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 A B S T R A C T

Surfactants are key ingredients in various industries such as personal and home care with the critical micelle 
concentration (CMC) being of major interest. Predictive models for CMC of pure surfactants have been 
developed based on recent ML methods, however, in practice surfactant mixtures are typically used due to 
performance, environmental, and cost reasons. Herein, we develop a graph neural network (GNN) framework 
for surfactant mixtures to predict the temperature-dependent CMC. We collect data for 108 surfactant binary 
mixtures, to which we add data for pure species from our previous work Brozos et al. (2024). We then develop 
and train GNNs and evaluate their accuracy across different prediction test scenarios for binary mixtures 
relevant to practical applications. The final GNN models demonstrate very high predictive performance 
when interpolating between different mixture compositions and for new binary mixtures with known species. 
Extrapolation to binary surfactant mixtures where either one or both surfactant species are not seen before, 
yields accurate results for the majority of surfactant systems. We further find superior accuracy of the GNN 
over a semi-empirical model based on activity coefficients, which has been widely used to date. We then 
explore if GNN models trained solely on binary mixture and pure species data can also accurately predict 
the CMCs of ternary mixtures. Finally, we experimentally measure the CMC of 4 commercial surfactants that 
contain up to four species and industrial relevant mixtures and find a very good agreement between measured 
and predicted CMC values.
1. Introduction

Surfactant mixtures commonly exhibit advantageous synergistic 
properties compared to single surfactants and are therefore preferred in 
many applications (Rosen and Kunjappu, 2012; Rosen and Hua, 1982; 
Huang and Ren, 2017; Kumar Shah et al., 2022; Geng et al., 2017; 
Moulik et al., 2021; Cheng et al., 2020), such as personal care products, 
detergents, pharmaceuticals and others (Shaban et al., 2020; Nitschke 
and Costa, 2007; Massarweh and Abushaikha, 2020; Tadros, 2005; 
Hunter and Fowler, 1998; Rodríguez Patino et al., 2008). Commercial 
formulations developed in the cosmetics and detergents industries 
contain almost exclusively surfactant mixtures (Myers, 2020; Grady, 
2023; Kelleppan et al., 2023). This is due either to the existence of a 
homologous distribution in an industrial grade surfactant or the com-
bination of surfactants driven by performance, cost, and sustainability 
aspects. Therefore, understanding and modeling surfactant mixtures is 
essential for the design of further tailored products.

∗ Corresponding author at: RWTH Aachen University, Process Systems Engineering (AVT.SVT), 52074 Aachen, Germany.
E-mail address: amitsos@alum.mit.edu (A. Mitsos).

The properties of surfactant mixtures are highly dependent on the 
interaction effects between the surfactant structures. Surfactants are 
amphiphilic molecules composed of a hydrophilic (head) and a hy-
drophobic (tail) part. An important property of a surfactant mixture 
is the critical micelle concentration (CMC), which is the minimum 
concentration of surfactant that causes the formation of surfactant 
micelles (Rosen and Kunjappu, 2012; Myers, 2020). Surfactant mixtures 
are generally described as complex systems due to the difference be-
tween the bulk and micelle concentration of the pure species, i.e., the 
mixture components (Grady, 2023; Clint, 1975). To elaborate further, 
when a surfactant species is part of a mixture, its concentration in 
the bulk will typically differ from its concentration in the micelle. A 
binary mixture exhibits synergism, if at any molar fraction the mixture 
CMC, denoted as 𝐶𝑀𝐶mix, is lower than the CMC of either pure 
species, and antagonism if 𝐶𝑀𝐶mix is higher than the CMC of either 
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pure species (Rosen and Kunjappu, 2012; Alargova et al., 2001). A 
smaller CMC indicates that a lower surfactant concentration is needed 
to form micelles and is therefore desirable for cleansing applications as 
a smaller amount of surfactant is required.

The mixing behavior of surfactants is influenced by factors such 
as the surfactant molecular structure, temperature, presence of elec-
trolytes and the pH (Rosen and Kunjappu, 2012; Grady, 2023). Herein, 
we only consider the influence of the surfactant molecular structure 
and temperature. That is, no electrolytes are present at any surfactant 
solution and possible pH variations are not here considered. Binary 
mixtures of two nonionic surfactants have been shown to form ideal mi-
celles, i.e., the two pure species are ideally mixed on the micelle (Hol-
land and Rubingh, 1983), which is due to the lack of electrostatic 
repulsive forces between the head groups (Huang and Ren, 2017; My-
ers, 2020; Zhang et al., 2004). Nonionic/anionic and nonionic/cationic 
surfactant systems tend to mix nonideally, i.e., nonideal mixing in 
the micelle, and behave synergistically (Rosen and Hua, 1982; Kumar 
Shah et al., 2022; Grady, 2023; Zhang et al., 2004; Ren et al., 2014; 
Haque et al., 1996; Hines et al., 1997b; Ko et al., 2004). However, 
not all mixtures between nonionic and ionic surfactants exhibit syn-
ergism, as was shown by Alargova et al. (2001). The formation of 
micelles in anionic/cationic mixtures benefits from the reduction of 
the repulsive forces between the head groups and thus a synergis-
tic behavior is observed (Grady, 2023; Phaodee and Sabatini, 2021). 
Anionic/anionic mixtures have been shown to exhibit antagonistic 
micellar behavior (López-Fontán et al., 1999), due to the large repulsive 
forces between the head groups in surfactant micelles. Zwitterionic 
surfactants, surfactants with two oppositely charged head groups, have 
a different charge depending on the pH of the solution, and hence 
mixtures containing them can exhibit multiple behaviors based on 
the solution conditions. Attractive interactions between anionic and 
zwitterionic surfactants have been reported in the literature (Hines 
et al., 1998, 1997a; McLachlan and Marangoni, 2006); similarly, slight 
deviation from ideal mixed micelles between cationic and zwitterionic 
surfactants is found (McLachlan and Marangoni, 2006). For more de-
tails on possible interactions between surfactant classes, we refer to 
reviews in Refs. Kumar Shah et al. (2022), Grady (2023), Phaodee and 
Sabatini (2021), Abe (2004). Overall, binary surfactant mixtures are 
complex systems and their behavior is not fully understood yet.

