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 A B S T R A C T

The effectiveness of machine learning (ML) for molecular property prediction is often limited by scarce and 
incomplete experimental datasets. A particular promising approach to facilitate training ML models in low-
data regimes is multi-task learning. We investigate how additional molecular data – even potentially sparse 
or weakly related – can be augmented through multi-task learning to enhance prediction quality. Through 
controlled experiments on progressively larger subsets of the QM9 dataset [Ruddigkeit et al. (2012), J. Chem. 
Inf. Model; Ramakrishnan et al. (2014), Sci. Data], we evaluate the conditions under which multi-task learning 
outperforms single-task models. We extend these insights to a practical real-world dataset of fuel ignition 
properties that is small and inherently sparse, offering recommendations for augmenting auxiliary data to 
improve predictive accuracy. This work provides a systematic framework for data augmentation in molecular 
property prediction, with implications for data-constrained applications.
1. Introduction

Machine learning (ML) has emerged as a powerful approach for 
molecular property prediction, accelerating the discovery of new mate-
rials, pharmaceuticals, and industrial chemicals (Alshehri et al., 2020; 
Atz et al., 2021; Reiser et al., 2022; Stokes et al., 2020; Alshehri 
and You, 2022; Koscher et al., 2023). However, ML models require 
sufficient data for training. In general, in the chemical domain, the 
amount of data is quite limited because of costly experiments. While 
carefully-designed ML architectures and training procedures lead to 
adequate prediction accuracy for some properties of interest (Schwei-
dtmann et al., 2020; Gao et al., 2024; Li et al., 2024), the data is 
insufficient for others, cf. Korolev et al. (2019) and Pappu and Paige 
(2020). Finding ways to utilize ML for small property data sets – in 
the order of a few hundred property data points – is therefore highly 
relevant to catalyze molecular discovery in low data regimes. ML model 
training in low data regimes can be facilitated by hybrid modeling and 
data augmentation (Karniadakis et al., 2021; Shorten and Khoshgoftaar, 
2019; Vermeire and Green, 2021).

Hybrid modeling, also referred to as physics-informed ML, builds 
on the idea of incorporating mechanistic insights about the prop-
erty of interest into the ML model architecture, see, e.g., overviews 
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by Karniadakis et al. (2021), Masi et al. (2021), Jirasek and Hasse 
(2023) and Rittig et al. (2023). For example, recent works have com-
bined ML with thermodynamics, leading to increased consistency of the 
predictions and decreased data demands for training, see, e.g., works 
by Rosenberger et al. (2022), Felton et al. (2024), Winter et al. 
(2023a,b), Specht et al. (2024), Rittig et al. (2023), Rittig and Mitsos 
(2024), Chaparro and Müller (2023) and Chaparro and Müller (2024). 
However, for many properties of interest, mechanistic insights and first 
principles are still lacking (Gertig et al., 2020), requiring alternative 
ways to facilitate model training such as data augmentation.

Data augmentation aims to increase the data that can be used in 
training. Since additional experimental data for the property of interest 
can often be collected with impractical effort only, the idea of data 
augmentation is to alternate or utilize related readily available data, cf. 
overview in Shorten and Khoshgoftaar (2019).

Alternating available data is common in domains like computer 
vision (Shorten and Khoshgoftaar, 2019) and natural language pro-
cessing (Wei and Zou, 2019). For example, image or text datasets 
can be increased by rotating images or randomly swapping words 
in a sentence, respectively. This concept has also been transferred 
https://doi.org/10.1016/j.compchemeng.2025.109253
Received 13 February 2025; Received in revised form 14 June 2025; Accepted 18 J
vailable online 2 July 2025 
098-1354/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
une 2025

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/cace
https://www.elsevier.com/locate/cace
https://orcid.org/0000-0003-0335-6566
https://orcid.org/0000-0003-4645-5716
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
https://git.rwth-aachen.de/muhammad.javaid/exploring-data-augmentation
mailto:jan.rittig@rwth-aachen.de
https://doi.org/10.1016/j.compchemeng.2025.109253
https://doi.org/10.1016/j.compchemeng.2025.109253
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2025.109253&domain=pdf
http://creativecommons.org/licenses/by/4.0/


M.b. Javaid et al. Computers and Chemical Engineering 201 (2025) 109253 
to the molecular context, e.g., by masking atoms, bonds, and sub-
structures (Magar et al., 2022), adding noise to molecular descriptors 
and properties (Cortes-Ciriano and Bender, 2015), and using different 
SMILES permutations (Bjerrum, 2017; Schwaller et al., 2020; Jiang 
et al., 2023) and tautomers (Ulrich et al., 2021), hence increasing 
the size of the dataset for training. Similarly, self-supervised learn-
ing applies alternation or modifications to unlabeled molecular data, 
such as atom or bond masking, so that a ML model can be trained 
to reconstruct the missing information, thereby learning meaningful 
molecular representations, cf. works by Zhang et al. (2021), Zang 
et al. (2023), Wang et al. (2024), Gao et al. (2024) and Zhou et al. 
(2025). Data augmentation through alternating data, particularly, self-
supervised learning, has already been applied to train large molecular 
ML models, e.g., by Rong et al. (2020), Chithrananda et al. (2020), 
Méndez-Lucio et al. (2024), Li and Fourches (2020) and Li et al. (2021), 
We argue that large molecular ML models should additionally use 
readily available data for a wide spectrum of molecular properties. 
Thus, we are interested in investigating the use of related data.

Several data augmentation approaches that utilize related data 
have been applied to molecules. These include multi-fidelity, pre-
training/transfer, and multi-task learning (MTL) that increase training 
data sets with simulated or task-related molecular data, cf. overviews 
by Vermeire and Green (2021), Nevolianis et al. (2024), Alhamoud 
et al. (2024) and Qian et al. (2025). Since we envision large molecular 
ML models to utilize large collections of available molecular property 
data, thereby enabling to predict a variety of molecular properties, 
similar to recent works by Beaini et al. (2023) and Klaser et al. (2024), 
we focus on MTL with task-related data.

