Qnom) € [1.4MW, 2.3 MW], and the
part-load in each scenario as the only second-stage variable, i.e: y, = (Q'rel, s) €10, 1].

We choose total annualized costs (TAC) in million € as the objective function. The first-
stage objective function describes the annualized investment costs (according to an economy
of scales approach) and the second-stage objectives correspond to the annual operating costs
in each scenario:

fi (x) = 149567€ /a <1QM°$‘V> x 107° (17)
SiLs (x! ys) = Top( Pgas Egas,s
+ Pelbuy Pouy,s
— Pelsell Psell,s) X 10_6 (18)

Where Top = 6000h/a, pgas = 80€/(MWh), pelpuy = 250€/(MWh), peisen =
100€/(MW h)

We approximate the requirement that the CHP unit must either be inactive or operate
above a minimal part-load threshold of 50% with quadratic second-stage constraints of the
form

0.0619263 — (Qper.s — 0.25115)2 < 0 (19)

which restrict the relative outputs Q'rel, s to less than 0.1%, or more than 50% part-load. An
additional constraint is that

Qshorl,s < 0, (20)

also see Eq. (12). Note that Eq. (19) implies that heat demands corresponding to part-loads
between 0.1% and 50% cannot be satisfied. To ensure the considered instances have a feasible
solution, the randomly generated heat demands are set to O if they fall into this range. Similarly,
the generated power and heat demands are capped to the highest possible production.
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B Parameter Study for kimax and n

See Fig. 6.
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Fig. 6 Variation of solution times for solving the CHP sizing problem using MUSE-BB with kmax €
{1,2,4,8}, and n € {0.1,0.2,0.5,0.8, 1} for the three p values resulting in the lowest median wall times
for Ny = 4,8, and 16, with kmax = 1. For each parameter combination, a set of 20 runs is performed. For
(kmax, p» 1) = (8,32,0.1), (8,32,0.2), and (8, 64, 0.1), 8, 2, and 3 runs timed out after 3600s, respectively.
Medians with respect to the remaining runs are depicted as horizontal black lines and the lowest median time
for kmax = 1 is depicted as a dashed red line for reference. Whereas for Ny = 4, and 8, no clear trend is
discernible, for Ny = 16, increasing kmax generally results in larger wall times, and for kmax = 4, and 8,
increasing 7 results in smaller wall times. (Color figure online)
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C Overview of Functions and Optimization Problems

Function explanation

f overall objective function

f first-stage objective function

Ss second-stage objective function

i l:lV; second-stage optimal value function
Is scenario objective function

fo’yS scenario optimal value function

Problem explanation

TSP two-stage (stochastic programming) problem

DE (DE") deterministic equivalent form of TSP (restricted to the domain of node n)
DENAC NAC formulation, equivalent to DE and TSP

RP? recourse problems for a given value of x for node n (providing upper bounds)
LSPY relaxations of DEnac for node n by dualizing NACs with multipliers A
SPY relaxations of DENac for node n by dropping NACs

MCY McCormick relaxation of SPY for node n

LpP} linear relaxation of MCY for node n (providing lower bounds)

OBBTY , OBBT problems for variable v and node n

RY generic scenario relaxation for node n
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