001044200 001__ 1044200
001044200 005__ 20250804115251.0
001044200 0247_ $$2doi$$a10.1016/j.compchemeng.2025.109085
001044200 0247_ $$2ISSN$$a0098-1354
001044200 0247_ $$2ISSN$$a1873-4375
001044200 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03089
001044200 0247_ $$2WOS$$aWOS:001447839500001
001044200 037__ $$aFZJ-2025-03089
001044200 082__ $$a660
001044200 1001_ $$0P:(DE-HGF)0$$aBrozos, Christoforos$$b0
001044200 245__ $$aPredicting the temperature-dependent CMC of surfactant mixtures with graph neural networks
001044200 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
001044200 3367_ $$2DRIVER$$aarticle
001044200 3367_ $$2DataCite$$aOutput Types/Journal article
001044200 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752743697_5669
001044200 3367_ $$2BibTeX$$aARTICLE
001044200 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001044200 3367_ $$00$$2EndNote$$aJournal Article
001044200 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
001044200 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001044200 7001_ $$0P:(DE-HGF)0$$aRittig, Jan G.$$b1
001044200 7001_ $$0P:(DE-HGF)0$$aAkanny, Elie$$b2
001044200 7001_ $$0P:(DE-HGF)0$$aBhattacharya, Sandip$$b3
001044200 7001_ $$0P:(DE-HGF)0$$aKohlmann, Christina$$b4
001044200 7001_ $$0P:(DE-Juel1)172025$$aMitsos, Alexander$$b5$$eCorresponding author$$ufzj
001044200 773__ $$0PERI:(DE-600)1499971-7$$a10.1016/j.compchemeng.2025.109085$$gVol. 198, p. 109085 -$$p109085 -$$tComputers & chemical engineering$$v198$$x0098-1354$$y2025
001044200 8564_ $$uhttps://juser.fz-juelich.de/record/1044200/files/1-s2.0-S0098135425000894-main.pdf$$yOpenAccess
001044200 909CO $$ooai:juser.fz-juelich.de:1044200$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001044200 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a BASF$$b0
001044200 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
001044200 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
001044200 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a BASF$$b2
001044200 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a BASF$$b3
001044200 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a BASF$$b4
001044200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172025$$aForschungszentrum Jülich$$b5$$kFZJ
001044200 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172025$$aRWTH Aachen$$b5$$kRWTH
001044200 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
001044200 9141_ $$y2025
001044200 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001044200 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001044200 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-16
001044200 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001044200 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001044200 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT CHEM ENG : 2022$$d2024-12-16
001044200 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001044200 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-16
001044200 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001044200 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001044200 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001044200 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001044200 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001044200 920__ $$lyes
001044200 9201_ $$0I:(DE-Juel1)ICE-1-20170217$$kICE-1$$lModellierung von Energiesystemen$$x0
001044200 980__ $$ajournal
001044200 980__ $$aVDB
001044200 980__ $$aUNRESTRICTED
001044200 980__ $$aI:(DE-Juel1)ICE-1-20170217
001044200 9801_ $$aFullTexts