MTL (Caruana, 1997; Ruder, 2017; Zhang and Yang, 2021) for 
molecules poses the idea of training a single model simultaneously 
on multiple related molecular property prediction tasks. This forces 
the ML model to learn a shared molecular representation that exploits 
relations between different properties and can thereby enhance predic-
tion accuracies for the individual tasks. Numerous studies have utilized 
MTL for predicting molecular properties, frequently reporting accuracy 
improvements, e.g., Schweidtmann et al. (2020), Beaini et al. (2023), 
Dahl et al. (2014), Ramsundar et al. (2015), Li et al. (2022), Allenspach 
et al. (2024), Dey and Ning (2024), Brozos et al. (2024), Yang et al. 
(2024), Zubatyuk et al. (2019) and Liu et al. (2021). However, MTL 
in molecular applications comes with several challenges, such as (un-
known) property relationships, incomplete and imbalanced datasets, 
and balancing properties losses during training.

The performance of MTL generally strongly depends on the task 
relationships. In fact, MTL can lead to worse prediction accuracy than 
single-task learning (STL), i.e., training individual models for each of 
the properties, due to a phenomenon called negative transfer (Standley 
et al., 2020). This occurs when the inclusion of auxiliary tasks in an 
MTL framework inadvertently impairs the performance of the model on 
a primary task of interest, compared to training a model solely for that 
primary task. This can happen if tasks are too dissimilar, if the model 
capacity is insufficient, or if the optimization process leads to shared 
representations that are counterproductive for certain tasks. Even if 
the average task performance improves, individual tasks might suffer 
from negative transfer (Liu et al., 2019). Therefore, many prior works 
have explored methods to optimize MTL according to the task relations, 
usually learning the task relations implicitly during training (Liu et al., 
2019; Yu et al., 2020). If domain-specific knowledge about task rela-
tions is available, they can also be explicitly considered in training. Liu 
et al. (2022), for example, used an protein-protein interaction graph in 
the domain of drug discovery to advance MTL.

In addition, MTL requires the combination of multiple, potentially 
interdependent properties into a single training objective (Sosnin et al., 
2019). This gives rise to a significant optimization challenge: ensuring 
each task contributes effectively to training. A foundational step is 
to standardize the target properties, which aligns disparate physical 
2 
scales and prevents tasks with large raw values from initially domi-
nating the loss. However, this static pre-processing does not account 
for the learning dynamics that emerge during training, where tasks 
often learn at different rates or generate gradients of mismatched 
magnitudes. To address this problem, task balancing strategies are 
employed. These methods, such as normalizing task-specific gradi-
ents (Chen et al., 2018) or adaptively weighting properties within 
the loss function (Biswas et al., 2023), algorithmically manage the 
influence of each task to promote more stable and equitable learning. 
Beyond task balancing, broader investigations in MTL have also ex-
plored data scale and sparsity, including the impact of adding more 
data or more tasks (Ramsundar et al., 2015) and missing values (de la 
Vega de León et al., 2018).

A particular challenge for MTL in the molecular domain is the afore-
mentioned limited data availability. That is, dataset sizes differ between 
the properties and can be small in the order of tens to hundreds of data 
points. This leads to incomplete and imbalanced datasets of molecules 
with multiple properties. While such datasets have been considered 
in previous works, e.g., in Schweidtmann et al. (2020), Brozos et al. 
(2024) and Biswas et al. (2023), analyzing MTL for different molecular 
data availabilities is currently limited.

We explore MTL of molecular properties by considering different 
data availability scenarios of practical relevance. For this, we first 
use the QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 
2014), which contains 12 properties for over 130,000 molecules with 
up to 9 heavy atoms as calculated by quantum mechanics. Modifying 
this dataset allows us to evaluate the effect of data augmentation in 
scenarios of:

• varying molecular dataset sizes, from a few hundreds to hundred 
thousand of property values;

• incomplete molecular datasets, i.e., containing missing data val-
ues for some properties of some molecules;

• varying degrees of correlation between molecular properties;
• availability of related property data for different molecules, i.e., 
the molecules used for training, the target molecules for which 
predictions are desired, and molecules beyond.

Secondly, we separately consider a real-world dataset of experimentally 
obtained autoignition indicators for oxygenated hydrocarbons from our 
previous work (Schweidtmann et al., 2020). This dataset includes three 
ignition properties of interest for 505 molecules, hence represents the 
task of property prediction in low data regimes. As the underlying ML 
model, we use graph neural networks (GNNs), which have been shown 
as particular promising for molecular property prediction (Reiser et al., 
2022; Heid et al., 2023).

Our contribution is to systematically investigate the effect of data 
augmentation by MTL for established ML models in property predic-
tion, depending on the availability of molecular data. We find that 
MTL is often helpful in scenarios of predicting properties for molecules 
for which data on other related properties is available, i.e., hence for 
data/property completion tasks. Yet, we do not observe a proportion-
ally larger performance gain from MTL for small datasets in comparison 
to larger ones. Our results also reveal that MTL can lead to decreasing 
prediction accuracy, even in some cases for highly correlated prop-
erties, highlighting the difficulty of incorporating different prediction 
tasks into the loss function and finding corresponding optima during 
ML model training compared to STL.

2. Methods

We compare different related data augmentation strategies of
molecular data to train an ML model for predicting a molecular prop-
erty 𝑝1, as illustrated in Fig.  1. The accuracy of the model is evaluated 
on the basis of a test set that is separated from the available data and 
includes molecules and corresponding data labels for the property of 
interest, i.e., for 𝑝 .
1
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Fig. 1. Schematic illustration of learning setups for property 1: (i) single-task learning and (ii) multi-task learning with different data augmentation options.
Specifically, we consider STL and MTL. In STL, a single model is 
trained on data only for the target property 𝑝1. The concept of MTL is to 
train a single model predicting multiple properties simultaneously, al-
lowing the use of correlations between the target property 𝑝1 and other 
properties, i.e., 𝑝2,… , 𝑝𝑀 , to improve prediction accuracy. In MTL, the 
training data set used in STL is thus augmented with additional readily 
available property data.