The importance of the 𝐶𝑀𝐶mix for many applications, as they 
were described in the first paragraph of this work, has motivated the 
development of mathematical models over the years. In the following, 
we provide a brief review of the major models developed for predicting 
𝐶𝑀𝐶mix. For systems where micelle formation is ideal, such as non-
ionic/nonionic combinations, John H. Clint (Clint, 1975) proposed the 
following equation to calculate the 𝐶𝑀𝐶mix of a binary mixture based 
on the mole fractions, 𝑥1 and 𝑥2, and the CMCs of the two surfactants 
as pure species: 

1
𝐶𝑀𝐶mix

=
𝑥1

𝐶𝑀𝐶1
+

𝑥2
𝐶𝑀𝐶2

(1)

To account for nonideal micelle formation, the activity coefficients (𝛾1, 
𝛾2) of surfactants 1 and 2 are introduced, leading to the following 
equation: 

1
𝐶𝑀𝐶mix

=
𝑥1

𝛾1 𝐶𝑀𝐶1
+

𝑥2
𝛾2 𝐶𝑀𝐶2

, (2)

Note the inverse relationship on the activity coefficients in contrast 
to the usual multiplication of activity coefficients and mole fractions. 
One way to calculate the activity coefficients was proposed by Rubingh 
based on the regular solution theory (Holland and Rubingh, 1983; 
Rubingh, 1979). Rubingh’s model introduces the interaction parameter 
𝛽 as a way to account for the nonideal mixed micelle formation, which 
for a binary mixture can be estimated from the experimentally obtained 
CMC values of the pure species and one 𝐶𝑀𝐶mix value at any mixture 
composition. Hence, 𝛽 signifies the deviation from ideal mixing and 
2 
synergistic/antagonistic mixing (Grady, 2023). Knowing 𝛽, allows us 
to calculate the activity coefficients by Holland and Rubingh (1983): 
𝛾1 = exp(𝛽 ⋅ 𝑥22) (3)

𝛾2 = exp(𝛽 ⋅ 𝑥21) (4)

Following Rubingh’s theory, 𝛽 should remain constant for all mixture 
compositions. Rubingh’s theory has been extensively applied to various 
surfactant systems due its simplicity, however model inconsistencies 
regarding the interaction parameter 𝛽 are reported, that is, 𝛽 did 
not remain constant for all mixture compositions (Kumar Shah et al., 
2022; Grady, 2023; McLachlan and Marangoni, 2006; Sonu and Saha, 
2013). For more insights on the two empirical equations, namely Eqs. 
(1) and  (2), we refer to the original works (Clint, 1975; Rubingh, 
1979; Holland and Rubingh, 1983). The estimation of the 𝐶𝑀𝐶mix
can also be accomplished using numerous molecular-thermodynamic 
frameworks that have been proposed in the literature (Shiloach and 
Blankschtein, 1997, 1998; Iyer and Blankschtein, 2014; Srinivasan and 
Blankschtein, 2005). However, these models rely on multiple analytical 
approximations, are computationally intensive, have been applied on 
small number of systems and are not applicable on surfactants with a 
complex structure (Iyer et al., 2013).

Machine learning (ML) models, specifically graph neural networks 
(GNNs), have shown very promising results in predicting pure species 
CMC for a wide variety of surfactants (Brozos et al., 2024b; Qin et al., 
2021; Moriarty et al., 2023; Brozos et al., 2024a). GNNs treat every 
molecule as a graph, with atoms corresponding to nodes and bonds 
to edges. They learn to extract necessary structural information in an 
end-to-end framework and map it to the molecular property of interest. 
Recently, GNNs were expanded to binary mixtures for mixture prop-
erties such as activity coefficients and viscosity with very promising 
results (Rittig et al., 2023a,b; Sanchez Medina et al., 2022, 2023; Qin 
et al., 2023; Bilodeau et al., 2023; Vermeire and Green, 2021). Yet, 
surfactant mixtures have not been investigated. Here, we extend GNNs 
to CMC predictions of surfactant mixtures at different temperatures.

We propose GNNs for CMC prediction of surfactant mixtures be-
tween surfactants of all surfactant classes, namely anionics, cationics, 
nonionics and zwitterionics. For this, we collect CMC data for 108 
binary surfactant mixtures from the literature at multiple temperatures. 
The assembled data set consists of 599 data points. We enrich the as-
sembled data set by concatenating pure species data from our previous 
work (Brozos et al., 2024b). Hence, the final data set contains 1,924 
CMC values for both pure species and binary surfactant mixtures at 
various temperatures. To treat surfactant mixtures, we consider two 
GNN architectures: (i) a composition-based weighted linear summation 
of the so-called molecular fingerprints (Gilmer et al., 2017) of each pure 
species and (ii) a mixture graph accounting for inter-molecular interac-
tions and hydrogen bonding. Since the performance of ML models can 
vary significantly depending on the test split considered (Yang et al., 
2019; Zahrt et al., 2020), we implement different splits/test scenarios 
for binary mixtures that are relevant for practical application of the 
model, e.g., predicting the 𝐶𝑀𝐶mix at different compositions or with 
new surfactant structures. In summary, we evaluate the accuracy of 
both GNN models for:

• 4 different test scenarios that are based on potential practical 
applications of the model for binary surfactant mixtures collected 
from the literature

• 6 ternary surfactant mixtures collected from the literature
• 4 commercial surfactants, of which 2 are composed of two species 
(binary mixtures), 1 consists of three species (ternary mixture) 
and 1 consists of four species (quaternary mixture) for which the 
CMC is experimentally determined as part of work

• mixtures of one commercial surfactant and sodium dodecyl sul-
fate (SDS) for which we experimentally determine the CMC as 
part of work.
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In all these four subcases, the GNN models are not retrained; note in 
particular that the training was done solely on binary and pure species 
data and the GNNs need to extrapolate to ternary and quartenary mix-
tures, which can thus be considered as out-of-distribution predictions. 
In our recent work, we showed that GNNs significantly outperformed 
a descriptor-based baseline model for temperature-dependent CMCs of 
single species (Brozos et al., 2024b). Since a large fraction of the data 
used in our recent work (Brozos et al., 2024b), was also used in this 
work, we decided against a baseline model for surfactant mixtures.

We structure the article as follows: in Section 2, we provide a 
detailed description of the assembled data sets and the train–test splits. 
Section 3 refers to the architecture of the two GNN models and to the 
experimental procedures, while Section 4 offers an analysis and discus-
sion of the model results. We summarize our findings in Section 5.

The final model predictions for the 6 ternary mixtures and for the 2 
out of 4 test sets for binary mixtures are provided along with the source 
code, as open source in our GitHub repository. The model hyperparam-
eters and architecture are presented in Section 3. The training data set 
and the trained models remain the property of BASF and could be made 
available upon request.

2. Data set

We provide a general description of the data curated for binary 
and ternary mixtures (Sections 2.1 and 2.3), along with an analysis of 
the splitting procedure used (Section 2.2). The newly generated experi-
mental data for binary, ternary, and quaternary surfactant mixtures are 
presented in a later part of this work (cf. Section 3.4).