We distinguish three types of additional property data that can be 
available for MTL, cf. Fig.  1, specifically data on:

• Training molecules: Additional data of related properties for the 
training molecules, i.e., the molecules, for which data on the 
target property 𝑝1 is readily available, is utilized in training. 
This allows information from other, potentially related properties 
to be used for learning. For example, when training a model 
to predict the enthalpy of formation of a molecule, information 
about electronic stability, as indicated by the HOMO-LUMO gap, 
could be used.

• Target molecules: Data for other properties of the target
molecules, i.e., the molecules to which a practitioner applies 
the model to obtain predictions, is included in the training set, 
whereas the target property labels are indeed unknown. Thus, 
contextual information about the target molecular structures is 
provided during training, which can be used for learning, analo-
gously to the additional data of related properties for the training 
molecules.

• Extra molecules: Additional molecules for which data on the 
target property are lacking but data on other properties are 
readily available are added to the training set, thereby increasing 
the diversity of molecular structures, i.e., the coverage of the 
chemical space, used in training.

It should be noted that – in particular for experimental data – the 
augmented property labels are typically incomplete, that is, not all 
properties are readily available for all added molecules.

To investigate the effect of data augmentation with respect to the 
different data availability possibilities, we evaluate the following MTL 
forms:

• MTL-Train: MTL-Train refers to data augmentation for the train-
ing molecules only, i.e., property data for the target molecules 
3 
is not known and extra molecules are also not utilized in model 
training. We can thereby study the effect of data augmentation 
when predictions are required for novel molecules, e.g., molecules 
proposed in computational molecular design, whose properties 
still need to be determined, i.e., by simulations, experiments or 
predictive modeling.

• MTL-Complete: Often data on other (related) properties is readily 
available for the target molecules, i.e., the molecules for which 
predictions of a particular property are required. This data can 
then be used in model training. MTL-Complete thus refers to using 
available additional property data for both the training and the 
target molecules. This allows us to investigate the scenario of data 
completion, predicting properties for molecules for which other 
property data is available.

• MTL-Train/Complete + Extra: Furthermore, there are many 
molecular databases that may contain other property data for 
molecules that are not in the training set and not explicitly 
targeted, i.e., extra molecules. MTL-Train/Complete + Extra thus 
refers to using properties of extra molecules in addition to the 
training and target molecules. Thereby, we analyze the effect of 
an increased molecular diversity with potentially related property 
data that is used in model training.

The data augmentation scenarios and MTL forms are applicable to 
any predictive molecular property prediction model, including
descriptor-based approaches, also referred to as quantitative structure–
property relationships (QSPRs), and deep end-to-end ML approaches 
such as GNNs and transformers. Here, we focus on GNNs, which 
we briefly describe next (Section 2.1). We then outline the com-
putational experiments for comparing the different learning strate-
gies (Section 2.2) including a description of the used data sets (Sec-
tion 2.3), hyperparameter settings (Section 2.4), and evaluation metrics 
(Section 2.5).

2.1. Property prediction model

For developing molecular property prediction models, we use the 
Chemprop library (Heid et al., 2023), a GNN framework based on 
PyTorch (Ansel et al., 2024) for molecular applications. Chemprop was 
chosen for its various applications to molecular property prediction 
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tasks, ease of use, prior usage molecular benchmarks (e.g., QM9, see 
Section 2.3), and its built-in support for hyperparameter optimization 
and single- and multi-task learning setups. Chemprop utilizes directed 
message-passing neural networks (D-MPNNs), a GNN architecture de-
signed for predicting molecular properties, where molecules are repre-
sented as graphs with atoms serving as vertices and bonds as edges; 
each bond is treated as two directed edges to capture directionality.

The Chemprop models learn a direct mapping from molecular 
graphs to the properties of interest. First, the SMILES representation 
of a molecule is converted into a molecular graph using RDKit, which 
generates initial feature vectors for both atoms (e.g., atomic number, 
formal charge) and bonds (e.g., bond type, ring membership). These 
features include information about stereochemistry, such as chirality. 
However, they do not capture the full spatial information possible 
with geometric GNN architectures, which require calculating atom 
coordinates and entail higher computational costs (Satorras et al., 2021; 
Batzner et al., 2022; Joshi et al., 2023; Adams et al., 2021; Duval 
et al., 2023). The atom and bond features are used to construct directed 
edge features by concatenating the initial atom features with the 
initial (undirected) bond features, providing the input for the message-
passing phase. Secondly, the D-MPNN propagates information along the 
directed edges, iteratively updating their hidden representations. These 
updated edge representations capture local structural information in 
the molecular graph. After message passing, the hidden representations 
of the incoming edges to each atom are aggregated with that atom’s ini-
tial feature vector using a learnable weight matrix, resulting in learned 
atomic embeddings. Finally, these atomic embeddings are combined 
(e.g., via summation or averaging, also cf. Schweidtmann et al. (2023)) 
to form a single molecular embedding, which is processed by a feed-
forward neural network to predict molecule-level target properties. For 
single-task models, the neural network has one output, whereas for 
multi-task models, the number of outputs corresponds to the number 
of properties that are targeted.

2.2. Single- and multi-task training

Before training the GNN models, the property data are standardized 
to zero mean and unit standard deviation for each target independently 
by Chemprop. For single-task training, we then use a standard mean-
squared error (MSE) loss function based on the deviation of predictions 
𝑝̂ and target property values 𝑝 across all molecules used in training 
𝑚 ∈ 𝑀train:

STL-LOSS = 1
|𝑀train|

∑

𝑚∈𝑀train

(𝑝𝑚 − 𝑝̂𝑚)2

The loss function for the multi-task training is also based on the 
MSE and sums up the deviations for all target properties 𝑝 ∈ 𝑃𝑡𝑎𝑟𝑔𝑒𝑡
of the training molecules. If the value for a property of a molecule is 
missing in the dataset used for training 𝐷train, the individual loss term 
is neglected, i.e.:

MTL-LOSS = 1
|𝑀train|

∑

𝑚∈𝑀train

∑

𝑝∈𝑃target

(𝑝𝑚 − 𝑝̂𝑚)2 ⋅ 1𝑝𝑚∈𝐷train

This approach of ignoring contributions from missing labels is stan-
dard in MTL for incomplete datasets. Although it prevents penalizing 
the model for unknown ground truth, a high degree of missing values 
for a particular task will naturally reduce its influence on the shared 
learned representation. The impact of such data sparsity is examined 
in our ‘‘Incomplete data’’ experiments (see Sections 3.2.2 and 3.2.3).