2.1. Data set overview

We collect 108 binary surfactant mixtures at various temperatures 
from available literature sources (Zhang et al., 2004; Hines et al., 
1997b; Martín et al., 2010; Hierrezuelo et al., 2006; Prasad et al., 2006; 
Moulik et al., 1996; Treiner and Makayssi, 1992; ud Din et al., 2009; 
Maiti et al., 2010). The data set contains 515 experimental mixture 
points, i.e., data points where at least two surfactants coexist in the 
aqueous solution (𝑥1 ≠ 0 and 𝑥2 ≠ 0), from a total of 68 pure species 
structures. A statistical overview of the 515 mixture points is provided 
in the Supporting Information (SI), Figure S1. We visualize the 108 
binary surfactant mixtures as a mixture network, where each node 
represents one of the 68 surfactants, and each edge the existence of 
a binary mixture between two surfactants in Fig.  1. For visualization of 
the structural similarity of the surfactants, we apply the t-distributed 
neighbor embedding (t-SNE) (van der Maaten and Hinton, 2008) on 
generated extended-connectivity fingerprints (ECFP_10) for each pure 
species (Rogers and Hahn, 2010). As shown in Fig.  1, the 68 surfactants 
are distinguished in clusters based on their classes. Some exceptions 
are also observed, with the most noticeable being the three nonionic 
surfactants inside the blue circle. All three of them are n-alkyl-n-
methylglucamides, with different alkyl chain lengths (Mega-8,-9 and 
-10) (Ko et al., 2004). All three of them contain a nitrogen atom, as well 
as a branched alcohol compared to the other nonionic surfactants. As 
is evident in Fig.  1, from the number of graph edges, some surfactants 
are well studied and are present in multiple mixtures, while others are 
present only in one mixture.

Based on the preceding discussion, one would expect the assembled 
data set to have a total size of 583, which will include the 515 mixture 
points and the 68 pure species data points. However, it is worth noting 
that some of the 68 pure species are present in mixtures at more than 
one temperature. For instance, SDS (a widely researched and used 
surfactant) is a component in mixtures at 4 different temperatures. 
Consequently, the herein assembled data set contains 4 distinct data 
points for pure SDS, i.e., the CMC at 4 different temperatures. The 
same holds true for other surfactants, resulting in a final data set size 
of 599 data points. Furthermore, to enrich molecular diversity and 
3 
temperature-dependency information, we concatenate 1,377 CMC data 
points for pure species at various temperatures from our previous work 
to the binary mixture data set (Brozos et al., 2024b). In the combined 
data set, duplicate entries between the CMC values of the 68 newly 
collected surfactants as pure species and the 1,377 old data points arise, 
which are averaged. An example is given in the SI, Table S1. Overall, 
the final assembled data set consists of 1,924 data points. The minimum 
experimental temperature of our data is 0 ◦C and the maximum is 
90 ◦C.

2.2. Data splits

We split our data set in different ways into training and test set 
to evaluate the model for different practical settings. As the choice 
of the test set can impact how the model performance is interpreted, 
leading to over-confident results (Zahrt et al., 2020), using different test 
scenarios is also beneficial to assess the robustness of the model. So we 
evaluate the performance of the model under different test scenarios. 
We implement 4 types of data set splitting: (i) composition inter-
polation (comp-inter), (ii) mixture compositions extrapolation (mix-
comp-extra), (iii) mixture surfactant extrapolation (mix-surf-extra), (iv) 
mixture extrapolation (mix-extra) as described in the following para-
graph. An overview of the 4 splits can be found in the SI, Table 
S2.

The comp-inter test set contains mixture points of previously seen 
binary mixtures but at different compositions. To select the mixture 
points, we identify all binary surfactant mixtures with at least two 
different mixture compositions. Out of the 108 binary mixtures present 
in our data set, 96 of them fulfill this criteria. For each of them, a 
mixture point is randomly selected, removed from the training set, 
and assigned to the test set. By utilizing the comp-inter test set, we 
can assess model’s performance in predicting new mixture points of a 
binary mixture for which measured other mixture points are readily 
available.

The mix-comp-extra test set refers to binary surfactant mixtures, 
where the surfactants were seen during training in other surfactant 
mixture combinations. In other words, the training set includes the two 
surfactant structures of a binary mixture, either solely as pure species 
or as components of other mixtures. However, their combination (mix-
ture) remains completely unseen. Two subsets, each containing 10 
binary mixtures are randomly selected, consisting of 46 and 58 mixture 
points, respectively. Similarly to the comp-inter test set, the mix-comp-
extra test set only contains mixture points. We can thereby evaluate 
whether the model is able to predict binary surfactant combinations 
for which experimental mixture data is not available yet.

The mix-surf-extra test set expands the extrapolation character of 
the mix-comp-extra split by completely excluding one of the two sur-
factants of a binary mixture from the training data set. That is, one 
surfactant is not included in the training set, either as pure species 
or as a component of other mixtures, whereas the other surfactant 
is included, either as pure species or in other mixtures. This test 
scenario reflects the isolation/synthesis of a new surfactant structure, 
for which no previous measurements are available. To construct the 
mix-surf-extra test set, we select 4 representative surfactants, namely: 
n-decanoyl-n-methylglucamide (Mega-10), n-dodecyl-𝛽-D-maltoside (𝛽-
C12G2), cetylpyridinium chloride (CPC) and SDS. Removing them from 
the training set simultaneously would result in a huge information loss, 
accounting to about 30 percent of the mixture points, and thus diminish 
model performance. Therefore, we decided to remove each of them 
(and corresponding mixtures) separately. Accordingly, we constructed 
4 sub-test sets. The model performance on the mix-surf-extra test set is 
reported on the combination of the 4 sub-test sets (cf. Section 4). For 
example, for Mega-10 there are 9 binary mixtures (45 mixture points) 
in the assembled data set at 30 ◦C (Martín et al., 2010; Hierrezuelo 
et al., 2006). The sub-test set will consist both the 45 mixture points 
and the Mega-10 as pure species at 30 ◦C. The data points for pure 
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Fig. 1. Mixture network of the curated data set. Each node represents a surfactant structure, and each edge the existence of a binary mixture between two surfactants. 
Correspondingly, the surfactants are also categorized based on their class. Each node is plotted on a 2D map obtained by applying t-SNE (van der Maaten and Hinton, 2008) 
on generated molecular fingerprints (ECFP_10) (Rogers and Hahn, 2010). The surfactants are well distinguished in clusters based on their classes. An exception are the three 
n-alkyl-n-methylglucamides surfactants (Mega-8,-9 and -10) enclosed in the blue circle.
Mega-10 at temperatures different than 30 ◦C (Prasad et al., 2006) 
are excluded from both the training and the test set, since we already 
demonstrated GNN’s ability to predict the temperature-dependent CMC 
of pure surfactants in our previous work (Brozos et al., 2024b) and 
we herein focus on surfactant mixtures. Similarly, the other sub-test 
sets contains 3 binary mixtures (14 mixture points) at 25 ◦C for 𝛽-
C12G2 (Zhang et al., 2004; Hines et al., 1997b), 6 binary mixtures (19 
mixture points) at 25 and 30 ◦C for CPC (Moulik et al., 1996; Treiner 
and Makayssi, 1992; ud Din et al., 2009; Maiti et al., 2010), and 15 
binary mixtures (82 mixture points) at 22, 25, 30, 35 and 40 ◦C for 
SDS (Haque et al., 1996; Hines et al., 1997b, 1998; Maiti et al., 2010; 
López-Fontán et al., 2000). We can thereby evaluate whether the model 
is able to predict binary mixture combinations of surfactants for which 
one of them has not been seen before during model training.