2.3. Datasets

We conducted computational experiments on two datasets in sep-
arate case studies: first, we consider the QM9 dataset (Ruddigkeit 
et al., 2012; Ramakrishnan et al., 2014) and then the fuel ignition 
dataset (Schweidtmann et al., 2020).
4 
2.3.1. QM9 dataset
QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) is a com-

prehensive collection of approximately 134,000 small organic
molecules, each containing up to nine heavy atoms (C, N, O, and F). We 
choose a large dataset to be able to construct different scenarios of data 
availability, e.g. by considering only small subsets. The dataset includes 
a wide range of properties, such as energetic and thermodynamic 
properties at constant pressure and temperature, derived from quantum 
chemical calculations based on density functional theory (DFT), making 
it a standard benchmark for molecular property prediction. As an 
initial exploratory step, we examined the inter-relationships between 
the 12 QM9 targets by calculating Pearson correlation coefficients (Fig. 
2). To verify the robustness of these relationships, we also computed 
Spearman’s and Kendall’s rank correlations, which are non-parametric 
methods that account for non-linear monotonic relationships without 
assuming the data are normally distributed. Since these methods con-
firmed the same general trends, we present only the Pearson correlation 
matrix for clarity.

We selected 8 target properties from the QM9 dataset for our 
experiments, excluding highly correlated or derivative properties to 
ensure meaningful learning and comparisons. Specifically, we excluded 
𝛥𝜖 (HOMO-LUMO gap) due to its direct derivation from 𝜖HOMO and 
𝜖LUMO, which could lead to trivial predictions in the MTL-Complete 
case. Furthermore, 𝑈atom

298 , 𝐻atom
298 , and 𝐺atom298  were excluded due to their 

extremely high correlations with each other and with 𝑈atom
0 . Only 𝑈atom

0
was retained to increase diversity in the selected targets. A summary of 
the eight selected target properties is presented in Table  1.

2.3.2. Fuel ignition dataset
This smaller dataset contains 505 molecules with three targets 

related to fuel ignition properties (Schweidtmann et al., 2020): De-
rived Cetane Number (DCN), Research Octane Number (RON), and 
Motor Octane Number (MON). They provide information about the 
ignition/knocking behavior, which are highly relevant to assess the 
suitability of molecules as potential fuel components in spark-ignition 
(RON/MON) and compression-ignition engines (Schweidtmann et al., 
2020). Predicting DCNs, RONs, and MONs is thus desired to develop 
more sustainable fuel candidates. As such, the DCN is negatively cor-
related with RON and MON, while RON and MON are positively 
correlated with each other (see Fig.  3). Unlike the highly correlated and 
excluded properties in the QM9 dataset, DCN, RON, and MON cannot 
be derived directly from each other using mechanistic equations. Since 
obtaining each of the ignition indicators requires costly engine exper-
iments, the considered fuel ignition dataset is inherently incomplete, 
i.e., only a subset of the three target properties is readily available for 
most molecules. Table  2 shows the number of molecules in the dataset 
that have each of the respective target properties available, as well as 
the mean and standard deviation of each property. We note that the 
data does not contain pressure- and temperature dependencies, as the 
properties are determined under standardized experimental engine test 
conditions, cf. Schweidtmann et al. (2020).

2.3.3. Dataset splits
For the QM9 dataset, we used both the full dataset split provided 

by the Chemprop benchmark (Heid et al., 2023) and three additional 
subsets: Small (1000 training molecules), Medium (10,000 training 
molecules), and Large (50,000 training molecules). In each case, the 
size of test and validation sets were each 10% of the training set 
size used. For each size category (apart from the full dataset case), 
we performed 10 independent runs with different random seeds to 
generate the train, validation, and test splits.

For the fuel ignition dataset, we used 10-fold cross-validation, en-
suring that every molecule was used in both training/validation and 
testing across the folds. From each training fold, we left out what 
amounted to 10% of the full dataset for validation (for early stopping). 
The use of 𝑘-fold cross-validation is particularly advantageous for small 
datasets, as it maximizes the use of available data by allowing every 
data point to be used during both training and testing. This approach 
reduces the variance associated with limited sample sizes.



M.b. Javaid et al. Computers and Chemical Engineering 201 (2025) 109253 
Table 1
The eight selected QM9 target properties, their descriptions, units, and summary statistics across the dataset (total size: 133,885).
 Symbol Description Unit Mean Std Dev 
 𝜇 Dipole moment Debye 2.71 1.53  
 𝛼 Isotropic polarizability Bohr3 75.2 8.19  
 𝜖HOMO Highest occupied molecular orbital energy eV −0.240 0.0221  
 𝜖LUMO Lowest unoccupied molecular orbital energy eV 0.0111 0.0469  
 ⟨𝑅2

⟩ Electronic spatial extent Bohr2 1190 280  
 ZPVE Zero point vibrational energy eV 0.149 0.0333  
 𝑐𝑣 Molar heat capacity at 298.15 K calmol−1K−1 31.6 4.06  
 𝑈 atom

0 Atomization energy at 0 K eV −1750 239  
Fig. 2. Pearson correlation coefficients between all pairs of 12 QM9 target properties, with the 8 chosen for our experiments outlined.
Table 2
Number of molecules with available target property values, along with the summary 
statistics of each property, in the fuel ignition dataset (total size: 505).
 Target property Number of molecules Mean Std Dev 
 DCN 236 33.2 23.6  
 RON 335 86.0 25.2  
 MON 318 78.6 21.5  

Fig. 3. Pearson correlation coefficients between DCN, RON, and MON.

2.4. Hyperparameter settings

For the QM9 experiments, we followed the same scheme outlined in 
the Chemprop benchmark. We used the hyperparameter optimization 
module in Chemprop which utilizes a Tree-structured Parzen Estima-
tor (TPE). We optimized over 30 iterations with 50 epochs each for 
key hyperparameters: number of message-passing steps, hidden size, 
feed-forward network layers, feed-forward hidden size, and dropout 
ratio. Hyperparameter optimization was done separately for each size 
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category, and furthermore carried out separately for each target task 
in the STL case. The optimized parameters identified for each size 
category in MTL-Train were reused for the corresponding size category 
in MTL-Complete.

For the fuel ignition experiments, we used a more extensive opti-
mization scheme due to the small dataset size. Specifically, we per-
formed 100 iterations with 200 epochs each, for the same hyperpa-
rameters as for QM9, with the addition of learning rate, batch size, 
and warm-up period. Each single-task case underwent independent 
optimization, while the parameters for MTL were reused for MTL-
Complete. To ensure no data leakage across folds, hyperparameter 
optimization was carried out separately for each fold, using the train 
and validation data.

Models were trained for 50 epochs for QM9 experiments and 200 
epochs for fuel ignition experiments. For each case, scaled sums were 
used to aggregate atomic features into molecular feature vectors. Test 
results were reported as the mean and standard deviation across splits 
or folds.

2.5. Evaluation metrics

We evaluated model performance using Root Mean Square Error 
(RMSE) for the QM9 experiments and Mean Absolute Error (MAE) for 
the DCN-RON-MON fuel ignition dataset. This distinction was made to 
best reflect the objectives for each task. For the large, computational 
QM9 dataset, we selected RMSE as the primary evaluation metric. Since 
our models were trained to minimize Mean Squared Error (MSE), RMSE 
provides the most direct assessment of performance against the training 
objective. Furthermore, its inherent sensitivity to large deviations is 
a key diagnostic feature for evaluation: a low RMSE score signifies 
that a model is consistently reliable and avoids significant, physically 
unrealistic predictions across QM9’s chemical space. This metric is also 
reported in the Chemprop benchmark on QM9, facilitating comparison 
with that work (Heid et al., 2023).
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Conversely, for the small, experimental fuel ignition dataset, we 
selected MAE primarily for its robustness to the outliers that are com-
mon in experimental measurements and for its direct interpretation of 
the average error magnitude. This choice is also consistent with the 
precedent set by prior work which utilizes this dataset (Schweidtmann 
et al., 2020; Neumann et al., 2024).

Note that, for completeness, we report both error metrics, RMSE and 
MAE, for all computational experiments in the Supporting Information.

In the QM9 experiments, we compared results across STL and 
variations of MTL-Train, MTL-Complete, and MTL-Complete + Extra, 
for all 8 target properties. Similarly, for the fuel ignition dataset, we 
conducted comparisons for its 3 target properties.

3. Computational experiments and results

3.1. Comparison to Chemprop-QM9 benchmark

To provide a fair and direct comparison with existing work, we 
first reproduced the experiments from the Chemprop-QM9 benchmark 
by Heid et al. (2023) on the QM9 dataset, which provided results for 
STL models (for 2 properties only) and an MTL-Train model trained 
on all 12 QM9 properties, as by our definition in Section 2. We 
additionally provide results for the 10 remaining STL and the MTL-
Complete scenarios using the same train–test–validation split (with 
a 80:10:10 ratio) as provided in the benchmark. To prevent MTL-
Complete simply benefiting from an increased amount of training data, 
we deleted the same number of original training molecules as the target 
molecules that were added to the training set. To maintain the same 
conditions as in the original benchmark, during final training, each 
model was trained on a single data split with an ensemble size of 5, 
while no ensembling was applied during hyperparameter optimization. 
The ‘‘Extra’’ scenarios are not considered here because the full dataset 
is already used for MTL-Train and MTL-Complete, so we do not have 
additional related data of the 12 properties available for training.

The results for the Chemprop-QM9 are presented in Table  3. The 
results indicate that, for nearly all target properties (with the exception 
of ZPVE), the MTL-Complete approach achieves the lowest error, often 
by a considerable margin. In contrast, MTL generally underperforms 
compared to STL, suggesting that MTL-Complete is using correlations 
among the various properties provided during training to improve 
predictions of the missing target property.

For certain properties with well-established correlations, such as the 
HOMO-LUMO energies and the gap 𝛥𝜖 – derived by subtracting 𝜖𝐿𝑈𝑀𝑂
from 𝜖𝐻𝑂𝑀𝑂 – the performance improvement from MTL-Complete is 
particularly pronounced. Notably, while STL still outperforms or is on 
par with the simple MTL approach in predicting these three properties, 
the MTL-Complete model achieves the highest accuracy on them by a 
dramatic margin. This suggests that having access to related properties 
for the specific target molecules is a critical factor in achieving en-
hanced predictive performance. Importantly, even for targets where the 
connections between them are not trivial (i.e., 𝜇, 𝛼, ⟨𝑅2

⟩, 𝑐𝑣), the MTL-
Complete method provides an advantage, indicating that it is capturing 
subtle inter-property relationships. As previously noted in Section 2.3.1, 
to ensure meaningful learning and a situation where MTL-Complete 
does not have an ‘‘unfair advantage’’ due to the presence of derivative 
or very similar auxiliary targets, in the subsequent experiments we 
exclude from usage the HOMO-LUMO gap 𝛥𝜖 and all except one (𝑈𝑎𝑡𝑜𝑚

0 ) 
of the highly inter-correlated atomization energies.