The mix-extra test set considers a scenario where none of the sur-
factants in a binary mixture are encountered during training, either as 
pure species or as components of other binary mixtures. In this scenario, 
the model has to predict CMCs of new/unseen surfactant structures, as 
well as binary mixtures of them. First, we identify 5 binary mixtures 
composed by 6 surfactants (2 anionic and 4 nonionic) that fulfill the 
criteria described above (Huang and Ren, 2017; Ren et al., 2014; Haque 
et al., 1996). To enhance structural complexity and variety of the mix-
extra test set, we further assign 2 binary mixtures composed by 3 
cationic surfactants (Treiner and Makayssi, 1992). However, one of the 
3 cationic surfactants (cetalkonium chloride) is present in a mixture 
with CPC (Treiner and Makayssi, 1992), which as described above, is 
widely present in the data set. We discard this mixture only for the 
mix-extra split. Thus, the training set contains 100 binary mixtures 
(and the data points of pure species) and the test set contains 7 binary 
mixtures. Hence, we can evaluate whether the model is able to predict 
binary mixtures of which both surfactants have never seen by the model 
before.

2.3. Ternary mixtures from literature sources

We further assemble a small external data set containing 6 ternary 
mixtures from literature sources (Moulik et al., 2021; Huang and Ren, 
4 
2019). The ternary data set contains 16 mixtures points at 25 and 30 ◦C, 
composed from 8 pure species structures. All 8 surfactant structures 
are present in the collected data set described in Section 2.1. Here, 
we investigate whether the model can effectively generalize to ternary 
mixtures containing species for which CMC data are readily available 
as pure species and in binary mixtures. Note that the ternary mixtures 
are not used for training. Additionally, we underscore the lack of 
CMC data for ternary surfactant mixtures in literature, likely due to 
the combinatorial increase of required measurements and resources 
incurred to do such measurements.

3. Methods

We begin this section by describing the composition-based weighted 
linear summation GNN architecture (Section 3.1). We then introduce 
the mixture graph framework; the second GNN architecture (Sec-
tion 3.2) and describe the hyperparameters and model implementation 
(Section 3.3). Lastly, we provide a description of the experimental 
material and procedures (Section 3.4).

3.1. Weighted sum GNNs for surfactant mixtures

We develop a composition-based weighted linear GNN model for 
predicting the temperature-dependent CMC of surfactant mixtures. The 
concept of GNN models has been described in detail in several literature 
sources, see Refs. Yang et al. (2019), Zhou et al. (2020), Wu et al. 
(2021), Reiser et al. (2022), Khemani et al. (2024), Hamilton et al. 
(2017), Schweidtmann et al. (2020), Rittig et al. (2023c). We build on 
our GNN model for predicting the temperature-dependent CMC of pure 
species from our previous work (Brozos et al., 2024b). Here, we extend 
the architecture for mixtures. Each surfactant molecule in the mixture 
is represented as a graph 𝐺𝑖 = (𝑉 ,𝐸), where 𝑉  are the vertices (atoms), 
𝐸 are the edges (bonds) between nodes, 𝑖 ∈   is a component of the 
surfactant mixture and   is the total number of mixture components. 
The GNN first encodes structural information from pure species through 
graph convolutions and a pooling step into a molecular fingerprint (FP), 
which is denoted as 𝐹𝑃 . To treat mixtures, we propose the weighted 
𝑖



C. Brozos et al. Computers and Chemical Engineering 198 (2025) 109085 
Fig. 2. Schematic representation of the WS-GNN architecture for a binary mixture.
linear summation of the learned FPs, i.e., the mole fraction 𝑥𝑖 is used 
as weight. Hence, the mixture fingerprint 𝐹𝑃mix is calculated through 
Eq. (5). This model architecture enables also considering pure species, 
i.e., 𝑥2 = 0 in the case of binary mixtures. Furthermore, since weighted 
summation is a permutation invariant operation, the architecture en-
sures permutation invariance with respect to the order of representation 
of the surfactants within a mixture: if the order of the surfactants 
is changed, 𝐹𝑃mix remains the same. We denote this architecture as
WS-GNN (weighted sum GNN) and a schematic representation for 
an exemplary binary mixture is given in Fig.  2. The choice of WS-
GNN is motivated by recent successes in predicting mixture properties 
with similar architectures, that is, a weighted summation of individual 
molecular fingerprints (Leenhouts et al., 2025; Zhang et al., 2024). 
Further promising alternatives, e.g., using the attention for combining 
molecular into mixture representations as recently proposed by Zhang 
et al. (2024), could also be explored in future work. Note that Eq. (5) 
does not explicitly encode the inverse relationship between 𝐶𝑀𝐶mix
and 𝐶𝑀𝐶i described in Eqs. (1), (2). The reason for this is to allow 
greater flexibility during training, and since Eqs. (1), (2) are only 
semi-empirical, they may not always hold true, as many authors have 
found (Huang and Ren, 2017; Zhang et al., 2004; Misselyn-Bauduin 
et al., 2000). 
𝐹𝑃mix =

∑

𝑖∈𝑁
𝑥𝑖 ⋅ 𝐹𝑃 𝑖 (5)

The 𝐹𝑃mix is mapped to the temperature-dependent CMC through 
a standard multi-layer perceptron (MLP). The non-linearity introduced 
in the MLP allows the non-linear mixing behavior of surfactants to be 
captured. In other words, the nonideal mixing behavior of surfactants 
can be captured by a GNN model through the non-linearity of the acti-
vation functions in the network. The temperature is concatenated to the 
first hidden layer, similar to our previous work (Brozos et al., 2024b), 
where more detailed information regarding the MLP architecture and 
temperature dependency can be found.

3.2. GNNs with mixture graph

Alternatively, to capture molecular interactions in mixtures, more 
advanced geometries that consider hydrogen bonding information have 
recently been proposed (Sanchez Medina et al., 2023; Qin et al., 2023). 
Here, the construction of a new graph is proposed, where nodes repre-
sent the pure species of each mixture and edges inter- and intramolec-
ular interactions (Sanchez Medina et al., 2023; Qin et al., 2023). The 
pure species fingerprints are used as node feature vectors and number 
of hydrogen acceptors and donors as edge features (Sanchez Med-
ina et al., 2023; Qin et al., 2023). Afterwards, the mixture graph 
is passed into a GNN layer to account for intermolecular interac-
tions (Sanchez Medina et al., 2023; Qin et al., 2023). We note that 
Van der Waals forces are not considered in this architecture. The archi-
tecture which considered hydrogen bonding information, outperformed 
alternative architectures in predicting activity coefficients of binary and 
ternary mixtures in the original paper of Qin et al. (2023).
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We adapt the proposed mixture graph architectures by first mul-
tiplying the composition 𝑥𝑖 of surfactant 𝑖 by the corresponding 𝐹𝑃 𝑖. 
The composition-adjusted 𝐹𝑃 𝑖 are utilized as node feature vectors of 
the mixture graph, as proposed in previous works (Sanchez Medina 
et al., 2023; Qin et al., 2023). For edge features, we also consider the 
number of hydrogen bond acceptors and donors, but we calculate them 
through Lipinski’s rule of five (Lipinski et al., 2001) compared to the 
previous works, as we observed a slightly higher model accuracy. We 
did not apply a weighting factor to the edges. The mixture graph is 
then passed into a graph convolutional layer to account for surfactant 
interactions (Sanchez Medina et al., 2023; Qin et al., 2023). We use 
the GINE-operator (Xu et al., 2018; Hu et al., 2020) as a graph con-
volutional layer. To extract the 𝐹𝑃mix, a summation pooling layer is 
added, as was also proposed in our recent work (J.G. and Mitsos, 2024). 
Analogously to the WS-GNN, the pooling layer ensures permutation 
invariance for the surfactant order within the mixture. We denote this 
architecture as MG-GNN (mixture graph GNN) and illustrate it for an 
exemplary binary mixture in Fig.  3.