3.2. QM9 experiments

Following the Chemprop comparison, we conducted a broader set 
of experiments on the QM9 dataset to systematically evaluate the 
performance of single-task and multi-task approaches under varying 
conditions.
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Table 3
Comparison to the Chemprop benchmark: test RMSEs for 12 QM9 targets across STL, 
MTL-Train, and MTL-Complete configurations.
 Target STL MTL-Train MTL-Complete 
 𝜇 0.577 0.586 0.539  
 𝛼 0.542 0.52 0.382  
 𝜖𝐻𝑂𝑀𝑂 0.00417 0.00421 0.00213  
 𝜖𝐿𝑈𝑀𝑂 0.00384 0.0041 0.00132  
 𝛥𝜖 0.00596 0.00587 0.00149  
 ⟨𝑅2

⟩ 31.6 33.1 28.8  
 ZPVE 0.000239 0.000375 0.000361  
 𝑐𝑣 0.211 0.224 0.174  
 𝑈 atom

0 2.57 3.32 1.65  
 𝑈 atom

298 2.61 3.33 1.66  
 𝐻atom

298 2.57 3.33 1.67  
 𝐺atom

298 2.52 3.3 1.78  

3.2.1. Dataset size variations
We used three progressively larger subsets of the QM9 dataset 

(Small, Medium, Large) and a Full split:

• Small: 1000 training molecules, 100 target molecules, and 100 
validation molecules.

• Medium: 10,000 training molecules, 1000 target molecules, and 
1000 validation molecules.

• Large: 50,000 training molecules, 5000 target molecules, and 
5000 validation molecules.

• Full: Full QM9 dataset with the Chemprop benchmark split.

3.2.2. Experimental cases
We are first interested in the general comparison of STL and MTL 

using different data augmentation schemes. Then, in two ablation stud-
ies, we respectively investigate the effects of the molecular diversity 
and the completeness of the data set on the prediction accuracy.

STL & MTL comparison
For each split and across all targets, we trained single-task mod-

els (STL) and multi-task models (i.e., MTL-Train and MTL-Complete). 
For STL, training was conducted separately for each target, with an 
independent model trained for each property. MTL-Train and MTL-
Complete, one model is trained on all 8 targets simultaneously. MTL-
Train only considers the molecules and corresponding property labels 
of the training set, whereas MTL-Complete also includes the molecules 
of the test set but only the property labels for 7 of the properties, 
excluding the target property and thereby avoiding data leakage (cf. 
Section 2).

Ablation study: Molecular diversity
To investigate whether potential performance changes by MTL-

Complete in comparison to MTL-Train originate from an increased 
molecular diversity (or data set size), we also performed MTL-Complete 
with a reduced training set size, to which we refer to as MTL-Complete 
+ Deletion. That is, we maintained the same number of molecules used 
for training as in the MTL-Train case. This was achieved by removing 
a corresponding number of molecules from the original training set 
upon adding target molecules. This setup thus isolates the effect of 
observing other target properties of target molecules during training 
without increasing the overall data volume.

To also investigate whether adding further molecules beyond the 
train and target ones has an additional effect on the performance, we 
here also consider MTL-Complete + Extra (cf. Section 2) as described 
in the following. Molecules from the full QM9 dataset’s training set 
(from the original Chemprop benchmark) that were not part of the 
current training, validation, or test splits are added to the training set. 
The number of added molecules matches the size of the training set 
for each category: 1000 for Small, 10,000 for Medium, and 50,000 
for Large splits. Notably, this case is not conducted for the Full split 
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Fig. 4. Test performance for QM9 experiments across varying dataset sizes with STL, MTL, and MTL-Complete.
due to the lack of additional molecules. Analogously to MTL-Complete, 
the target property under evaluation was removed from the extra 
molecules avoiding data leakage. This setup thus isolates the effect of 
increasing molecular diversity by using unseen molecules with other 
targets available but not the specific target of interest.

Ablation study: Incomplete data
As molecular property data sets, particularly experimental ones, typ-

ically contain missing property labels, we also conducted training runs 
with artificially generated incomplete QM9 data subsets. Specifically, 
for MTL-Train and MTL-Complete, we randomly removed 25%/50% of 
the data from each of the 7 property columns, that is, all properties 
except for the target property, to ensure comparability with STL. The 
indices of the rows from which the values are removed are indepen-
dently random and not necessarily the same for all these columns. 
This ablation study thus simulates the situation where we have a 
dataset with a single target label (i.e., one of the 8 targets) that is 
augmented with other datasets containing other target properties with 
some overlapping molecules. This experiment was only carried out on 
the full QM9 dataset.

3.2.3. Discussion of results
The results indicate several overarching trends across the selected 

targets in the QM9 dataset subsets. Here, we discuss the key patterns, 
noting exceptions, and their possible explanations.

Effect of multi-task learning
As observed in Fig.  4, for many targets, STL consistently outper-

forms MTL-Train, particularly at smaller dataset sizes. This effect is 
most pronounced for 𝜖HOMO, 𝜖LUMO, 𝑐𝑣, and 𝑈atom

0 , where MTL-Train 
struggles regardless of the dataset size. A likely explanation is that the 
additional targets used in MTL-Train training provide little relevant 
information for these specific properties. In some cases, they may 
even introduce conflicting signals that hinder learning, since the loss 
function involves multiple properties which can make optimization 
more difficult. For ⟨𝑅2

⟩, we see the opposite trend: MTL-Train shows 
better performance than STL for smaller subsets but begins to lag as 
the dataset size increases. This suggests that MTL-Train may benefit 
more in cases where learnable relations between targets are stronger 
7 
and the available data is limited, but the advantage diminishes when 
larger datasets allow STL to dominate.

Also observable in Fig.  4 is that MTL-Complete generally outper-
forms both STL and MTL-Train as the dataset size increases. Notably, 
MTL-Complete outperforms both STL and MTL-Train across all dataset 
sizes for the targets 𝛼 and ⟨𝑅2

⟩. For the targets 𝜇, 𝜖HOMO, and 𝑐𝑣, 
with increasing dataset size, MTL-Complete consistently narrows and 
reverses the advantage STL holds at smaller scales. This highlights 
MTL-Complete’s ability to leverage inter-target relationships improving 
when sufficient data is available to learn contextual information about 
the target molecules during training. More generally, having any form 
of information about the target molecules can provide the model with a 
valuable starting point for predictions, allowing it to potentially exploit 
relevant features and correlations.

Notably, for ZPVE and 𝑈atom
0 , STL greatly outperforms both MTL-

Train and MTL-Complete across all dataset sizes. Similar behavior is 
observed for 𝜖LUMO, although with a much narrower performance gap 
between STL and MTL-Train/Complete. However, MTL-Complete still 
outperforms MTL-Train for these properties.

Effect of molecular diversity
We also analyze the effects of decreasing and increasing the volume 

of training data available to MTL-Complete via the MTL-Complete + 
Deletion and MTL-Complete + Extra cases. These are visualized in Fig. 
5. The MTL-Complete + Deletion experiments test the effect of keeping 
the overall training data volume the same as in regular STL/MTL 
while incorporating related property data for the target molecules. 
Meanwhile, the ‘‘extra molecules’’ experiments are designed to increase 
the volume of training data beyond that of MTL-Complete and assess 
whether the benefits of MTL-Complete stem specifically from including 
information on the target molecules during training. These experiments 
involve adding data that is not part of the train–test–validation splits 
from the full QM9 training set. For small and medium dataset sizes, 
including extra molecules generally improves MTL-Complete perfor-
mance. This indicates that the added data provides useful additional 
context when the available training set is limited. However, for the 
large dataset size, adding extra molecules no longer confers a clear 
advantage and occasionally leads to slightly worse performance. This 
suggests that as the dataset size grows, the inclusion of unrelated data 



M.b. Javaid et al. Computers and Chemical Engineering 201 (2025) 109253 
Fig. 5. Test results for QM9 experiments across varying dataset sizes with varying amounts of training data.
Fig. 6. Test results for QM9 experiments (with the full dataset) with varying proportions of missing data; i.e., ‘‘holes’’ in the data.
may increase noise or saturate the ability of the model to extract 
meaningful relationships.

The performance of MTL-Complete + Deletion is comparable to 
that of MTL-Complete in most cases, see Fig.  5. Although there is 
a somewhat consistent decrease in performance for MTL-Complete + 
Deletion compared to MTL-Complete on the small and, to a lesser 
extent, medium-sized dataset, there is no overall appreciable perfor-
mance gap for large and full dataset sizes. This indicates that losing a 
similar proportion of training data is more detrimental when working 
with a smaller dataset as a whole. Nevertheless, the gap between MTL-
Complete and MTL-Complete + Deletion is usually much smaller than 
the gap between MTL-Complete and MTL-Train. This strongly suggests 
that the primary reason MTL-Complete outperformed MTL-Train is its 
ability to leverage information about other properties of the target 
8 
molecules during training, rather than it merely benefiting from a 
larger overall volume of training data.

Effect of incomplete data
We also examine the effect of varying amounts of missing data 

(‘‘holes’’) in the full dataset case for MTL-Train and MTL-Complete 
(see Fig.  6). As expected, performance generally declines for increas-
ing number of missing entries. Interestingly, for targets like ZPVE 
and 𝑈atom

0 , where STL already significantly outperforms the MTL ap-
proaches, this trend is partially reversed. This suggests that removing 
conflicting or redundant auxiliary targets – by way of missing entries 
– can, in some cases, improve learning for specific targets where MTL 
fails to provide a clear benefit.
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Overall, for the QM9 training runs, MTL-Complete demonstrates 
significant improvements for many targets, as it can exploit inter-target 
correlations more effectively and provides some contextual information 
on the target molecules during training that the model seems to learn. 
However, its performance remains target-dependent, with STL consis-
tently performing better for certain properties, i.e., ZPVE, 𝑈atom

0 , and 
𝜖LUMO. The inclusion of extra data helps primarily for smaller datasets, 
while its utility diminishes as the dataset size increases. Moreover, 
the behavior of MTL-Train and MTL-Complete under missing data 
underscores the importance of carefully selecting auxiliary targets to 
avoid introducing signals that may hinder learning.

3.3. Fuel ignition dataset experiments

Similarly to the experiments conducted with QM9, we performed 
single-task and different multi-task training runs on the fuel ignition 
dataset which is based on experimental data and is by nature incom-
plete and of small size (cf. Section 2.3). We consider STL, i.e., training a 
separate model for each target (DCN, RON, and MON), and MTL, where 
one model is trained on all targets simultaneously for the training 
molecules (MTL-Train) or for both the training and target molecules, 
excluding the target property for the latter (MTL-Complete). Since we 
found in the QM9 experiments that augmenting extra molecules can 
lead to increased accuracy, especially for small data set sizes, and since 
the fuel ignition data set is incomplete, i.e., not all property values 
are available for all molecules, we here directly include the ‘‘extra 
molecules’’ (cf. Section 2) for the two MTL approaches. For example, 
if only RON and MON values are available for a specific molecule, 
this data is also included in the MTL training runs targeting DCN. 
We note that we also found the use of the full fuel ignition data set 
for MTL to be helpful in our previous study of DCN, RON and MON 
prediction (Schweidtmann et al., 2020).

In addition to extra molecules with available DCN, RON, and MON 
data, we are also interested in whether additional data augmentation 
further increases predictive accuracy. We consider two additional data 
augmentation strategies:

Extra QM9 targets: We identify molecules in the fuel ignition 
dataset that also appear in the QM9 dataset. We augment the fuel 
ignition dataset for these shared molecules by adding their correspond-
ing 8 QM9 properties as additional targets. The objective is to assess 
whether including additional target properties during training could 
help the model predict DCN, RON, and MON by potentially leveraging 
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correlations between the original targets and the augmented QM9 
properties through MTL.

Extra QM9 molecules: We augment molecules from the QM9 
dataset that are not available in the fuel ignition dataset. Specifically, 
we randomly add as many extra QM9 molecules as there are molecules 
in the training set of the fuel ignition data set. Note that these extra 
molecules only have the 8 QM9 target labels available and none of 
DCN, RON, or MON. Furthermore, we only use those QM9 molecules 
as extra molecules with no atom types other than those present in the 
fuel ignition data set, i.e., C, H, and O. Here, we aim to further increase 
the molecular diversity available for MTL.