3.3. Implementation, hyperparameter tuning and ensemble learning

All models are implemented in PyTorch Geometric (PyG) (Fey and 
Lenssen, 2019). We perform hyperparameter tuning based on the WS-
GNN architecture (cf. Section 3.1). Specifically, we train the GNN 
model on 20 different, randomly selected validation sets, similar to our 
previous works (Brozos et al., 2024b,a; Rittig et al., 2023a). The size of 
the validation set is kept constant at 385 points, which represents 20% 
of the whole data set size. We use the root mean square error (RMSE) on 
the comp-inter split for hyperparameter tuning. The hyperparameters 
investigated during hyperparameter tuning are provided in the SI, 
Table S3.

To improve the predictive capabilities of ML models, ensemble 
learning is a widely employed. The models trained on different seeded 
validation sets may produce noisy results. By averaging out the pre-
dictions of all them, robust and generalized predictions are obtained
(Breiman, 1996; Dietterich, 2000; Ganaie et al., 2022). We average 
the predictions of the 20 different trained models for each split type 
mentioned in Section 2.2, and report only the prediction accuracy of 
the ensemble of GNNs (Brozos et al., 2024b; Rittig et al., 2023a). We 
further apply ensemble learning when combining the two developed 
GNN models, described in Sections 3.1 and 3.2. That is, the predictions 
from the two proposed GNNs architectures (WS-GNN and MG-GNN) are 
averaged.

3.4. Materials and surface tension measurements

As industrial grade surfactants are usually composed from more 
than one species, we aim to identify such examples and validate the 
accuracy of our model. The commercial surfactant Dehyton® AB 30 
(D-AB30) is provided by BASF and was recently used in a commercially 
formulation study (Cao et al., 2021). A gas chromatography (GS) anal-
ysis is also provided from the supplier. The main two species (≥ 98%) 
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Fig. 3. Schematic representation of the MG-GNN architecture for binary mixtures.
Fig. 4. Surface tension measurement of D-AB30 at 23 ◦C.

are lauryl and myristyl betaine. Therefore, the product can be well 
categorized as a binary surfactant mixture between two zwitterionic 
surfactants. We note that both pure species exist in our collected data 
set (cf. Section 2.1) but no mixture between two zwitterionic surfac-
tants is available. Furthermore, highly purified unary SDS (≥ 99%) was 
bought from Sigma Aldrich and used as received. Mixtures between SDS 
and D-AB30 at different mole fractions were prepared and measured. 
Since D-AB30 is a binary mixture, the prepared mixtures are considered 
ternary ones. Three more commercial surfactants, namely Sulfopon®
1214 G (≥ 96%), Texapon® V 95 G (≥ 96%) and Texapon® K 30 UP 
(≥ 98%) were provided by BASF, together with a GC analysis. The 
Sulfopon® 1214 G (S-1214G) is composed from two species, namely 
SDS and sodium tetradecyl sulfate (STS) while the Texapon® V 95 G (T-
V95G) consists three species, namely SDS, STS and sodium hexadecyl 
sulfate. We note, that no mixture data between these species exist in our 
collected data sets (cf. Sections 2.1 and 2.3). The Texapon® K 30 UP 
(T-K30UP) consists four species, namely SDS, STS, sodium hexadecyl 
sulfate and sodium octadecyl sulfate.

Surface tension measurements were performed at 23 ◦C using the 
Force Tensiometer – K100 (Krüss, Germany) and the Wilhelmy plate 
method with a standardized platinum-iridium plate. The surfactant 
solutions were freshly prepared in deionized water and adjusted to pH 
4.9 prior to the measurements. The surface tension was plotted against 
the logarithm of the surfactant concentration to determine the CMC. 
From this plot, two linear regions were determined, which correspond 
to the linear concentration-dependent and the linear concentration-
independent region, respectively. The CMC value is then obtained from 
the intersection of the straight lines. To ensure reproducibility, the mea-
surements were repeated three times. The surface tension measurement 
of D-AB30 is illustrated in Fig.  4.

4. Results and discussion

We begin this section by discussing the results of the two GNN mod-
els on the 4 different test scenarios for binary mixtures (Section 4.1). 
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Afterwards, we analyze the model performance on different surfactant 
class combinations (Section 4.2) and the applicability of the GNN model 
to ternary mixtures (Section 4.3). We then compare model predictions 
with experimental values for commercial surfactants and mixtures of 
them (Section 4.4). We conclude this section by comparing the GNN 
models with a semi-empirical model (Section 4.5).

4.1. Predictive performance on binary surfactant mixtures

In Table  1, an overview of the prediction accuracy of the two 
developed GNN architectures is presented for the 4 different test sets 
(cf. Section 2.2). We report 4 different error metrics for each test set. 
We scale the CMC (𝜇M) values using a (based on 10) logarithmic scale 
and hence all error metrics refer to the 𝑙𝑜𝑔(CMC), which are scaled in 
𝜇M throughout the paper. Note that in Table  3 the CMC is also reported 
in mM, as previous literature merely reports experimentally measured 
CMC values in mM. From Table  1, we observe that the best performing 
architecture varies for each split, i.e., no clear best-performing GNN 
model can be identified. Therefore, we consider averaging their pre-
dictions (cf. Section 3.3) and denote the model as combined. Another 
motivation is that the combined framework leverages learning from 
both architectures and offers a more flexible and robust framework. 
The combined results are reported in Table  1 and parity plots on the 4 
test scenarios are illustrated in Fig.  5.

In the comp-inter split, the combined model outperforms the best 
performing MG-GNN model, as indicated by the slight decrease in 
RMSE from 0.251 to 0.249 (cf. Table  1). In the mix-comp-extra split, 
it yields an RMSE of 0.313, which is very close to the lowest RMSE 
(0.302) achieved by the WS-GNN model. In both test scenarios, the 
RMSE is similar to that reported from previous accurate GNN models 
applied to pure species (Brozos et al., 2024b; Qin et al., 2021; Moriarty 
et al., 2023; Brozos et al., 2024a). In the parity plots of the two test sets 
(Figs.  5a,b), the majority of the points lie very close to the diagonal, as 
can also be seen from the high R2 values, 0.93 and 0.88 respectively. 
Therefore, the model can be used to provide highly accurate predictions 
for these two test scenarios.

In the mix-surf-extra split, the combined model yields an RMSE of 
0.551, which is also close to the RMSE (0.507) of the WS-GNN model. 
Exclusion of the pure species of a binary mixture from the training 
set, drastically reduces the model performance, as a significantly higher 
error is exhibited in the mix-surf-extra test set. However, most of the 
predictions in Fig.  5c also lie close to the diagonal. Here, the noticeable 
outliers significantly increase the RMSE. Furthermore, the combined 
model exhibits an RMSE of 0.344 on the mix-extra test, very similar 
to the lowest RMSE (0.333) achieved by the MG-GNN model. The 
predictions lie closer to the diagonal as in the mix-surf-extra test set, 
which is illustrated from the higher R2 value, 0.69 compared to 0.57. 
The results of extrapolation to new surfactant structures and binary 
mixtures indicate that model performance depends on the new, unseen 
structures introduced to the model. In essence, a high fraction of the 
predictions are very accurate (indicated from the parity plots), but 
outliers with high deviation are more common than in the comp-inter 
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Table 1
Summary of the prediction accuracy of the ensemble GNNs models, i.e., WS-GNN and MG-GNN architectures, as well as of the combination of 
the two GNN architectures on the 4 test scenarios. MAE = mean absolute error, MAPE = mean absolute percentage error (unit %).
 Model comp-inter mix-comp-extra mix-surf-extra mix-extra 
 WS-GNN

RMSE
0.264 0.302 0.507 0.441  

 MG-GNN 0.251 0.334 0.665 0.333  
 Combined 0.249 0.313 0.551 0.344  
 WS-GNN

MAE
0.183 0.182 0.382 0.366  

 MG-GNN 0.178 0.215 0.486 0.215  
 Combined 0.171 0.196 0.406 0.274  
 WS-GNN

MAPE
6.831 7.352 15.916 14.758  

 MG-GNN 6.344 8.452 20.336 8.2  
 Combined 6.292 7.827 17.334 10.789  
 WS-GNN

R2
0.93 0.89 0.62 0.54  

 MG-GNN 0.93 0.86 0.43 0.64  
 Combined 0.93 0.88 0.57 0.69  
Fig. 5. Parity plots on the 4 test sets. The predictions are made by the combined GNN model. The data points are highlighted with different colors and markers based on the 
classes of the two mixture species. The logarithm is applied to CMC in 𝜇M (base 10).
and mix-comp-extra splits. Therefore, the model should be used with 
increased awareness in such extrapolation scenarios.

Excluding the comp-inter split, the combined model did not yield 
the lowest RMSE compared to the WS-GNN and MG-GNN models. 
We explain this performance by the larger error exhibited from one 
out of the two models in each of the three splits. To elaborate, in 
the comp-inter split the relative difference between the two RMSEs 
7 
is about 5.18%, while in the other three splits it is between 10.6% 
and 32.43%. Notably, in these three splits, the RMSE of the combined 
model is significantly closer to the lowest RMSE, rather than the high-
est. Thus, our findings suggest that a GNN framework that combines 
multiple architectures can improve performance in test sets, where one 
architecture may underperform.
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In addition, we investigate the mixtures with the highest deviations 
for the mix-comp-extra and mix-surf-extra test sets, as they are the two 
test sets with the highest number of major outliers. In the case of the 
mix-comp-extra test set, the mixture with the highest error is between 
two ionic surfactants, namely an anionic/cationic mixture (Maiti et al., 
2010), symbolized by a yellow cross in Fig.  5b. We observe that the 
𝐶𝑀𝐶mix at 𝑥𝑆𝐷𝑆 equal to 0.33, 0.5 and 0.67 reduces by up to an order 
of magnitude compared to the 𝐶𝑀𝐶mix a 𝑥𝑆𝐷𝑆 equal to 0.14, 0.8 and 
0.85. We do not observe a similar reduction to the 𝐶𝑀𝐶mix for any of 
the other mixtures present in our data set, and therefore the model can-
not accurately capture it, and high model deviations are observed. In 
the mix-surf-extra test set, a similarly high prediction error is observed 
for the same anionic/cationic mixture (Maiti et al., 2010). Further-
more, as illustrated by the black dots in Fig.  5c, a cationic/cationic 
mixture also appears as a major outlier too (ud Din et al., 2009). 
After examining of similar mixtures, namely between a gemini cationic 
and a conventional cationic surfactant, in the training data set, we 
observe that this mixture displays a high synergistic behavior, namely 
𝛽 ≤ −5.99, while all other similar mixtures show a 𝛽 ≥ −2.2 (Sonu 
and Saha, 2013; Rodríguez et al., 2008; Alargova et al., 2001). We 
hypothesize that the lack of cationic (gemini)/cationic mixtures with 
such high synergistic behavior from the training set is the underlying 
reason for these large outliers. Finally, an anionic/zwitterionic mixture 
also appears as a major outlier in the mix-surf-extra test set (Hines et al., 
1997b). We note that since all anionic/zwitterionic mixtures consist of 
SDS as the anionic surfactant  (Hines et al., 1997a; Bakshi et al., 1993), 
no anionic/zwitterionic mixtures were present in the training data for 
the mix-surf-extra sub-test set (cf. Section 2.2), which may have led to 
the high model error observed.

4.2. Predictive performance per surfactant mixtures classes

In this subsection, we provide an analysis of the model results 
per surfactant class combination. We categorize the binary surfactant 
mixtures based on the classes of the two species and we identify de-
scriptive examples in each test set split, where model predictions are in 
agreement with experimental measurements, as well as examples where 
model refinement/further extension is required. The predictions are 
made with the combined GNN model. All the comparisons refer again 
to the logarithmic scale. For the interested reader, selective examples 
with absolute CMC values are illustrated in the SI, Figure S2.

4.2.1. Mixtures with nonionic surfactants
Nonionic surfactants typically show ideal micelle formation when 

mixed with other nonionic surfactants and synergistic behavior when 
mixed with ionic surfactants (cf. Section 1). A nonionic/nonionic mix-
ture between octylphenol polyoxyethylene ether (OP-10) and OP-4 
at 25 ◦C is presented in Figs.  6a,b (Huang and Ren, 2017) in two 
different test scenarios. In the case of mix-comp-extra test set, the 
combined GNN model accurately predicts the trend and the 𝐶𝑀𝐶mix
in all mole fractions. Higher errors are observed for the mix-extra 
test set. The model significantly overestimates the CMC of pure OP-
4, thus leading to overestimated 𝐶𝑀𝐶mix predictions in lower OP-
10 mole fractions. Fig.  6c refers to the mixture of dimethylene-1,2-
bis(dodecyldimethylammonium bromide) (12-2-12), a dimeric cationic 
surfactant, and C12E8 (Alargova et al., 2001) and Fig.  6d represents 
the mixture of cetyltrimethylammonium bromide (CTAB), a cationic 
surfactant, and Mega-10 (Hierrezuelo et al., 2006). Hence, both cases 
belong to cationic/ nonionic combinations. In both cases, highly ac-
curate predictions are demonstrated throughout all mole fractions. To 
summarize, in all 4 examples the trend is well captured except for 
mixture (b) at composition 𝑥 = 0.
1
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4.2.2. Ionic - ionic mixtures
Mixtures between ionic surfactants can exist in three different com-

binations, namely anionic/cationic (opposite charge of the head group), 
anionic/anionic and cationic/cationic (similar head group charge). 
Here, we investigate all three of them. In Fig.  7 one exemplary mixture 
for each combination is presented. Fig.  7a refers to a mixture between 
SDS and CPC at 25 ◦C (Maiti et al., 2010), while Fig.  7b to a mixture 
between sodium hexyl sulfate (SHS) and SDS at 35 ◦C (López-Fontán 
et al., 2000). Both mixtures are extracted from the mix-surf-extra test 
set. Fig.  7c refers to a mixture between tetradecyltrimethylammo-
nium chloride (TTAC) and benzyldimethyltetradecylammonium chlo-
ride at 25 ◦C present in the mix-extra test set (Treiner and Makayssi, 
1992). The mixture containing two anionic species shows antagonistic 
behavior, which is accurately captured by the model.