Discussion of results
As observed in Fig.  7, for DCN, STL outperforms all variants of 

MTL-Train, suggesting that the inclusion of additional targets (RON and 
MON) introduces limited or even conflicting information that does not 
aid in predicting DCN. This negative effect of MTL-Train is unexpected 
given the high correlation between DCN and RON, cf. Section 2.3. In 
our previous works (Schweidtmann et al., 2020; Neumann et al., 2024), 
we found that MTL based on another GNN architecture outperformed 
STL for DCN prediction; notably, we used another performance evalu-
ation strategy with a fixed external test set instead of cross validation, 
so the results are not directly comparable and are also sensitive to 
outliers given the small dataset size. MTL-Complete, however, shows 
a clear improvement over both STL and MTL-Train, indicating that 
leveraging related properties of the target molecules helps capture 
useful inter-property relationships. Augmenting the data with extra 
QM9 properties, on the other hand, does not confer any benefit for 
learning DCN for MTL-Train, and worsens performance when using 
MTL-Complete. Using extra molecules worsens the result significantly 
for both MTL-Train and MTL-Complete. This suggests that the unrelated 
additional properties introduce noise rather than helpful information 
for this particular property, which already suffers from limited data 
availability.

For RON and MON, the patterns are notably different. MTL-Train 
consistently outperforms STL, demonstrating that these two properties 
benefit from shared learning when trained together. Augmenting with 
extra QM9 properties further improves performance, or at the very least 
does not degrade it, indicating that the additional molecular properties 
provide relevant auxiliary information that helps the model. However, 
adding extra QM9 molecules, significantly hinders performance. This 
suggests that while RON and MON benefit from extra target properties 
Fig. 7. Test performance for fuel ignition experiments across varying training configurations.
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available for the same molecules, the inclusion of extra molecules from 
the QM9 dataset, which only have QM9 properties available, introduces 
noise that disrupts learning of RON and MON. This is a case of negative 
transfer when augmenting with dissimilar data. These trends hold for 
MTL-Complete as well, with the overall performance being consistently 
better than STL and MTL-Train across all variations.

Overall, MTL-Complete provides clear advantages for all three tar-
gets when compared to STL and MTL-Train. However, the extent of 
the benefit is target-dependent. DCN remains the most challenging 
property to learn (likely due to having the least data available), with 
significant performance degradation from extra QM9 molecules. In 
contrast, RON and MON demonstrate the advantages of MTL setups, 
with MTL-Train outperforming STL and with MTL-Complete with aug-
mented targets achieving the best results overall for these two targets. 
Adding unrelated extra molecules with other targets tends to hinder 
performance across the board, indicating the importance of carefully 
selecting relevant auxiliary data for small and incomplete datasets.

4. Conclusion

We systematically explore the utility of MTL for molecular property 
prediction depending on molecular data availabilities. Specifically, we 
consider practically-motivated scenarios, e.g., small and incomplete 
datasets, and the availability of related property data for training 
molecules (MTL-Train) plus target molecules (MTL-Complete) as well 
as extra molecules. We train GNNs on different datasets to empirically 
analyze the effects of these MTL forms on the prediction accuracy in 
comparison to STL.

Studying the QM9 dataset with multiple, differently correlated prop-
erties shows that MTL-Train often leads to decreased accuracy com-
pared to STL, indicating that property relationships of the training 
molecules can hardly be utilized and are diminished by increased 
difficulty of model training due to multiple loss terms. In contrast, MTL-
Complete results in significant accuracy increases for many targets, 
so contextual information on the target molecules in addition to the 
training molecules often facilitates the models in exploiting additional 
property information. MTL is thus particularly helpful in complet-
ing property data, i.e., predicting properties of molecules for which 
other property data is readily available. We further find augmenting 
extra molecules with related property data, thereby increasing the 
molecular diversity available in training, to be typically helpful for 
smaller datasets. As expected, missing property data for molecules, 
i.e., sparse/incomplete datasets, decrease the accuracy gains by MTL.

Our findings are also transferable to a real-world, experimental 
dataset of fuel ignition data, representing property prediction in low 
data regimes. Here, augmenting property data on the training and 
target molecules with MTL-Complete also leads to the most prominent 
accuracy improvements; notably, the improvements vary for differ-
ent properties. In contrast, augmenting molecular data with unrelated 
properties or with extra molecules from a dissimilar chemical domain 
can decrease the accuracy, highlighting the critical importance of rele-
vance in data augmentation strategies. Overall, if related property data 
for target molecules is readily available, MTL-Complete should thus 
be utilized for improving predictive accuracy in real-world chemical 
applications.

While we have focused on different data availability scenarios using 
a GNN model with a equal contribution of the properties to the loss 
function, future work could analyze our scenarios with more sophisti-
cated loss formulations of MTL, e.g., Liu et al. (2022) and Chen et al. 
(2018), and other ML approaches. Moreover, to overcome the negative 
transfer observed when augmenting with dissimilar data, future work 
could explore more advanced strategies. One promising avenue is to 
employ a pre-train and fine-tune approach, leveraging large molecular 
models trained with self-supervision (Rong et al., 2020; Chithrananda 
et al., 2020; Méndez-Lucio et al., 2024; Li and Fourches, 2020; Li et al., 
2021) to create robust initial representations. Alternatively, for MTL 
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scenarios that still incorporate such disparate data, methods to mitigate 
negative transfer during training are crucial. These could range from 
simple similarity-based filtering of the additional data to employing the 
task-balancing strategies we previously mentioned, such as normalizing 
task-specific gradients (Chen et al., 2018) or adaptively weighting 
property losses (Biswas et al., 2023), in order to actively down-weight 
the influence of less relevant tasks.

Further, it would be highly interesting to address the question of 
why models employing MTL are not able to learn that the properties 
are not related. In fact, if a model is large enough, it could also 
learn with MTL independent mappings from the molecular structure 
to the properties, i.e., the ones learned with STL. This could be further 
investigated by considering the model size as well as the loss function 
and its optimization in training.
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