However, the model’s sensitivity to mole fraction variances could be 
further improved. It is important to note that due to the removal of SDS 
from the training set, only three mixtures between anionic surfactants 
were present in the training data. Furthermore, in the anionic/cationic 
mixture, the strong synergism at mole fraction 0.5 is not fully captured, 
the combined GNN model accurately predicts the existence and point 
of synergism as well as the order of magnitude of 𝐶𝑀𝐶mix at other 
mixture compositions. The synergistic behavior between two cationic 
surfactants is accurately captured by the combined GNN model, as 
evident in Fig.  7c. The predicted 𝐶𝑀𝐶mix values at all mole fractions 
match the measured ones.

4.2.3. Mixtures with zwitterionics
Binary mixtures, where at least one surfactant is zwitterionic, can 

exhibit nonideal mixed micelles and are highly pH sensitive, as the 
properties of zwitterionic surfactants can vary significantly at different 
pHs (Rosen and Kunjappu, 2012). However, research on them has 
remained limited and hence only minor examples are present on our 
test sets. An anionic/zwitterionic mixture between SDS and lauramine 
oxide (LDAO) at 25 ◦C is shown in Fig.  8a (Bakshi et al., 1993), 
while a cationic/zwitterionic mixture between dodecyltrimethylammo-
nium bromide (DTAB) and sulfobeteine-12 (S-12) is presented in Fig. 
8b (McLachlan and Marangoni, 2006).

Both mixtures are present on the mix-comp-extra test set. A further 
example, namely a mixture between S-12 and C12G2 at 25 ◦C is pro-
vided in Fig.  8c (Hines et al., 1997b). For the first mixture, the model 
fails to capture the synergism of the system and significant deviations 
from the measured 𝐶𝑀𝐶mix are also observed. Similar behavior is 
observed at the mixture between DTAB and S-12, but the model exhibits 
accurate sensitivity regarding the mole fraction variations. For the 
mixture of S-12 and C12G2 good agreement between predicted CMCs 
and measured are observed. All over the combined model is able to 
capture the trend and provide good predictions.

4.3. CMC predictions on ternary mixtures from literature sources

We adapt both GNN architectures to predict ternary mixtures de-
scribed in Section 2.3, while training them exclusively on binary mix-
tures and pure species data. Here, we are interested in whether GNN 
models trained on CMC values of binary mixtures and pure species can 
accurately scale up to ternary mixtures with no further information. 
We use the trained WS-GNN and MG-GNN models from the comp-
inter split to perform predictions on the 6 ternary mixtures described 
in Section 2.3. The results are given in Table  2. The WS-GNN model 
performs fairly good with and RMSE of 0.165 while the MG-GNN model 
exhibits a very high RMSE of 1.824. Since the MG-GNN model exhibits 
such a high error, combining the architectures would not provide any 
benefits and therefore we do not report any combined results. Hence, 
the simple WS-GNN is able to perform above average predictions on 
surfactant ternary mixtures even trained exclusively on binary and pure 
species data. We hypothesize that the weighted summation on the WS-
GNN model, ensures that the mixture fingerprint always remains in the 
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Fig. 6. GNN predictions versus experimental data on different surfactant mixtures classes are present in three test scenarios. Panel (a) and (b) refer to a mixture between nonionic 
OP-10 and OP-4 (Huang and Ren, 2017). Panels (c) and (d) refer to mixtures between cationic and nonionic surfactants, namely 12-2-12/C12E8 and CTAB/Mega-10 (Alargova 
et al., 2001; Hierrezuelo et al., 2006). Black filled circles represent data points present in the training set.
same order of magnitude. On the other side, in the MG-GNN model, 
a third node is introduced in the mixture graph. After the summation 
pooling step, the order of magnitude of the mixture fingerprint does 
not remain similar to that of binary mixtures. Here, with no data on 
ternary mixtures during training the MG-GNN model completely fails to 
give any reasonable predictions. Replacing the summation with a mean 
pooling step led only to slight performance improvements. Thus, only 
the WS-GNN model could be used when dealing with ternary mixtures. 
We provide a parity plot with the predictions from the WS-GNN model 
in the SI, Figure S3.

4.4. Experimental validation and commercial surfactants

The experimentally measured mixtures comprise, binary, ternary 
and quaternary mixtures. The combined GNN model is utilized for 
binary mixtures, while the WS-GNN is used for ternary and quaternary 
mixtures, in accordance with the discussion above. The results are 
summarized in Table  3. In the case of commercial surfactants that 
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Table 2
Error metrics of WS-GNN and MG-GNN models on the ternary mixtures 
data set. MAPE is in unit of %.
 Model RMSE MAE MAPE  
 WS-GNN 0.165 0.13 5.4  
 MG-GNN 1.824 1.687 74.805 

are composed of two species, the combined GNN model demonstrates 
high accuracy, especially for the D-AB30 with an absolute error (AE) 
of 0.022. To better understand why the performance of the model on 
S-1214G, i.e., AE of 0.262, does not match the one of D-AB30, we 
investigate their impurities. In the case of D-AB30 only two further 
species exist in small concentrations. In contrast, there exist more than 
five further species in the S-1214G.

Hence, we hypothesize the non treatment of impurities from our 
model as a reason for this deviation. For the ternary mixtures, we 
observe a MAE of 0.178 which is slightly higher than the one found in 
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Fig. 7. GNN predictions versus experimental data on three different surfactant mixture combinations present on the mix-surf-extra and mix-extra test sets. Panel (a) refers 
to a mixture between SDS and CPC (Maiti et al., 2010), panel (b) to a mixtures between SHS and SDS (López-Fontán et al., 2000) and panel (c) between TTAC and 
benzyldimethyltetradecylammonium chloride (Treiner and Makayssi, 1992). Black filled circles represent data points present in the training set.
Fig. 8. GNN predictions versus experimental data on mixtures with one zwitterionic species. Panel (a) refers to a mixture between SDS and LDAO (Bakshi et al., 1993), panel (b) 
S-12 and DTAB (McLachlan and Marangoni, 2006) and panel (c) between S-12 and C12G2 (Hines et al., 1997b). Black filled circles represent data points present in the training 
set.
Table 3
Model predictions for 𝑙𝑜𝑔(CMC) versus the experimental data, measured as part of this work. On parentheses the absolute 
CMC values in mM are provided.
 Sample Predicted 𝑙𝑜𝑔(CMC) Measured 𝑙𝑜𝑔(CMC) 
 WS-GNN MG-GNN Combined  
 vv D-AB30 2.9 (0.79) 2.83 (0.68) 2.86 (0.73) 2.84 (0.7)  
 S-1214G 3.7 (5.02) 3.59 (3.92) 3.65 (4.47) 3.39 (3.53)  
 SDS (0.4)/D-AB30 (0.6) 2.86 (0.72) – – 2.75 (0.56)  
 SDS (0.6)/D-AB30 (0.4) 3.18 (1.51) – – 2.91 (0.8)  
 SDS (0.2)/D-AB30 (0.8) 2.65 (0.45) – – 2.55 (0.35)  
 T-V95G 3.68 (4.79) – – 3.90 (3.59)  
 T-K30UP 3.44 (2.74) – – 3.3 (1.98)  
Section 4.3, namely 0.13. We note that the mixture between SDS and 
D-AB30 at a 0.4–0.6 composition, exhibits the highest error and when 
is not taken into account, the MAE reduces to 0.147. For the T-K30UP 
the model predictions matches the experimental value, although no 
quaternary mixtures were considered during training. The high purity 
of T-K30UP positively contributes on the model predictions. Overall, 
our developed GNN models can be effectively applied on commercial 
surfactants that are composed up to four species and help guide re-
search and development. Accounting for the impurities is critical for 
further model refinement and should be addressed in a future work.
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4.5. Comparison to semi-empirical model

We further compare the combined GNN model to the semi-empirical 
model described by Eq. (2), as we also did in a recent work of 
ours (Nevolianis et al., 2024). We calculate the activity coefficients 
with HANNA, a hard-constraint neural network (HANNA) that ensures 
thermodynamic consistency that was trained on the Dortmund Data 
Bank, one of the largest collections of experimental activity coefficients, 
and was recently proposed by Specht et al. (2024). To calculate the 
CMCs of the two mixture species, we consider our recently developed 
GNN model for temperature-dependent CMCs of pure species (Brozos 



C. Brozos et al. Computers and Chemical Engineering 198 (2025) 109085 
Fig. 9. Comparison between hybrid model predictions, GNN predictions and experimental data versus on binary surfactant mixtures from the mix-comp-extra test set. Panel (a) 
refers to a mixture between n-hexyltrimethylammonium bromide (HTAB) and CTAB (López-Fontán et al., 1999), panel (b) S-12 and DTAB (McLachlan and Marangoni, 2006) and 
panel (c) between 12-2-12 and C12E8 (Alargova et al., 2001). Black filled circles represent data points present in the training set.
Table 4
Comparison between the prediction accuracy of the combined GNN model versus the 
semi-empirical model on 2 test scenarios. MAE = mean absolute error, MAPE = mean 
absolute percentage error (unit %).
 Model mix-comp-extra mix-extra 
 Combined RMSE 0.313 0.344  
 Semi-empirical 0.568 0.783  
 Combined MAE 0.196 0.274  
 Semi-empirical 0.415 0.621  
 Combined MAPE 7.827 10.789  
 Semi-empirical 15.204 21.995  

et al., 2024b). The results of the semi-empirical model on the logarith-
mic scale are given in Table  4 and are compared with the combined 
model described in Section 4.1. Furthermore, the predictions of both 
models, namely semi-empirical and combined, for three exemplary bi-
nary mixtures are graphically represented alongside the corresponding 
experimental measurements in Fig.  9.

The results show that the combined model outperforms the semi-
empirical model in both of the test scenarios, with a reduced RMSE of 
about half of the semi-empirical model. Investigating the three mixtures 
of Fig.  9, we observe that in all cases except for mixture (b), the 
combined model outperforms the semi-empirical one. Yet, the semi-
empirical model accurately captures the variations of the 𝑙𝑜𝑔(CMC) with 
the mole fraction, and might be used only for a first estimate of the 
𝐶𝑀𝐶mix given the significant higher accuracy of the combined GNN 
model trained on the mixture CMC data directly.

5. Conclusion

We present a GNN-based framework for the prediction of
temperature-dependent CMCs of surfactant mixtures. We collect data 
from literature sources for 108 binary mixtures, to which we concate-
nate data for pure species from our previous work. We develop and test 
two GNN architectures. In the first architecture, a weighted summation 
on the molecular fingerprints of the two mixture components is applied. 
In the second, a more complex mixture graph to capture inter-molecular 
and intramolecular interactions is proposed. We implement different 
test splits to uncover model capabilities and limitations for different 
practical applications.

Both GNN models exhibit very high performance in the interpo-
lation between mixture compositions scenario, showing that GNNs 
are capable of accurately predicting 𝐶𝑀𝐶mix values at new mixture 
compositions. Extrapolation to new mixtures from known surfactants is 
11 
also handled very well from both GNN models. Further extrapolation 
to mixtures where either one or both pure species of the mixture are 
previously unseen by the model, decreased model accuracy as expected. 
However, the model predictions remained accurate with some notable 
exceptions. Our findings indicate that no clear best-performing GNN 
architecture can be identified and hence we decide to combined them 
for more robust results. The final combined model leads to highly 
accurate CMC predictions for the first two test cases, while for the 
other two cases reasonable predictions with slightly higher errors are 
observed. Further analysis is conducted on the predictive performance 
on different class combinations.

We further investigate if a GNN model trained on binary mixture 
and pure species data can be applied to ternary mixtures, without 
further model adjustment. We collect a small external data set of 6 
ternary mixtures and test both GNN models. We find that the WS-GNN 
model can predict the 𝐶𝑀𝐶mix of ternary mixtures with high accuracy, 
in the sense of low RMSE (cf. Table  2), hence demonstrating potential 
for further development and applications, such as consideration of 
the unreacted surface-active raw material. Experimental validation on 
4 commercial surfactants that contain up to 4 species and ternary 
mixtures is conducted and very good agreement between predictions 
and measurements is observed. Therefore, the model can accurately 
screen commercial surfactants and accelerate industrial research and 
development in a sustainable way.

Since the CMC of surfactants, mixtures, and pure species is influ-
enced by the pH of the solution, accounting for this factor in future 
work would be very interesting. This is particularly pressing in the 
case of zwitterionic surfactants. Furthermore, understanding the impact 
of different surface-active species present in the final product would 
allow us to either incorporate such information during model training 
or refine a high-fidelity data set. Extending the models to ethoxylated 
alkylsulfates would be highly industrial relevant, however dealing with 
the wide product distribution of ethoxylation remains challenging. 
Lastly, the lack of data availability for surfactant mixtures of higher 
order limits the development and/or testing of ML models for CMC 
prediction and should be addressed in future works. We however 
anticipate that the model can predict 𝐶𝑀𝐶mix values for mixtures with 
any number of surfactants, i.e., beyond quaternary systems presented 
in this work. The pre-requisite is that the structures of all species and 
the surface-active impurities are known.
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